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In this paper, the characteristic points were used as input data in five different explicit models based on Lambert W-function for the 
extraction of model parameters of three DSSCs. Moreover, these model parameters for given values of voltages were used to obtain 
the corresponding currents for the simulation of the DSSCs. The results show that the sign of the model parameter does not matter for 
methods that do not have series resistance and shunt resistance. However, when Rsh was negative the five-parameter single-diode model 
failed to yield good curve fit except when Rsh was neglected and four-parameter model used. Moreover, all the model parameters for 
DSSCs with bitter gourd dye were regular and yielded good curve fit for all the models. On the hand, DSSCs with Rsh values negative 
were handled with four-parameter model to obtain good curve fit. Thus, the sign of model parameter matters in simulation of DSSC 
using single-diode model. 
Keywords: Model parameter, Explicit model, Lambert W-function, Characteristic points, DSSC, Curve fit 
PACS: 2010: 88.90.+t, 88.40H-, 88.40.hj, 42.79.Ek. 
 

INTRODUCTION 
Nowadays, renewable energy plays a great role in reducing fossil resources consumption [1] due to problems arising 

from the use of fossil resources such as global warming, climate change, and air pollution [2] to mention a few. Presently, 
among the various renewable energy sources, solar energy is likely the most applicable, as it is clean, safe, and 
unlimited [3,4]. In one year, the amount of solar energy received from the sun is 104 times greater than the world’s energy 
consumption [4]. It has been revealed the installed photovoltaic power increased from 100.9 GW in 2012 to 230 GW in 
2015, rising to 400 GW in 2017 [1, 5]. This rate of increase has been feasible due to a new brand of solar cells that permit 
production growth while reducing costs and environmental impact [6]. 

Modeling has become a crucial step for photovoltaic system design and development, as it permits appropriate and 
accurate energy production forecasts [7]. The modeling of solar cells/panels is usually performed by using equivalent 
circuit models represented with mathematically implicit equations which are not easy to solve. However, the Lambert W-
function has been identified as a useful tool to solve these equations. 

The purpose of this paper is to present simplified model expressions in terms of the Lambert W-function, which is 
usually applied in photovoltaic devices, and depicts how this function is needed to solve equations connected to these 
systems. The desired model expressions were obtained by matching famous mathematical equations (exponential 
functions, polynomials, hyperbolic functions) to points on the Lambert W-function calculated numerically with the 
highest available accuracy.  

The approach presented in this paper is to apply simplified model equations based on the Lambert W-function that 
can be solved easily with a pocket calculator, to model and simulate DSSC systems behavior. 

 
MATERIALS AND METHODS 

Modeling and simulation of solar cells 
A host of researchers have reported that ideal solar cells behave like a current source connected in parallel with a 

diode [7-9]. This ideal model is achieved with resistors to represent the losses and sometimes with additional diodes 
that takes into account other phenomena [10,11]. The most common circuit equivalent to a solar cell consists of a 
current source, one diode and two resistors; one in series and one in parallel [12-19]. It is worth noting each of the 
element in the equivalent circuit one parameter has to be calculated except two in the case of the diode whose behavior 
is represented by the Shockley equation [20]. Thus, five parameters are required to be determined when applying this 
method [21-33]. This simple equivalent circuit has been used quite well to reproduce the current-voltage curve or 
simply I-V curve. Three important points of the I-V curve known as characteristic points namely: short circuit, 
maximum power, and open circuit points are used as input data. These representative points depend on temperature, 
irradiance of the photocurrent source, characteristic points and usually the normal information included in the 
manufacturer’s datasheets. 
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The conventional equation (1) describes a simple diode with a distinctive I-V curve 

 𝐼 = 𝐼 ቀ𝑒ೇೌ − 1ቁ, (1) 
where a is the modified ideality diode factor (quality factor or emission coefficient) which varies with the nature of diode 
is determined according to the fabrication process and the semiconductor material. 

When the semiconductor is illuminated, it will produce a photo-generated current Iph, which will result in a vertical 
translation of the I-V curve of a quantity that is almost entirely related to the surface density of the incident energy. 
The equivalent circuit solar cell containing series resistance Rs, shunt resistance Rsh, photocurrent Iph, diode saturation 
current Io, modified diode ideality factor, a is depicted in Fig. 1. 
 
     I 

                                        Rs                   

    Iph     Io                  Rsh                                                                                                      
                                         Diode       V 

                   

Figure 1. Electrical equivalent circuit of the single-diode solar cell 

The single-diode model assumes an ideal cell is pictured as a current generator that is linked to a parallel diode with 
an I-V characteristic which is mathematically defined by Schokley equation (2) 

 𝐼 = 𝐼 − 𝐼 ቀ𝑒ೇశೃೞೌ − 1ቁ − ାூோೞோೞ , (2) 

where I and V are the terminal current and voltage respectively, Io the junction reverse current, a is the modified junction 
ideality factor, Rs and Rsh are the series and shunt resistance respectively. 

Equation (2) is transcendental in nature hence it is not possible to solve for V in terms of I and vice versa. However, 
explicit solutions can be obtained using the principal branch of the Lambert W-function Wo [21, 34-37].  

 𝐼 = ோೞ൫ூାூ൯ିோೞାோೞ − ோೞ 𝑊 ቆ ோೞோೞூሺோೞାோೞሻ 𝑒 ൬ோೞோೞ൫ூାூ൯ାோೞሺோೞାோೞሻ ൰ቇ, (3) 

 𝑉 = 𝑅௦൫𝐼 + 𝐼൯ − ሺ𝑅௦+𝑅௦ሻ𝐼 − 𝑎𝑊 ቊோೞூ 𝑒ோೞ൬శషೌ ൰ቋ. (4) 

One can directly find the current for a given value of voltage using equation (3) or the voltage via (4), which makes 
the computation easy and robust in contrast to (2). The Lambert W function is readily available in all computation 
procedures [21, 35]. Finally, for simulation purpose the current can be calculated for each model by plugging the 
appropriate model parameters for any given value of V into equation (3) and vice versa for V for any given value of I in 
equation (4). However, if the curve fit fails due to parameter irregularity, for example Rsh negative or complex we neglect 
Rsh=∞, the last term in equation (2) vanishes reducing the five-parameter model to four-parameter model. Therefore, 
equation (3) reduces to equations (5)  

 𝐼 = 𝐼 + 𝐼 − ோೞ 𝑊 ቆோೞூ 𝑒 ൬ோೞ൫ூାூ൯ା ൰ቇ. (5) 

Furthermore, if equation (5) fails to yield good curve fit then Rs is neglected and equation (2) reduces to the ideal 
diode equation (1) representing a three-parameter model. Thus, equations (1), (3) and (5) can be used for simulation of 
three-, four- and five-parameter models respectively. 
 

The explicit model equations based on the Lambert W-function 
There are many explicit models to study the current-voltage behavior of a solar cell [38]. Notwithstanding, the results 

do not sustain any of the physical appearance of the photovoltaic conversion process, they are attracting great attention 
and accurate enough to produce recent discoveries from time to time [39]. Some of the explicit models with solutions 
based on the Lambert W-function include:  
 

I. The El-Tayyan model [40]. The proposed El-Tayyan model equation for generating I-V characteristics of solar 
cell or PV module is in the form 

 𝐼 = 𝐼௦ − 𝐶ଵ𝑒ቀషೇమ ቁ ൬𝑒ቀ ೇమቁ − 1൰, (6) 
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where C1 and C2 are coefficients of the model equation. These coefficients are given by [41]as 

 𝐶ଵ = ூೞଵି൬షೇమ ൰, (7) 

and, if 𝑉/𝐶ଶ >> 1: 
 𝐶ଶ = ିௐషభቆ൬ଵି ೇೇ൰൬ೞ ൰ቇ. (8) 

However, Babangida [42] have shown that the relationships between the conventional model parameters (Io and a) and 
the El-Tayyan coefficients (C1, C2) are given by equations (9) and (10) 

  𝐼 = 𝐶ଵ𝑒ିೇమ , (9) 

 𝑎 = 𝐶ଶ. (10) 

Thus, a and Io in equations (9) and (10) are the two model parameters for the El-Tayyan model.  
 

 
II. The Karmalkar and Haneefa model [43]. This model presents the current-voltage relation as 

 𝐼 = 𝐼௦ ቊ1 − ቆ1 − 𝛾 ቀ ቁቇ − 𝛾 ቀ ቁቋ, (11) 

where the model parameters are: 

 𝛾 = ଶ൬ೞ ൰ିଵሺିଵሻ൬ೇೇ ൰, (12) 

 𝑚 = ௐషభ൬ ೇೇ൰భ಼ ቀభ಼ቁ൬ೇೇ ൰
൬ೇೇ ൰ + ଵ + 1, (13) 

 𝐾 = ଵି൬ೞ ൰ି൬ೇೇ ൰ଶ൬ೞ ൰ିଵ . (14) 

 
III. The Das model [44]. The current-voltage for this model is given by 

 I = 𝐼௦ ଵିቀ ೇೇቁೖ
ଵାቀ ೇೇቁ൩, (15) 

where the coefficients are: 

 𝑘 = ௐషభ൬ೞ ൰൬ೇೇೞ ൰൨൬ೇೇ ൰ , (16) 

 ℎ = ൬ ൰ ൬ ூೞூ − ଵ − 1൰. (17) 

 
IV. The Saetre [45] and Das model [44]. This model was proposed independently by Das [41] and Saetre [42] 

given by the following equation 

 𝐼 = 𝐼௦ 1 − ቀ ቁ൨భ
, (18) 

where the model parameters f and g are estimated with output current measurements at V=0.8Voc and V=0.9Voc. 
Using the maximum power point conditions, ሺ𝑣, 𝑖ሻ = ሺ𝛼, 𝛽ሻ 𝑎𝑛𝑑 డడ௩ | = − ఉఈ, such that 𝛼 =   𝑎𝑛𝑑 𝛽 =ூூೞ , the following equations are obtained: 

 𝛽 = 1 − 𝛼, (19) 
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 𝑔𝛽 = 𝑓𝛼. (20) 

Assuming αf<<1, then  

 𝑔𝑙𝑛𝛽 = −𝛼. (21) 

Therefore, plugging equation (21) into equation (20), the equations for f and g are finally given by 

 𝑓 = 𝑊ିଵ ቀ ିఈఉቁ, (22) 

 𝑔 = ିఈఉ . (23) 

 
V. The 1-diode/2-resistors equivalent circuit model. The mathematical form of this model is already defined by 

equation (2) whose solution for I or V in terms of Lambert W-function is given by equation (3) or (4) respectively. Many 
researchers like [35] have published a solution of equation (2) based on the Lambert W-function which requires the diode 
ideality factor n as an input, say n=1.1 for the silicon cells studied and Rs is determined via equation (24). 

 𝑅௦ = 𝐴ሾ𝑊ିଵሺ𝐵𝑒ሻ − ሺ𝐶 + 𝐷ሻሿ. (24) 

where W-1 is the lower branch of the Lambert W-function and A, B, C, and D auxiliary parameters defined as: 

 𝐴 = ூ,      𝐵 = ൫ூೞିଶூ൯ൣூೞା൫ூିூೞ൯൧, (25) 

 𝐶 = ିଶ + ூೞିூൣூೞା൫ூିூೞ൯൧,         𝐷 = ି . (26) 

Most often the modified diode ideality factor a in terms of n and the thermal voltage VT is defined by equation (27) 

 𝑎 = 𝑛𝑉
  (27) 

such that VT is also defined by equation (27)  

 𝑉 = ்  (28) 

where k is the Boltzmann constant, T is the absolute temperature and q is the electron charge. In another vein, [43] avoided 
the assumption of the value of n instead he deduced that the modified diode ideality factor a is equal to the second 
El Tayyan coefficient C2 i.e he set a=C2 given by equation (29) 

 𝑎 = ିௐషభቆ൬ଵି ೇೇ൰൬ೞ ൰ቇ. (29) 

Furthermore, the parameter Rsh is calculated via [21] equation (30)  

 𝑅௦ = ൫ିூோೞ൯൛ିோೞ൫ூೞିூ൯ିൟ൫ିூோೞ൯൫ூೞିூ൯ିூ . (30) 

Finally, the remaining parameters Io and Iph are found by equations (31) and (32) respectively 

 𝐼 = ቂ𝐼௦ ቀ1 + ோೞோೞቁ − ோೞቃ 𝑒షೇೌ , (31) 

 𝐼 = 𝐼௦ ቀ1 + ோೞோೞቁ. (32) 

In this paper, equations (24) and (29-32) are used to extract the five model parameters (a, Rs, Rsh, Io, and Iph) to study 
the performance of DSSCs. 
 

RESULTS AND DISCUSSION 
Table 1. The characteristic points for three DSSCs  

Source of natural dye Characteristic points 
English Name Scientific Name Isc (mA) Imp (mA) Vmp (V) Voc (V)
Bitter gourd  Momordica charantia 9.244 6.450 0.4 0.536
Bougainvillea Bougainvillea 3.450 2.783 0.3 0.484
Mango peel Mongifera indica 2.51 2.130 0.4 0.618
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In Table 1, the characteristic or representative points namely the short circuit point (Isc, 0), open circuit point (0, Voc) 
and the maximum power point (Imp, Vmp) were obtained from the I-V curves of measured currents and voltages for three 
DSSCs are included. These points were used as input data for the modeling and simulation of the DSSCs studied. 
Table 2. The El Tayyan model parameter for three DSSCs  

Source of natural dye Parameter model 
English Name Scientific Name C1 C2 

Bitter gourd  Momordica charantia 0.009245 0.060353 
Bougainvillea Bougainvillea 0.003927 0.229684 
Mango peel Mongifera indica 0.002760 0.257501 

Table 2 contains the two parameters for the 2-parameter El Tayyan model and both parameters are positive and less 
than unity. This means the parameters are regular parameters. The two parameters are inversely proportional to each other. 
Table 3. The Karmalkar and Haneefa model parameter for three DSSCs  

Source of natural dye Parameter model 
English Name Scientific Name ϒ m K 

Bitter gourd  Momordica charantia 0.758887 9.611764 -1.12783
Bougainvillea Bougainvillea 1.846619 1.777069 -0.69538
Mango peel Mongifera indica 1.394703 2.453534 -0.71120 

 
Table 3 depicts the three parameters of the Karmalkar and Haneefa 3-parameter model. Two of the parameters, 𝛾 𝑎𝑛𝑑 𝑚, have positive values whereas the parameter K has all values negative. This implies that 𝛾 𝑎𝑛𝑑 𝑚 are regular 

parameters and K is irregular parameter. The three parameters are inversely proportional to one another. 
Table 4. The Das model parameter for three DSSCs  

Source of natural dye model parameter 
English Name Scientific Name k h 

Bitter gourd  Momordica charantia 8.584082 0.428833 
Bougainvillea Bougainvillea 2.024451 -0.410257 
Mango peel Mongifera indica 2.293207 -0.398095 

 
Table 4 contains the two parameters (k and h) for the 2-parameter Das model. The parameter k has positive values 

for all DSSCs while h negative value for DSSC with bitter gourd dye and positive values for DSSCs with bougainvillea 
and mango peel dyes. This means k is regular parameter for all dyes whereas h is regular for bitter gourd dye and irregular 
for bougainvillea and mango dyes. The parameters are directly proportional to one another. 
Table 5. The Saetre and Das model parameter for three DSSCs  

Source of natural dye model parameter 
English Name Scientific Name f g 

Bitter gourd  Momordica charantia 2.746442 1.235772 
Bougainvillea Bougainvillea 0.990796 2.897765 
Mango peel Mongifera indica 0.393542 5.133096 

 
In Table 5, the Saetre and Das model parameters f and g are included. Both parameters are positive and therefore 

they are regular. Also, f and g are inversely proportional. However, the DSSCs with bougainvillea and mango dyes exhibit 
parameter irregularity in Rsh and Iph. 
Table 6. The Single diode circuit 5-parameter model for three DSSCs  

Source of natural dye model parameter 
English Name Scientific Name A Rs (W) Rsh (W) Io (mA) Iph (mA) 
Bitter gourd  Momordica charantia 0.060353 11.2 189.6 9.6755×10-4 9.7879 
Bougainvillea Bougainvillea 0.229684 35.5 -18.6 2.7823×10-3 -3.1223 
Mango peel Mongifera indica 0.257501 34.6 -99.5 7.1220×10-4 1.6378 

 
In Table 6, the single-diode model parameters (a, Rs, Rsh, Io, and Iph) are included. The DSSC with bitter gourd dye 

have all the parameters positive and hence they are regular. Similarly, the other DSSCs show parameter irregularity in Rsh 
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and Iph for DSSC with bougainvillea dye and only Rsh for DSSC with mango dye. Also, a and Iph are inversely proportional 
to Rsh and Rs respectively. 
Table 7. Some common features of the five models studied 

Model Year MP OB PI SM (Rsh=∞) 
El Tayyan 2006 2 6 0 2-parameter model
Karmalkar & Haneefa  2008 3 9 3 3-parameter model 
Das  2011 2 6 2 2-parameter model
Saetre and Das  2011 2 6 0 2-parameter model
Shockley single-diode 1949 5 15 3 4-parameter model

 
Table 7 depicts the 2wnumber of model parameters (MP), observations (OB), parameter irregularities (PI), and 

simulation model (SM) that produced good curve match for all the DSSCs studied. 
In all cases, the model parameters were used in appropriate model equations for the simulation of the DSSCs 

investigated. In this work, the five-parameter model was used to simulate DSSC with bitter gourd dye with regular 
parameters whereas the four-parameter model for the remaining DSSCs with irregular parameters yielded good curve fits 
Figs. (2a-6a) on the left and their corresponding error distributions in Figs.(2b-6b) on the right. 

 

(a) Characteristic I-V/P-V curves (b) Differences in Current and power 

Figure 2. El Tayyan model 
(a) characteristic curves and (b) differences between measured and simulated currents and powers 

 
(a) Characteristic I-V/P-V curves (b) Differences in Current and power 

Figure 3. Karmalkar and Haneefa model 
(a) characteristic curves and (b) differences between measured and simulated currents and powers 
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(a) Characteristic I-V/P-V curves (b) Differences in Current and power 

Figure 4. Das model 
(a) characteristic curves and (b) differences between measured and simulated currents and powers 

(a) Characteristic I-V/P-V curves (b) Differences in Current and power 

Figure 5. Saetre and Das model 
(a) characteristic curves and (b) differences between measured and simulated currents and powers 

(a) Characteristic I-V/P-V curves (b) Differences in Current and power 

Figure 6. Single-diode model 
(a) characteristic curves and (b) differences between measured and simulated currents and powers 
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CONCLUSIONS 
In this study, solutions of five explicit model equations based on the Lamber W-function were used to model and 

simulate the behavior of three DSSCs. The major conclusions resulting from this work are: 
• The input data was the experimental data (short-circuit, maximum power and open circuit) of three DSSCs. 
• The nature or sign of model parameters did not affect curve fit for models that neglect resistances (Rs and Rsh) as 

opposed to those depending on the resistances.  
• The five-parameter single-diode model relies on resistance with poor curve fit when Rsh was negative.  
• If n is the number of irregular model parameters, then the model that produced good curve fit is 5-n parameter 

single-diode model i.e., if Rsh is neglected we have 4-parameter single-diode model; if Rs and Rsh neglected we have 
3-parameter single-diode model; etc. 

• The single-diode model is more rigorous, time consuming, higher number of model parameters and hence provide 
more information about the system than the other models. 

• The proposed models have provided overall curve fits between the simulated and experimental data.  
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ОЦІНЮВАННЯ ЯВНИХ МОДЕЛЕЙ НА ОСНОВІ W-ФУНКЦІЇ ЛАМБЕРТА ДЛЯ МОДЕЛЮВАННЯ 
ТА ВІДТВОРЕННЯ РІЗНИХ СЕНСИБІЛИЗОВАНИХ БАРВНИКАМИ СОНЯЧНИХ ЕЛЕМЕНТІВ (DSSC) 

Джаму Б. Єрімаa, Дунама Вільямb, Алкалі Бабангідаc, Сабастін С. Езікеa 
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У цій статті використовувалися характерні точки як вхідні дані в п’яти різних явних моделях на основі W-функції Ламберта 
для вилучення параметрів моделі трьох DSSC. Крім того, ці параметри моделі для заданих значень напруг були використані 
для отримання відповідних струмів для моделювання DSSC. Результати показують, що знак параметра моделі не має значення 
для методів, які не мають послідовного опору та опору шунта. Однак, коли Rsh був від’ємним, 5-параметрична однодіодна 
модель не дала хорошої відповідності кривої, за винятком випадків, коли нехтували Rsh та використовували 4-параметричну 
модель. Більше того, усі параметри моделі для DSSC з гарбузовим барвником були регулярними та дали хорошу відповідність 
кривій для всіх моделей. З іншого боку, DSSC з негативними значеннями Rsh оброблялися за допомогою чотирипараметричної 
моделі для отримання хорошої відповідності кривої. Таким чином, знак параметра моделі має значення при моделюванні 
DSSC з використанням однодіодної моделі. 
Ключові слова: параметр моделі, явна модель, W-функція Ламберта, характерні точки, DSSC, підгонка кривої 




