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This paper is devoted to the studies of the specific features of the simulation of the particle diffusion processes in space — periodic
potentials using Langevin equations. Different methods used for the presetting of initial conditions and their effect on the
obtained solutions have been analyzed. It is shown that the system is nonequilibrium for all the methods of the presetting of initial
conditions during a certain time interval of ¢, . This interval is increased as 1/y with a decrease in the friction coefficient. A

trm *°
reasonable description of the transient processes of particle transport and diffusion requires a preliminary system thermalization
procedure. A new method of the presetting of initial conditions that provides the most accurate description of equilibrium system
has been suggested. It consists in the generation of the initial particle coordinates and velocities that correspond to the equilibrium
distribution of harmonic oscillators with a specified temperature. The use of such initial conditions enables the computations with
a good accuracy using no thermalization procedure at 7 < 0.1. The classic method of the determination of diffusion coefficients

D as a limit lim(az/ Zt)has been analyzed. It was shown that the use of it for computer-aided calculations is limited by the
>0

restricted computational time. It results in that the computation of D under certain conditions becomes impossible. A new
method was suggested for the determination of the diffusion coefficient using the linear approximation of the dependence of
dispersion on time. This approximation can only be possible after the kinetic temperature attains its stationary value. The
suggested method requires several orders of magnitude less time in comparison to the classic method. As a result, it enables the
computation of the diffusion coefficient even in the cases of total previous failure. The obtained data are of great importance for
correct simulation computations of diffusion processes and for the appropriate physical interpretations of obtained data.
Keywords: diffusion, computer simulation, Langevin equations, initial conditions, external fields.
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Particle transport and diffusion processes in periodic potentials that are exposed to the action of external fields
play an important role for different phenomena peculiar for physics, chemistry and biology [1-2]. For example,
Josephson junctions [3], superionic conductors [4], Josephson Vortex [5], charge density waves [6], magnetic
ratchets [7], granular gas [8], surface diffusion [9], optic vortexes [10] and the membrane permeability [11], actually it
is by far incomplete list of mentioned phenomena.

Recently, a substantial progress was achieved in the analytical studies of the particle transport and diffusion in the
overdamped state [12-13]. At the same time, the developed methods are poorly acceptable for low dissipation systems.
In this connection, the methods of computer simulation were intensively used along with analytical computations. In
particular, the numerical solution of Langevin equations [14-18] has intensively been used.

Numerical solution of stochastic equations has the specific features of its own that are relating both to the
presetting of initial conditions and the limited simulation time. The temporal dynamics of the obtained values of the
diffusion coefficient and the particle mobility in the transient state depend to a great extent on the type of initial
conditions. And the time limitation has an effect on the correct definition of such values as the mobility and the
diffusion coefficient.

The purpose of this scientific paper was to evaluate already available methods and develop new efficient methods
for the presetting of initial conditions and analyzing the solutions of stochastic Langevin equations.

BASIC RATIOS AND SIMULATION METHODS

The Langevin equation is usually used for the simulation of the motion of Brownian particles in the periodic
potential exposed to the action of external fields:
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where X is the particle coordinate, m is the particle mass, 7 is the time, g is the friction coefficient, and F (T) is the
external force. The dot on top denotes the time differentiation. The term £(¢) describes thermal fluctuations. The noise
is a white Gaussian noise and accordingly the ratio of

[E0&@)) =2gkO5(r - 1), 2

where £ is the Boltzmann constant and ©® is the temperature.
For the potential particle energy in the periodic potential with period L the relation of

UX+L)=U(X). 3)
is true. Henceforth, we will make use of the most frequently used type of the periodic potential, in particular

U(X):—(;OCOS[ZL”XJ 4)

where U is the potential barrier height.
The moving particle is exposed to the action of the periodic force exerted by the lattice £, :

dUu (27
Flat = _E = FO Sln(L Xj (5)

The period of low natural vibrations in such a potential is equal to 7y = L(Zm /Uy )1/2 .

It is convenient to change over to dimensionless values to analyze the simulation data [1,19]. Let’s apply the
transformations:

=y =T (6)
L T,

By selecting mass units m =1, k =1, we obtain a maximum simple type of the equation (1):

x=—sinx—yx+ f(1)+{(1), o
(CD@h)=2yT8(t—1"),

Dimensionless units are relating to the force through the friction coefficient and temperature as follows:

_~ %0 _F() _2k©
wcml,mk% J—% 8)

To evaluate the extent of the thermal equilibrium of the system described by equations (7) we will use the kinetic
temperature that is often used by the nonequilibrium statistical physics [20]:

Ty =7 (407 ©

Here, the brackets denote the ensemble averaging and <Av2> = <(v - <v>)2> denotes the velocity variances. In the state

of thermal equilibrium the kinetic temperature of the system is equal to the thermostat temperature of 7;, =T .
The particle transport will be characterized by the value of the average velocity of the particle ensemble:

)= fonloh (10

where n(v) is the normalized function of the particle velocity distribution.
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To analyze diffusion processes we will use the dispersion for the particle coordinate distribution:
o2(1)= <(x(t)— <x(t)>)2> (11)

Stochastic equation (7) was solved numerically for each particle using stochastic Heun algorithm [21]. The time

step was equal to 0.01. The statistical ensemble averaging was carried out for the particle number of at least N = 5- 10%.

ANALYZING INITIAL CONDITIONS
In order to solve equation (7) we need to preset appropriate initial conditions. These conditions should conform to
the described physical situation. When exposing the particles to the action of different external fields we usually assume
that these are in thermal equilibrium with the thermostat. It allows us to get rid of wrong physical inferences due to the
superposition of two different processes, in particular thermalization and the external field action.
Let’s consider different boundary conditions for the simplest case of f(t)=0 when the external force is

unavailable. The condition of
x(0)=0;v(0)=0, (12)

is realized in the easiest way and it was used, for example, in paper [22]. In this case, curve 1 in Fig. 1 shows a change
in T};, in time. The diagram shows that the kinetic temperature at initial times is considerably lower than 7. The

system comes to the thermal equilibrium during the thermalization period. It can be seen in Fig. 2 that the drop in
temperature has no strong effect on this phenomenon. Hence, after the time ¢ > ¢,,,,, thermalization processes will have

no effect on the behavior of the particle ensemble exposed to the external force action. However, at ¢ <t,,, the system
is artificially cooled and it fails to comply with the condition of thermal equilibrium.

Lol 1.0 3
5 0.8
1 =
= o6 g 069
- ~ T=0.1
0.4 0.4
——X=0V=0 —— X=0V=0
0.2 é::)lt?/-Gauss 0.2 1 —— X=0 V-Gauss
1 Oscltr
0.0 T T T T T 0.0 T T T T T
0.01 0.1 1 10 100 0.01 0.1 1 10 100
t/t t/t

Figure 1. The dependences of the kinetic temperature Tkin as a  Figure 2. The dependences of the kinetic temperature Tkin
function of time for different initial conditions. T = 0.5 1 —initial as a function of time for different initial conditions. T = 0.1
conditions (12), 2 — initial conditions (14), 3 - initial conditions 1 — initial conditions (12), 2 — initial conditions (14),
(24). y=3- 10> 3 - initial conditions (24). y =3- 107
The conditions that are frequently used are the presetting of initial velocities and the coordinates that are
distributed in some physical space domain [23-24] independently of the thermostat temperature. Fig. 3 shows a change
of Tj;, in time for the case when the initial coordinates and velocities are uniformly distributed as:

x(0)=Unif (0,2m), a3
v(0) =Unif (-1.0,1.0),
where Unif (a,b)is the uniformly distributed random value in the interval from a to b .

The curves 1 and 2 correspond to the thermostat temperatures of 7= 0.1 and 7 = 0.5, accordingly. The Figure
shows that in both cases T};, exceeds the thermostat temperature by several times at ¢ <t,,, =307 . The lower the

thermostat temperature the more Tj;, exceeds T . Hence, before the time ¢ <t¢,,, we deal with the substantially
overheated system.
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Figure 3. The dependences of the kinetic temperature Tkin as a
function of time for initial conditions (13). y =0.03.
1-T=0.5,2-T=0.1.
Most frequently, initial conditions are preset in the following manner: all the particles are organized at the origin
of coordinates x(O)z 0, and then these are imparted initial velocities that correspond to the equilibrium Maxwell
velocity distribution [25]:

x(O) =0,

14
p(v) = xexp(-mv’ / (2kT)), (14)

where y is the normalization coefficient. In this case, in spite of the fact that the particle velocity distribution function
really corresponds to the equilibrium function, the equilibrium particle coordinate distribution has not been realized.
Curve 2 in Fig 1 demonstrates this fact. The value of 7j;, is below the thermostat temperature and it oscillates with a
higher amplitude before the time of ¢, is achieved. Fig. 2 shows that a drop in T};, results in an increased oscillation
amplitude of Ty;, /T . Hence, using the initial conditions specified in (14) we also deal with the “frozen” system that is

far from the equilibrium state.

It can be seen from the above that all available methods result in the strong deviation of the system from the
equilibrium within ¢,,, . Hence, the use of the boundary conditions (12)-(14) requires the conduction of the
thermalization procedure during the studies of transient processes when the system is exposed to the action of external
fields, as it was done, for example, in scientific paper [26].

To put things right, we suggest new initial conditions that are the closest to the equilibrium for the particles in the
spatially periodic potential. Under these conditions, we suggest to view the initial particle ensemble as the system of
harmonic oscillators that is in the thermal equilibrium with the thermostat. Assuming that these are small-amplitude
oscillations observed near the potential well bottom the harmonic oscillator motion equation can be written as:

x+wix=0, (15)
where @, = is the natural frequency of small-amplitude oscillations:
R =-a, (16)

2
and a = ldLgx) corresponds to the potential “stiffness”.
dx

It is a well-known fact that the equation (14) has the solution

x(1) = Asin(wyt + @),

. 17)
v(t)=x= Aw, cos(w,t + @),
where A is the oscillation amplitude of the oscillator. The oscillator energy is equal to
E=ad’/2. (18)

In the state of heat equilibrium the particle energy distribution has the Boltzmann distribution form:
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ple)=Bexp| - |, (19)
kT

where £ is the normalization factor derived from the statement that

Ip(g)dg =1, (20)
0

To obtain initial particle coordinate and velocity distributions the following algorithm should be realized:
1) Using the distribution (19) we find a random energy ¢ for each particle that obeys the exponential distribution with
the mathematical expectation equal to 7 :

g=—kTLn(n), 21

where 7 is a random number uniformly distributed in the interval of [0,1].
2) Using (18), we compute the oscillation amplitude value 4 :

A:\F , 22)
a

3) phase ¢ is considered equivalent to the random number 7, that is uniformly distributed in the interval ranging
from 0 to 27z :

P=r, (23)
4) Using the expression (17) at the initial moment of # = 0 we compute initial particle coordinate and velocity values:

x(0) = 4sin(¢),
v(0) = Aw, cos(¢).

In Fig. 1-2, the curves 3 correspond to initial conditions (24). The diagrams show that initial conditions (24) are
the closest to thermal system equilibrium conditions. In other words, it is preferable to use initial conditions (24) for the
analysis of the systems in which the particles were in the heat equilibrium state. Fig. 4 shows the deviation from the
heat equilibrium under these initial conditions for different temperatures. The Figure shows that in contrast to other
initial conditions a drop in temperature results in the lessening of the deviation from the equilibrium distribution. At
T <0.1, the kinetic temperature T};, differs from the thermostat temperature within 4%.

24
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Figure 4. The dependences of the kinetic temperature Txin asa  Figure 5. The dependences of the kinetic temperature Tkin as a

function of time for different T values. Initial conditions (24). function of time for different y values. Initial conditions (24).

y=003.1-T=0.01,2-T=0.1,3-T=0.5,4-T=1.0. T=05.1-y=0.3,2- y=0.03,3 -y=0.003, 4 —y =0.0003.
Let’s consider a change in ¢,,, depending on the dissipative properties of the system. Based on the above, since

initial conditions (24) are the closest to equilibrium conditions we will confine ourselves to their studies. Fig. 5 gives a
change in the value of T /Ty, for different values of y. The Figure shows that the thermalization time is linearly

increased with a decrease in y . While for y =0.3 it is equal to #,,, =~ 3, for  =0.0003 it is increased to ., ~ 3000 .
Hence, the value of ¢, is increased as 1/y with a decrease in the friction coefficient. The use of initial conditions (24)

enables high accuracy computations using no thermalization procedure at temperatures of 7 < 0.1. Under other
conditions it is recommended to carry out the thermalization procedure.
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CALCULATING THE DIFFUSION COEFFICIENT
The correct computation of the diffusion coefficient D is a vital problem for many investigations. A classic
method of the determination of D for computer-aided calculations consists in the direct use of the definition of the
diffusion coefficient as [27-28]:

D= lim Dy (t) = lim 7~ = lim (25)
t—0 t—o0

2t oo 2t
A key question put in the papers highlighting computer simulations is what estimated time we should confine to?
Usually, the time is selected so that the clear-cut linear dependence of o? (t) =2Dt¢ is observed in the log-log scale, for
example as for t > 10° in Fig. 6. This Figure gives the example of a change in the dispersion value with time under the

action of the constant force [29]. Fig. 7 gives curve 2 that corresponds to the dependence of az(t)/ t.

olt

Figure 6. The dependence of the dispersion on time under the action  Figure 7. The dependence of do?/dt (curve 1) and o2/t
of constant force f'=0.25. y=0.3, T =0.5. The solid line is the  (curve 2) on time. The dashed line shows the value of
simulation data. The dash-dotted line is o =2D¢ asymptote, the 2D .f =025, y=03,T=0.5.

dashed line shows the approximation o =2Df + o}, and the dotted

line shows constant ;" . The arrows show the starting and the ending
time of the “dispersionless” phase.

Apparently, to obtain the right value of D using the formula (25) we need time t > 10°. As is seen from Fig. 6 the
dependence of o? (t) shows the presence of the horizontal “plateau” between the times # and ¢, . It is the so-called phase

of the “dispersionless” transport [30]. With a drop in temperature the duration of it is exponentially increased [29]. It
makes impossible to derive D from formula (25) during a reasonable computational time in many cases. Specifically, in
paper [31] the authors failed to define the value of D in the force interval of F = 0.2-0.9. However, as is shown in [29] in
spite of the formation of the exponential particle coordinate distribution in the phase of the “dispersionless” transport this

phase is characterized by the ordinary diffusion with o? (t) o ¢ . To make it more apparent, let’s appeal to Fig. 7.

The Figure shows the time dependence of do? /dt . 1t appears that if we use the differential definition of the time-
dependent diffusion coefficient D(¢) [32-33]

1 do?
Dit)=—"+—, 26
(?) > (26)

the mean value of D(r) don’t change at 7> # . Only thermal fluctuations are observed near the mean value. It means
that at ¢ > #; we deal with the ordinary diffusion. For the sake of clarity let’s venture into Fig. 8.

It gives the diagrams of the time dependence o’ (t) , Tiin(t) and <v>(t) It can be seen that the superdiffusion phase
is ended at ¢ ~ #; and the ordinary diffusion phase with o? (t) = 012 + 2Dt is originated. As was shown in [29], the value

of 0'12 is defined by the duration of the superdiffusion phase. The end of the superdiffusion phase is characterized by
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the establishment of the stationary value 7}, (¢). In addition, a stationary distribution of <v>(t) is established at ¢ > ¢, . As

is seen in Fig. 7 the dependence of do? /dt = const is established at the same time. Hence, the establishment of the

stationary value T}, (¢) is indicative of the beginning of the phase of ordinary diffusion with o’ (t) «ct.

t
15
) . . (b)
| [}
= | tI | t2
= s L
0 AL I RLRLLLL IR R LLLL BUBRLELLLLLL '*"""'l LR ALLL BN ALY
10° 10" 100 10° 10° 10° 10°
t

Figure 8. The dependence on time versus a) dispersion; b) the kinetic temperature; c) average velocity under the action of the
constant force f =0.25. y =0.3, T =0.5. The dashed line shows the approximation o> =2Dt + 07 .

As is shown above, the diffusion factor can be calculated using the time-averaged value (26) at ¢ > #; .This method has

its drawbacks relating both to numerical differentiation procedure complications and the use of this method for other
situations in addition to f (t): const .The integral method is more stable and it enables an easy computation of the

diffusion factor already during the time of the “dispersion-free” transport. It follows from the consideration given above
that after the attainment of time #

o2(t)=2Dt+ ot at (1>1,), 27)

It was shown in [29] that 012 is exponentially increasing with the drop in temperature. Therefore, the second term
in (27) will dominate over the first term for a rather long time. However, in the case of the fitting of o’ (t) data by the

dependence (27) with free 0'12 and D parameters using the least square method we can obtain the diffusion factor with
a high accuracy already at short times.

Let’s get back to Fig. 6. Using the relation (25) for time t = 6.4-10% we obtain D = 17.30. With an increase in time
by one order of magnitude we get D = 17.06 at t = 6.4-107. In other words, it takes a rather long time to get the diffusion
coefficient with a high accuracy. Taking into consideration the exponential growth of A¢r=t, —#; with a drop in
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temperature [29] we can draw a conclusion that it is impossible to derive D for lower temperatures during a reasonable

computational time. However, using (27) we can approximate az(t) at a considerably shorter time interval, in

particular t =1.0-10* -5-10*. Providing the o’ (t) data fitting using the least square method we will see that in this case

the dispersion is described by the linear dependence (27) with the correlation coefficient equal to 0.999.

Using the data in this limited time interval we will get the value of D = 17.03. In other words, the use of (27)
results in the reduction of the computational time by the factor of 6000 to get the same value of D as proceeding from
the expression (25) for time t = 6.4-107. With the drop in temperature the required estimated time lag between (25) and
(27) will be growing exponentially. And the derivation of the value D proceeding from the expression (25) becomes
unrealistic. However, using the data fitting (27) the diffusion factors can easily be derived even in the cases of total
previous failure. This approach can also be applied to other systems that show a considerable dispersion growth in the
initial phase. However, we must be careful and confident that all the transient processes have already been completed.
As an example, let’s give some data for the periodic force of the type

f(t): asin(a)t). (28)

Fig. 9 gives the data for one of such computations. Fig. 9b shows that at ¢ >400the system passes into the
stationary state and the yield of the stationary value by the kinetic temperature is indicative of it.
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Figure 9. The dependence on time versus a) dispersion; b) the  Figure 10. The dependence of & on time. a) the markers

kinetic temperature under the action of periodic external force. ¢how the simulation data for the ensemble consisting of

The dashed line shows a) the simulation data, the solid line 50000 particles, the solid line is the linear approximation and

shows the linear approximation. a=10.0, y =0.318, T=0.2, the dashed line is the simulation data; b) the solid line is the

w=159. linear approximation and the dashed line is the simulation
data. a=10.0, y=0.318,T=0.2, w=1.59.

Though, the dependence of o’ (t) in Fig. 9a looks like subdiffusion or “dispersionless” transport in these time

intervals, however in reality the ordinary diffusion takes place at ¢ > 400 as is well seen in Fig. 10b.
In Fig. 10a, the simulation data of the ensemble consisting of 50000 particles are shown by the markers. The solid
line shows the linear approximation of these data. The least square method was used for the approximation [34]. Fig. 9a

and Fig. 10b show that the linear approximation approximates well the dependence of O'z(t) at £>500 in the limited

linear section of Fig. 10a. Fitting the data in Fig.10a by using the linear regression method, we obtain the linear
relationship with a correlation coefficient of 0.998. Using the data in the interval of 500 <7 <5000 we increase the
correlation coefficient value to 0.9998. It allows us to derive the diffusion coefficient with a high degree of confidence
as 1/2 of the slope at a significantly reduced computational time in comparison to that spent using the classic method.

The abovementioned method used for the derivation of the diffusion coefficient was successfully used by us
earlier [35-36]. Therefore, it can be recommended for a wide application by other systems.
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CONCLUSIONS
This paper delves into the studies of the specific features of the simulation of the diffusion processes of particles in
spatially periodic potentials using Langevin equations. Different methods used for the presetting of initial conditions
and their effects on obtained solutions have been analyzed. It was shown that the system is nonequilibrium for all the
methods used for the presetting of initial conditions during a certain time interval of #,,, .This interval in increased

as 1/y with a decrease in the friction coefficient. The kinetic temperature with regard to the methods used today for the

presetting of initial conditions differs from the thermostat temperature by tens of percent. Hence, the adequate
description of the transient particle transport and diffusion processes exposed to the action of external fields requires a
preliminary system thermalization procedure during the time of at least ¢,,,, .

A new method of the presetting of initial conditions under which the system is close to the thermal equilibrium has
been suggested. It consists in the generation of the initial particle coordinates and velocities that correspond to the
equilibrium distribution of harmonic oscillators at a specified temperature. The use of these initial conditions enables
the computations using no thermalization procedure at the temperature of T < 0.1 with the error less than 4%.

A classic method of the computation of diffusion coefficients D as a limit lim(a2 /Zt) has been analyzed. It was

shown that the use of it for computer-aided calculations is limited by the restricted computational time. It makes the
computation of D impossible under certain conditions. A new method was suggested for the determination of the
diffusion coefficient through the linear approximation of the dispersion versus time dependence. This approximation is
only possible after the kinetic temperature attains its stationary value. The proposed method requires several orders of
magnitude less time in comparison to the classic method. As a result, it enables the computation of the diffusion
coefficient even in the cases of total previous failure.

The obtained data are important for the proper simulation computations of diffusion processes and for the correct
physical interpretation of obtained results.
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OCOBJIHUBOCTI MOAEJIOBAHHS IMPOLECIB JTU®Y3Ii YACTHHOK
Y MIPOCTOPOBO-ITEPIOANYHUX ITOJIAX
B.IO. Akcenosa®”, I.T. Mapuenko®®, L.I. Mapuenko®
“Xapxkiecvkuii Hayionanvhuu yHisepcumem imeni B.H. Kapa3sina
M. Ce0600u 4, m. Xapkis, 61022, Yxpaina
bHayionanonuii nayrosuii yenmp «Xapriscokutt ¢hisuxo-mexuuunuii incmunymy
8yn. Axaoemiuna, 1, m. Xapxis 61108, Vrpaina
CHTY «Xapxiecokuii nonimexniuHull iHCImumymy»
eyn. Kupnuuosa, 2, m. Xapkie 61002, Ykpaina
PoGota npucBsideHa TOCIIDKEHHIO 0COOIMBOCTEH MOIETIFOBaHHS IPOIIeciB i (y3il YACTHHOK Y TIPOCTOPOBO-MEPIOMIHHX TTOTSHITIAIaX
3a jonomororo piBHsHb JlamkeBena. [IpoanasizoBaHi pi3Hi METO/IM 3aB/IaHHS MOYAaTKOBHX YMOB Ta IXHill BIUIMB HA OTPUMAHI PilLICHHS.
IMokazaHo, 1110 TIPH BCiX CHOCO0AX 3aBaHHs IOYATKOBUX YMOB CUCTEMA € HEBPIBHOBAKEHOIO IPOTATOM JIESIKOrO MHTEPBATY Yacy Iy, .

Lleii iHTepBan 30UIBIIYETHCS 31 3MEHILEHHSIM KoeditienTy Teprst sk 1/ . [l agekBaTHOro omucy HepexiiHux mporecis audysii ta

TPAHCIOPTY HEOOXIAHO 3a3[alieriib MPOBOAUTH MPOLEAYpy TepMasisaiii CHCTEMH. 3alpolOHOBAHO HOBHH METON 3aBIaHHS
MOYATKOBUX YMOB, SIKMI HaHOLIbII ONH3BKO OMKCYE BPIBHOBaXKEHY CHCTeMy. BiH moisirae B reHeparlii MOYaTKOBHX KOOpPAMHAT Ta
LIBUJIKOCTeH YacTHHOK, sIKi BIAMOBIJAIOTh BPIBHOBAKCHOMY pO3IMOALTY TapMOHIHHHX OCHWISATODIB i3 JAHOKI TeMIIepaTypolo.
BUKOpUCTaHHS TAaKHX IOYaTKOBUX YMOB O03BOJISIE 3 BHCOKOK) TOYHICTIO NMPOBOJWTH OOYHCICHHS O3 BHKOPUCTAHHS IPOLETYpPH
Tepmaizarii mpu temreparypax 1 < 0.1. IIpoanamizoBaHuii KIacHYHMI METOA BH3HA4YeHHs KoediuieHTis mudysii D sk rpanumi

lim(az/Zt). Ilokazano, mo #Oro 3acTocyBaHHS y KOMIT IOTEPHHX PO3paxyHKax JIMITOBaHO OOMEKEHHM HacoM po3paxyHKiB. Lle

10

MPU3BONUTD 10 HEMOKIUBOCTI 00uncnends [ B Jeskux yMOBax. 3ampornoHOBAHO HOBHI METOM BU3HA4YeHHs KoediuienTa mudysii 3a
JIHIHHOIO aNmpOKCHUMAIIIEI0 3aJIeKHOCTI Iucnepcii Big dacy. Taka ampokchMaris MOXIIMBA TUTBKM MICHS TOTO, SIK KiHETHYHA
TeMIiepaTtypa JOCSIJIia CBOTO CTAlliOHAPHOTO 3HAYCHHS. 3ampONOHOBAHMM METOJ MOTpedye Ha JeKiTbKa TOPSAKIB MEHIIe
PO3PaxyHKOBOTO 4acy, HiX KIaCHYHUA MeTojA. BHacHiOK IbOro BiH J03BOJISIE OOUYHMCTIOBATH KoeillieHT audy3il HaBiTh y THX
BUIIAJIKaX, y SKUX paHilie 1e He BaaBaiocs. OTpuMaHi pe3yJIbTaTH BaKINBI JUIi KOPEKTHOTO IPOBEICHHS MOJEGIIOIOUHNX PO3PaxyHKIB
nporieciB qudy3ii Ta BipHOT (i3M4HOT iHTEpIIpeTalil OTpUMaHUX Pe3yJIbTaTIB.

KorouoBi ci1oBa: nudys3isi, 30BHIIIHI OIS, KOMII IOTEPHE MOAETIOPOBAHHS, TIOYATKOBI YMOBH, PiBHSIHHS JlamkeBeHa.





