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The problem of convective instability in a horizontal dielectric couple stress fluid layer with electric field modulation is investigated. 
The horizontal dielectric upper boundary layer is cooled, and the lower boundary layer is subjected to an isothermal boundary condition. 
The regular perturbation method is used to calculate the critical Rayleigh number and the corresponding wavenumber based on the 
small magnitude of the modulation. The strength of the system is characterised by a correction Rayleigh number, which is calculated 
as a function of the thermal, electrical, and couple voltage parameters and the frequency of the electric field modulation. Some of the 
well-known findings are taken up as special cases in this study. It is shown that the onset of convection can be accelerated or delayed 
by proper adjustment of various control parameters. The results of this study have potential implications for controlling 
electroconvection with a time-dependent electric field. 
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1. Introduction 
Electrohydrodynamic deals with the justice of the motion of fluids under the influence of electric energy. In 

microchannels, the interaction of electric fields with fluid flow has led to a variety of complex and interesting unstable 
events. In addition, the use of electrical energy to control fluids has been shown to be a very effective way to achieve 
many goals and functions in microfluidic devices. 

When we add additives to oils or liquids, the energy contained in the liquid conflicts with the strength of the 
additives. This conflict leads to less fluid, which in turn leads to more stress for the couple. Couple stress fluid is the name 
for this type of fluid. The particular effects of couple stress fluid pressure on fluid is considered [1-3], and the basic 
statistical calculations for forcing couple stress are presented. Couple stress slows the onset of convection, while central 
infiltration accelerates the onset of convection [4-6], which allows to conclude that the system of stability exchange was 
heated in the couple stress fluid below the perforated area. As we have seen [7], the instability thresholds are changed 
when the fluid filling the porous medium exhibits pair-voltage behavior. They also assume that porous behavior is subject 
to small amplitude perpendicular oscillations. The convection variability of a chemically reactive fluid with coupling 
stresses in a porous medium heated from below is studied using a modified Darcy model by Taj et al. [8]. Coupling 
stresses improve system stability, and the stabilizing effect of coupling stresses is not diminished by the counteracting 
influence of chemical reactions and vice versa. In Maxwell-Cattaneo law [9], George & Thomas studied the consequences 
of gravity modulation and formation in the early phase of modulation within couple voltages. It is shown that by 
controlling the various regulating factors, the execution of convection transfer can be enhanced or postponed. The 
horizontal connection emphasizes the effect of the horizontal wavenumber and coupling stress fluid factors on the fluid 
layer, while the perforated parameters have a strong influence on the predominant fluid layer [10]. 

Analysis of convective instability in a horizontal viscoelastic dielectric fluid layer under the synchronous action of 
a direct alternating electric field with a precise temperature gradient was dealt with by Takashima & Ghosh [11]. It has 
been demonstrated that oscillatory processes of uncertainty occur only when the density of the fluid layer is less than 0.5 
mm, and that the power of the current source in such a thin layer is more important than renewable energy. Sharma & 
Thakur [12] studied a porous material using a bottom heated conductive coupling voltage fluid in the absence of a 
homogeneous magnetic field. The coupling fluid and magnetic field retard the onset of thermal convection in a downward 
heated coupling stress in a porous medium in hydromagnetism, while the permeability of the medium accelerates it. 
Rayleigh-Bénard and Marangoni convection in dielectric fluids was studied by Maruthamanikandan [13]. This statement 
refers to the effects of the same internal heat dissipation and radiation. Thermorheological and electrical effects are 
considered in the management of the actual viscosity, such as the temperature function and the magnitude of the electric 
field. Rudraiah et al. [14] used a power method to study the stability of an electrohydrodynamic linear conductor flowing 
a pair of viscous fluid streams across a perforated medium in the presence of a uniform flexible electric field. It has been 
shown that the interaction of the electric current with the pair voltage is more efficient in stabilizing the pair voltages than 
for the conventional viscous Newtonian fluid. Shivakumara et al. [15] discuss the conjugation effects of electric body 
force, buoyancy force, Coriolis force and couple stress of the fluid in the formation of EHD instability. It is shown that 
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the influence of the couple stress parameter as well as Taylor number of the system of stability properties is considered 
in the situation of isothermal boundary. Using the method of small perturbation [16], the influence of variations of thermal 
conductivity on the onset of Rayleigh-Bénard instability in a horizontal layer of a Cattaneo-dielectric fluid under the 
simultaneous action of an alternating electric field and a temperature gradient was studied. The Rayleigh-Bénard solution 
of the Cattaneo-dielectric fluid layer is more stable than the Fourier dielectric fluid problem. Nagouda & 
Maruthamanikandan [17] studied the effect of radiation on Darcy electroconvection in the presence of an alternating 
electric field. It has been shown that the system is more stable in the presence of radiative heat transfer. 

The Navier-Stokes equations in the Boussinesq approximation and the heat conduction equation in the presence of 
rigid boundary conditions are explored by Andreeva & Tkachenko [18] and Patochkina [19] as a linear steady-state system 
of equations. At the onset of Rayleigh-Bénard convection, gravity migrates in a weakly conducting couple stress fluid 
with a saturated porous layer, as shown by Sameena & Pranesh [20]. Shankar et al [21] found that the buoyancy of a 
vertical dielectric fluid layer between vertical surfaces maintained at constant but different temperatures drive the 
combined influence of a couple stress and a horizontal AC field on the accompanying shear flow stability in the horizontal 
direction. The effect of radiant heat on a dielectric fluid filled with an anisotropic porous medium is evaluated according 
to the Milne-Eddington standard and treated by Myson and Nagouda [22]. They showed that the conduction and radiation 
parameters stabilize the system. In addition, the critical Darcy-Rayleigh number shows the effects of stabilization when 
there are no coupling stresses and dielectric boundaries. The suitability of the stability exchange policy is evaluated and 
it is found that the marginal strength is a preferred mode over the oscillatory mode. The effect of intermittent temperature 
fluctuations in the open unstable surface of the semiconductor layer of the fluid leading to the instability of the first quasi-
equilibrium fluid is studied by Smorodin & Gershuni [23]. They found that if the Marangoni and Rayleigh numbers do 
not vanish, the results depend on the accuracy of the set temperature.  

Smorodin & Velarde [24] and Smorodin [25] found that destabilization and stabilization of the basic state is possible 
depending on the frequency of the electric field and the number of Rayleigh numbers. In the horizontal layer, only the 
positive response to the outgoing electric field is considered, since the dielectrophoretic force does not depend on the 
direction of the electric field and consequently does not change its direction during the fluctuation period. The stability 
of a viscous incompressible conductive cylindrically structured fluid in the external magnetic field of a vacuum arc current 
flowing through it may be utilized to investigate many features of such processes [26] and [27]. Rudresha et al. [28] 
investigated the effect of electric modulation on the onset of electrothermal convective instability of the horizontal 
dielectric porous layer using a stability analysis based on the assumption that the amplitude of the peripheral power is 
very small. 

In many practical scenarios, it is possible to postpone or accelerate the onset of convection by modifying one of the 
determining factors. Several studies of the effects of modulation have shown that by applying the proper transitions to a 
control parameter, the conduction state can be stabilized or destabilized. As a result, the concept of applying transitions 
to a control parameter is critical because it provides an effective tool for addressing the problem of Raleigh-Bénard 
convection in a pair of stress fluids, which is particularly relevant to engineering applications. Many heat transfer 
applications involving these couple stresses as a function now recognize that this can improve or reduce heat transfer in 
parallel with the final Newtonian convection. In this paper, we have investigated the effects of modulating an electric 
field on the boundary at the onset of convection in the dielectric fluid layer with couple stresses. 
 

2. MATHEMATICAL FORMULATION 
The problem at hand considers boundless horizontal dielectric fluid layer of couple stress fluid of thickness d. The 

lower surface and the upper surfaces are 𝑧 =  0 and 𝑧 =  𝑑 and they are sustained at constant temperatures 𝑇ଵ and 𝑇଴ 
respectively and modulation electric potential 𝜙 = ±𝑈(𝜂ଵ + 𝜂ଶ 𝑐𝑜𝑠 𝜔 𝑡) is retained on boundaries (see Figure. 1), where 𝑈 is the magnitude of the modulation of the potential, 𝜔 is the frequency of modulation and 𝜂ଵ and 𝜂ଶ are the relative 
amplitudes of the components of constant and reciprocating potential difference.  
 

 
Figure 1. Schematic Diagram 

The relationship between the shear tension and the flow field within a large fluid class is different from that of 
Newtonian fluids. These fluids are non-Newtonian in nature. The problem of Raleigh-Bènard couple stress fluid 
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convection is particularly relevant in terms of technical applications. In heat transfer applications concerning this fluid as 
a functioning medium, it is now recognized that this might have improved or decreased heat transmission associated with 
the conventional Newtonian fluids. The relevant fundamental equations in the Boussinesq approximation [8], [11], and 
the dielectric constant are assumed to be linear functions of temperature. 

 0q 
 , (1) 

      2 4
0

1
2f c

q q q p g q q E E
t

    
 

            

       , (2) 

   2
c c

T q T k T
t

 
   


 , (3) 

where 𝑞⃗  =  (x, y, z)  is the velocity vector, 𝑇 and 𝐸ሬ⃗  are temperature and root mean square value of the electric field, 𝑝 is 
the improved pressure, 𝜀 and 𝜌 are respectively dielectric constant and the fluid density, 𝜇௙ and 𝜇௖ are viscosity of the 
fluid and constant of the material which determines the couple stress attribute called couple stress viscosity, 𝑘 is thermal 
conductivity, 𝑔⃗ is the gravity acceleration, 𝜌଴ is the density. 

For most dielectric fluids, the dielectrophoretic force dominates the coulomb force. Hence the coulomb force has 
been omitted in Eq. (2). Consequently, the applicable Maxwell equations are 
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where 𝛼 is the thermal expansion coefficient, 𝜙 is average quadratic value of the electric potential modulation. 𝑒 (> 0) 
is dielectric steady-state thermal expansion coefficient, which is tiny. 

The fundamental condition is quiet and is provided by 𝑞⃗ = 𝑞⃗௕(𝑧) = 0; 𝜀 = 𝜀௕(𝑧); 𝑇 = 𝑇௕(𝑧); 𝜙 = 𝜙௕(𝑧); 𝑝 = 𝑝௕(𝑧); 𝜌 = 𝜌௕(𝑧); and 𝐸ሬ⃗ = 𝐸ሬ⃗ ௕ = ሾ0,0, 𝐸௕(𝑧)ሿ, index 𝑏 is a basic state and using these constraints we obtain 
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In order to investigate the stability of the basic state, we place over a negligible perturbation of the fundamental state 
of the form 𝑞⃗ = 𝑞⃗′ = (𝑢′, 𝑣′, 𝑤′); 𝜀 = 𝜀௕ + 𝜀′; 𝑝 = 𝑝௕ + 𝑝′; 𝑇 = 𝑇௕ + 𝑇′; 𝐸ሬ⃗ = 𝐸ሬ⃗ ௕ + 𝐸ሬ⃗ ′and 𝜙 = 𝜙௕ + 𝜙′, where (𝑢ᇱ, 𝑣ᇱ, 𝑤ᇱ), 𝑇ᇱ, 𝑝ᇱ, 𝜀ᇱ, 𝜙ᇱ and 𝐸ሬ⃗ ′ are the velocity, temperature, pressure, dielectric constant, potential and electric field 
disturbances, respectively. Substituting these quantities into eqn. (1) to (7), and keeping the vertical component, the 
pressure from the momentum equation is removed. The resultant equations are nondimensionalized by using scalings (𝑥, 𝑦, 𝑧) = ൫𝑑𝑥,∗𝑑𝑦,∗𝑑𝑧,∗൯; 𝜙 = 2𝑈(𝜂ଵ + 𝜂ଶ 𝑐𝑜𝑠 𝜔 𝑡)𝑒Δ𝑇𝜙∗; 𝑇 = Δ𝑇𝑇∗;   𝑡 = 𝑑ଶ𝑡∗ 𝜅⁄ ; and 𝑤 = 𝜅 𝑤∗ 𝑑⁄ . By eliminating (𝑢ᇱ, 𝑣ᇱ, 𝑤ᇱ),  𝑇ᇱ, 𝑝ᇱ, 𝜀ᇱ, 𝜙ᇱ and 𝐸ሬ⃗ ′ from the perturbation equations and to facilitate tilde suppression, we get the following 
nondimentionalized equations: 
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where 𝑅 = 𝛼𝜌଴𝑔𝑑ଷ𝛥𝑇 𝜇௙𝜅ൗ  is the thermal Rayleigh number, 𝑃𝑟 = 𝜈 𝜅⁄  is the Prandtl number, 𝐶௦ = 𝜇௖ 𝜇௙𝑑ଶ⁄  is the 
couple stress parameter, 𝑅௘ = 4𝑒ଶ𝑈ଶ𝛽𝜀଴𝛥𝑇𝑑𝜂ଵଶ 𝜇௙𝜅ൗ  is the electrical Rayleigh number, 𝜂ଷ = 𝜂ଶ 𝜂ଵ⁄  is the ratio of the 
amplitudes. 

The assumed boundaries are stress-free and isothermal; therefore, the boundary conditions are given as follows. 
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After eliminating the coupling between the Eqns. (10) to (12) we obtain the single equation for vertical component 
of velocity in the form 
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where cosf t . 
Also, the boundary conditions of the fluid layer are supposed to be isothermally free at temperature disturbances 

with decreasing couple stress and the following are the boundary conditions [28]: 
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3. METHOD OF SOLUTION 
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where 𝑅଴ is the unmodulated Rayleigh number (𝜂ଷ  =  0), and 𝑅௜ (𝑖 ≥  2) are the modulation adjustments to the critical 
Rayleigh number.  

The odd powers of 𝜂ଷ appearing in the second equation of (16) are not addressed because altering the sign of 𝜂ଷ just 
alters the temporal origin, which has no effect on the stability problem. Therefore, 𝑅 is independent of 𝜂ଷ, and any odd 
powers of 𝜂ଷ should be equal to zero (see [28]). To get the following system of equations, the extension (16) is changed 
into Eq. (14) and the coefficients of the different powers of 𝜂ଷ are assimilated into one or another of the equations. 
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Each of 𝑤௡ is necessary to meet the boundary criteria (15). The marginal stable solution to the problem is overall 
solution of Eq. (17), i.e. 

 0 sinw z . (21) 

In the deficiency of electric field modulation, the zeroth order solution is like the Rayleigh-Bénard problem of the 
dielectric fluid with couple stress fluid. Shivakumara & Akkanagamma [15] carefully examined Rayleigh Bénard analysis 
of linear and nonlinear electroconvection in couple stress fluid without modulation. The system of stability is explored in 
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the absence of electric field modulation by introducing a vertical temperature perturbation with 𝑤଴ corresponding to the 
lowest mode of convection and the related eigenvalue. The associated eigenvalues are provided by 
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The least eigenvalue occurs at 𝑛 =  1 for a fixed value of the wave number and is given by 
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The solution to Eq. (18) is inhomogeneous due to the inclusion of reverberation factors. To satisfy the solvency 
condition, the time-independent element of the right part of Eq. (18) must be orthogonal to w0. 𝑅ଵ𝐿ଵ𝛻ଶ𝛻ଵଶ𝑤଴ is the time 
free term on the right side, hence 𝑅ଵ  =  0, as a result, all the odd coefficients, in other words, 𝑅ଵ, 𝑅ଷ, 𝑅ହ, … … in Eq. (16) 
should disappear. If we expand the right-hand side of Eq. (18), we obtain 
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We get 𝑤ଵ by flipping the operator 𝐿 term by term, as in 
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A term proportionate to 𝑠𝑖𝑛(𝜋𝑧) is intervened in the solution of the homogenous equation corresponding to Eq. (24). 
Including this term for the overall solution of Eq. (24), on the other hand, it is equal to the reconfiguration of 𝑤௡ as all the 
equals of 𝑠𝑖𝑛(𝜋𝑧) may be combined to describe the new 𝑤଴ with the same meanings of 𝑤ଵ, 𝑤ଶ, ... As a result, we may 
conclude that 𝑤଴ is orthogonal to all other 𝑤௡’s. We find from Eq. (19)  
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4. RESULTS AND DISCUSSION 
The perturbation procedure method is used to study the stability condition of a modulated dielectric fluid layer with a 

couple stress and an electric field. This approach is used to determine the Rayleigh number, wave number, and correction 
Rayleigh number. The present analysis assumes that the amplitude of the electric field modulation is very small in comparison 
to the central electric field, that convective currents are weak, allowing indirect effects to be ignored, and that the dielectric 
constant is considered to be a linear function of temperature. When the modulating frequency 𝜔 is low, violating these 
assumptions has a major impact on the outcomes. This is because the perturbation technique requires that amplitude of  𝜂ଷ𝑤ଵ 
not exceeding that of 𝑤଴, resulting in the condition 𝜔 > 𝜂ଷ. As a result, the validity of the results is dependent on the modulating 
frequency value. When 𝜔 << 1, the modulation time is large and impacts the full volume of the fluid. The impact of the 
modulation decreases at high frequencies because the electric force takes an average value, resulting in an unmodulated 
equilibrium state. Consequently, modulation has a significant effect only in small and moderate quantities of 𝜔. 

Before delving into the results displayed in Fig. 2-4, it is worth noting that the oscillatory mode will not be present 
in couple stresses (see [8]), and these figures demonstrate the fluctuation of 𝑅ଶ௖ versus 𝜔 for various parameters. As we 
can observe that, 𝑅ଶ௖ is always positive for entire array of 𝜔 values, showing that the effect of electric field modulation 
and couple stresses are causing the system to stabilize. Convection occurs later in the modulated system than in the 
unmodulated system. Fig. 2 depicts a plot of the critical correction Rayleigh number 𝑅ଶ௖ vs frequency modulation 𝜔 for 
different electrical Rayleigh number 𝑅௘ values. In this picture, we see that the amplitude of the correction Rayleigh 
number 𝑅ଶ௖ decreases positively as the electrical Raleigh number 𝑅௘ climbs. This shows that 𝑅௘ decreases the stabilizing 
effect for low values of frequency 𝜔. However, the same pattern is seen for high values of 𝜔. For large values of 
frequency, the modulation effect vanishes. 

 

Figure 2. Variation Rଶୡ vs ωfor a different 
value of Rୣ with Cୱ = 0.005 and Pr = 5 

Figure 3. Variation Rଶୡ vs ω for a different 
value of Cୱ with Rୣ = 20 and Pr = 5 

Figure 4. Variation Rଶୡ vs ω for an indivi-
dual values of Pr with Rୣ=20 and Cୱ =0.005

Fig. 3 depicts a plot of the critical correction Rayleigh number 𝑅ଶ௖ vs frequency 𝜔 for a different value of the couple 
stress parameter 𝐶௦. We observe from this graph that when the couple stress parameter 𝐶௦ grows, so does 𝑅ଶ௖, stabilizing the 
system. The concentration of suspended particles is represented by 𝐶௦. An explanation can be given to elucidate the impact 
of 𝐶௦ on 𝑅ଶ௖ using Einstein's rule on suspension viscosity. Einstein's equation for suspended particles is 𝜇 = 𝜇଴(1 + 2.5𝛼𝛿), 
where µ and µ଴ are the viscosity of the suspension and clean fluid, respectively, 𝛼 is the form factor, and 𝛿 is the volume 
ratio of suspended particles. 𝛼 equals 1 for spherical particles and exceeds 1 for other structures such as ellipsoids, rods, 
etc. To comprehend a change in the viscosity of a suspension with concentration, remember that the viscosity of any fluid 
is related to the intemperance of mechanical energy into heat inside the fluid. Other parameters influencing suspension 
viscosity include the viscosity of the carrier liquid, particle contact, particle stiffness or deformability, temperature, and 
electrical conductivity. We simply assume that the viscosity of a suspension is greater than the viscosity of the carrier 
liquid. For low concentrations, the assumed viscosity concentration relation holds true. In the event of larger 
concentrations, the Einstein relation must be supplemented with a quadratic term. Given the preceding explanation, we 
believe that the Prandtl numbers of fluids containing suspended particles are greater than those of fluids without suspended 
particles. The modulation effect, on the other hand, fades away at a high frequency. This is because the electric force 
adopts a mean value, resulting in the unmodulated case's equilibrium condition. As a result, in our research, we only 
employed a moderate value. It should be noted that the value of the Prandtl number is assumed to be larger than that of 
clean fluid due to the existence of suspended particles in the fluid and Einstein's connection to viscosity. 

Fig. 4 depicts the 𝑅ଶ௖ against 𝜔 for various Prandtl numbers 𝑃𝑟. When 𝑃𝑟 increases for small values of 𝜔, 𝑅ଶ௖ 
decreases, but increases for moderate and large values of frequencies, indicating that the effect of 𝑃𝑟 on the electric field 
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modulation on a couple stress fluid is to reduce the stabilizing effect for small values of 𝜔, and to increase the stabilising 
effect for large values of 𝜔. 
 

5. CONCLUSIONS 
We conclude from the research carried out that the effects of electric field modulation and couple stress fluid on the 

commencement of electroconvection in a dielectric fluid layer cause convection to be delayed. Depending on frequency, 
the electrical Rayleigh number has a stabilizing and destabilizing impact. The system stability is strongly influenced by 
the couple stress parameter, and the Prandtl number diminishes the stabilizing impact. At intermediate frequencies, this 
impact is stronger. Finally, it is discovered that electric field modulation may either stabilize or destabilize the system 
depending on the values of the parameters, and that it disappears for high frequency values. 
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ВПЛИВ МОДУЛЯЦІЇ ЕЛЕКТРИЧНОГО ПОЛЯ НА ПОЧАТОК ЕЛЕКТРОКОНВЕКЦІЇ 

В ПАРНІЙ НАПРУЖЕНІЙ РІДИНІ 
Чандраппа Рудреша, Чандрашекар Баладжі, Венкатеш Відья Шрі, Сокалінгам Марутаманікандан 

Факультет математики, Інженерна школа, Президентський університет, Бенгалуру, Індія 
Досліджено проблему конвективної нестійкості в горизонтальному діелектричному парному напруженому шарі рідини з 
модуляцією електричного поля. Горизонтальний діелектричний верхній граничний шар охолоджується, а нижній граничний 
шар піддається ізотермічним граничним умовам. Для обчислення критичного числа Релея та відповідного хвильового числа 
використовується метод регулярних збурень на основі малої величини модуляції. Міцність системи характеризується 
коригувальним числом Релея, яке розраховується як функція теплових, електричних параметрів, параметрів напруги пари та 
частоти модуляції електричного поля. В цьому дослідженні деякі з добре відомих висновків розглядаються як окремі випадки. 
Показано, що початок конвекції можна прискорити або відстрочити належним налаштуванням різних контрольних 
параметрів. Результати цього дослідження мають потенційні наслідки для керування електроконвекцією за допомогою 
залежного від часу електричного поля. 
Ключові слова: конвекція, парна напруга, діелектрична рідина, електричне поле, модуляція 




