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In this study the thermoelectric effect is investigated in terms of thermoelectric power, Figure of merit(ZT), and power factor. The
calculations were carried out based on Boltzmann transport equation by taking ionized impurity scattering as a dominant mechanism
for heavily doped n-type silicon at 300K with charge concentration varies from 2x10'® /em3 — 20x10%° /cm?. It is known that doping of
materials can induce Fermi level shifts and doping can also induce changes of the transport mechanisms. The result of this study shows
doping also induces changes in thermoelectric power, Figure of merit, and power factor. The magnitude of the change is different for
consideration of parabolic density of states and non-parabolic modified density of states which amounts to 16.7% for thermoelectric
power, from 0.059% - 84.1% for Figure of merit(ZT) in favor of non-parabolic consideration respectively. There is also a difference of
39.9% for power factor with respect to relaxation time between the two cases in favor of the parabolic consideration.
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A semiconductor can be considered heavily doped when the impurity band associated with the doped impurity
merges with either in the conduction and valence band. There are two aspects with direct influence on the carrier transport
namely tailing of states into the band gap. It thus seems useful to determine theoretically the location of the Fermi level
in heavily doped silicon taking into account the density of states in the tails [1-3]. According to [1], the density of state
for heavily doped silicon is expressed in [4] as
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p(z) = y(2) (1)

whereas,

p(E) = 8““‘ SVammy gy @

represents the parabolic total density of states in the conduction band.
In Eq. (1) for non-parabolic modified density of states, the term y(z) is given by

y(@) = 1J°, (2~ Drexp(~2)dg 3
and
2= “

The standard deviation of the Gaussian distribution for the impurity potential energy is
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For a screened coulomb potential of impurity atoms with €4 is the dielectric constant of the given semiconductor.
The Thomas-Fermi screening length according to [5] is
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The density of states function given by Eq. 1 is very complicated and thus is not useful for making any calculation.
Slotboom [2] has however; suggested the following approximation for y(z).
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for z> 0.601, equally, E > 0.854.
and

y(z) = %exp(—zz){l.ZZS —0.906[1 — exp(22)]} 8)
2m2
for z < 0.601.
Using Egs. (7) and (8) for y(z), we obtain the following expression of the electron concentration in the conduction
band for modified density of states having band tails
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m 22482
n= 2 f f() p(E)dE = _lr_l[zhg l'lJ() (9)
where 1 is obtained by setting A = 0 into
1 (0.601 0.319+0.906Exp(2z) Z%[l . ]
. . +0. Xp(2z ©o 1622
U, = _1f_oo |z|*exp(—z2) = 5 |dz+ [ 75— dz (10)
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It is more convenient to introduce normalized electron concentration n, given by

n

n, = an

1025/m3

In this study the semi-classical and quantum treatments are applied in the calculations of scattering mechanisms
under the assumptions of the electron concentrations from 2x10'® - 2x102%/cm? and in the temperature range 77 — 300K.

LINEARIZED BOLTZMANN EQUATION WITH RELATION TIME APPROXIMATION
All the quantities of interest to us may be expressed immediately in terms of Fermi-Dirac distribution f(r,k.t). The
Boltzmann transport equation is therefore

af _ (of
V.V +FVf = (6Dc (12)
Consider a time dependent but spatially homogenous situation in the absence of applied fields. Thus Eq. (12)
becomes
af aof
7= G, (13)
where the term (%) is expressed in terms of collision operator C as
[
a ! ’
(3) =corlo= gV BIpW) ~ p()ldk (14)

for arbitrary function(¢) and potential(V). In the relaxation time approximation, we suppose that (%) has the simplest
c

form which will yield the behavior

at T

@), -1 "

Now for all mechanisms of interest to us, E is not much changed in a single event. For elastic scattering such as
ionized impurity scattering this is strictly true, while for acoustic deformation potential scattering(through local band
perturbation), it is only approximate. Actually in the cases for which t is well defined, it is a function of E alone. Thus
the relaxation time can be written as

T= 1,E* (16)

The value of the superscript A depends on the scattering mechanism 3/2 for ionized mpurities and -1/2 for acoustic
phonons. In the case of optical phonons the electron scattering is not elastic the relaxation time cannot be applied [6].

ELECTRON AND HEAT FLUX DENSITIES
In the steady state in a homogeneous system with electric E applied along the x-axis, in the absence of
magnetic field, the distribution can be written as

f=f,+ f (17)
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which is the solution of

ep v = (2
_EE.kaO - (0t)coll (18)

where fj is the thermal equilibrium distribution and f” is a first order perturbation given by

f'= v fy + vy, + v, f, (19)
Furthermore,
af 1 af
v(-3)= —ia (20)

And Eq. (18) can be solved to find fx for one-dimensional case using Egs. (15), (19), and (20) to give

f, = e (32) E/y Q1)

Since E’x in Eq. (21) is the d.c. electric field along x-direction, and the x-component of the electric current
density is given by

2emj3
Iy = —% J V3 dvydvydy, (22)
Finally after transformation to spherical coordinates (v, 0, ¢) for velocity components and making use of Eq. (21)

for fy , we get

e?m;3E’ vo

J= - Jor (E) 82d£ (23)

where we make change of variable from v to € = E/kgT.
Thus for the case of parabolic density of states we obtain the following expression for the electrical conductivity

(o)
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2
where F1/, and F, can obtained as family of the well known tabulated Fermi-integral by setting p equals to 3 and 4
respectively.

) ePde
fO 1+exp(e-M) (25)

where 1 = Er/ksT is normalized Fermi energy.

We can obtain similar expression for electrical conductivity for the case of non-parabolic modified density of states
having band tails in Eq. (1) by inserting into Eq. (24) which gives

_ 2e?nt1, (Q) LIJ_E (26)

3my \kgT
where s is obtained from Eq. (10) by setting A = 5/2.
2
To obtain thermal current density, we use from[7,8]

2mid 1, —4mmjt oo
Qy = :3 f(zmnvz)vxfd"’v: ;hrf Jy vefidv 27

after integrating over spherical coordinates 8 and ¢.
In the presence of an external d.c. field E’x and a temperature gradient dT/dx along the x-direction, the Boltzmann
transport equation is written as

Ofg  eExdfy _  0fg eExvxdfp _  f-fo _  vxfy
Xox mhovy Xox mhvav T T (28)
One can solve % in Eq. (28) as
afo afo aT
9x T ox
= (=) [E 9 (Ee)] (4T
- ( aE) [T +kgT aT (kBT)] (dx) (29)

Inserting Eq. (29) into Eq. (28) and solving for f,, we get
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Substituting Eq. ( 30) into Eq. (23), Jx becomes
_ emp? v oy 0 (Ep\](dT _e*mpPEy oo 4 0fp
Jx = T 3n2h3 f [ +kpT oo oT (kBT)] (dx) dv 31m2h3 fO w 0E dv G

Since a small current flows, Jx = 0 is assumed for measured thermoelectric voltages(V), and we obtain the following
relationship between E‘y and dT/dx.

o) [ (e o (i o

I — ([ —
Ex= (dX efy’ rv“(—ﬁ)dv

If there are no gradients of concentration, then the second term in numerator is cancelled. The Seebeck coefficient(o)
referred to as the thermal emf or thermoelectric power [9] is given by

of
w_ Rkt 1 PR el ke Fy

ar = T [Po(-I)ay T eT [PEME e [Tedfde e Fs

(33)

According to [10] dimensionless figure-of-merit(ZT) for a material in terms of Seebeck coefficient(a) , electrical
conductivity (o), and the electronic thermal conductivity (Ke) is

( kBF4)2 2ne?toFy T
e F3 my Fp

7T = @oT _ 3 _ 1[0 F3 32 F} F3 - (34)
Tk 2 T3 FoFy 9 FiF2
znro(kBT) 10F4 32 Fj 2r4
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z z

The power factor (Prr) for the case of parabolic density of state is

_ _ kg Fo\2 [ 2ne?to B\ 2nkdte FEF,
Prer = o' = (_?E) ( my F_l> Tomg FZFy/3 (35)
2
where F3 and F,4 can obtained as family of the well known tabulated Fermi-integral by setting p equals to 3 and 4
respectively.

We can obtain expressions for a, ZT and Pgr for the case of modified density of states using the corresponding
expressions, i.e., Eqs. (33-35) obtained based on standard model with parabolic density of states (which doesn’t
incorporate the effect of band tails) by substituting Eq. (1) for modified density of states and by extending the integration
limits from -oo to oo. This yields the following expressions

vzs V7
a=- Ew—/z (36)
5/2
and
5
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Finally
9
V28)\2
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FF eT ys;, amj \kgT/ o 3m¥1k%B Ys/2Po
where s /y Y7 /2 Yo /, are obtained from Eq. (10) by setting A = 5/2, 7/2, 9/2 respectively.
RESULTS
Thomas-Fermi screening length in Eq.( 6) is calculated to be
1
ag = 7.87X107%n, 76 m 39)

and the value of the Gaussian distribution for impurity potential energy is

5
§ = 4.375X1072n,12J (40)
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Thus the electron concentration in the conduction band for modified density of states having band tails in Eq. (9)

becomes
25 53 l[ 1 ]
m22% 1 (0.601 0.319+0.906exp(2z2) 2z22|1-—
n= W 1f 6zexp( —2)| == |dz + fo 601 ¥ dz
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3 3 3 5 3 3 5
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2 .319+0.906exp(2z 0 1622
[f (0 28)exp( z ) ( 1+exp{0.9z-n} f0-601 1+ exp{0.9z — n} ] (41)
Thus
0.601 0.319+0.906exp(22) Z%[l-;]
.319+0.906exp(2z 0 1622
=3. 2[f (0 28)exp( z ) ( 1+exp{0.9z—n} ) d f0-601 1+ exp{0.9z — n} ] (42)
Similarly for parabolic density of states
n = 3-2F1/2(T]) (43)

and the rest all integrals are evaluated by inserting them directly in the mathematical v.5 installed in the sun ultra 5 work
station computer[11]. The above values of n, and 7 obtained by an iterative method which was employed in the above
simplified expressions to relate them for parabolic and modified density of states cases.

The table of values(in the Appendix part of Table 1 and 2), Fy,» (-2.6) is evaluated as

Nintegrate[x'/2/(1 + Exp[x + 2.6]) /], {x, 0, =0}

The result is Fi2 (-2.6) = 0.0641614 and the corresponding normalized concentration is

Figure 1. Thermoelectric power as a function of electron concentration
with the solid line marked by circles is for parabolic band and dashed
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line marked by squares is for modified density of states.

Note that iterative method is not one shot
process but it takes certain thoughtful steps to get
the best value of m which gives to the nearest
possible value of n, = 0.2 that is n = -2.6. This
procedure was followed to evaluate all values in the
table including the corresponding values for F3, and
F4 for parabolic case.

It is straightforward to use the same procedure
for the case of modified density of states. In the
same way as the previous case, in the table of
values, n, = 0.2 corresponds to n = -2.9.
Mathematica software 5.0 is used to obtain
0.0333945 + 0.13557 = 0.16896 which was taken
as the best approximation of n, = 0.2 during the
iterating method corresponding to n = -2.9. The
same procedure was used for the other pair of
values in the table. The values of the other integrals
Vo , Us, Y7 , o (in Appendix part of Table 2) were

2 2 2

evaluated straight forward(even copy and paste of
expressions is possible that facilitates the process)
by using mathematica v.5.

Graph in Figure 1 represents the dependence
of thermoelectric power, defined as the voltage
difference (AV) developed due to temperature

difference (AT), as a function of electron concentration ranging 0.2 — 20x10%/m? for two different cases. The quadratic
equation fitting results are given by y = -0.006x> + 0.06x -3.584 and with goodness of fit R? = 0.987 for parabolic case
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whereas y = -0.007x> + 0.072x -3.577 and with goodness of fit R? = 0.99 for non-parabolic case. When we compare the
quadratic terms for each case the corresponding coefficients -0.007 and -0.006 differ by (-0.006 + 0.007)/0.006 = 16.7%,
the coefficients of the linear terms differ by (0.072 -0.06)/0.06 = 16.7%, and the difference b/n the constant terms is
negligible. Thus the values of the seebeck coefficient differ by 16.7% in favor of non-parabolic density of states
consideration.

090
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0304 o

1000+

T T T T
000 5.000 10.000, 15.000 20,000
Electron concentration(10225/m*3)

Figure 2. Merit(ZT) as a function of electron concentration with the solid line marked by circles is for parabolic band and dashed
line marked by squares is for non-parabolic band consideration.

The graph for values of Figure of merit (ZT) for both parabolic and non-parabolic cases are presented in Figure 2.
The cubic curve fitting was used with R? = 0.994 for parabolic case and R? = 0.814 for non-parabolic case. The maximum
value of ZT for parabolic case is 0.0139 and for non-parabolic case it is 0.0256 corresponding to the maximum carrier
concentration of 2 X 10%/m?. The minimum value of ZT for parabolic case is 0.0069 and for the non-parabolic case it is
0.0128 corresponding to the minimum carrier concentration of 2X10%*/m?. The difference in the values of ZT ranges up
to 0.59% - 84.1% in favor of the non-parabolic consideration.
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Figure 3. Power factor with respect to relaxation time plotted as a function of electron concentration

The power factor per relaxation time is plotted as shown in Figure 3. An exponential curve fitting is performed for
the calculated data to obtain y = 2.059¢%335% and with goodness of fit R> = 0.993 for parabolic case while y = 1.66¢%397%
and with goodness of fit R> = 0.987 is obtained for non-parabolic case. The two curves differ as shown by the respective
exponential functions as the first is growing by a factor of 0.355 while the second is growing by a factor of 0.307 with a
difference of .2% in favor of the non-parabolic consideration. On the other hand the amplitudes of the exponential
functions are 2.059 for the first case and 1.66 for the second case which differ by 39.9% in favor of the parabolic
consideration.
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The results about calculations of Seebeck coefficient(a), Figure of merit(ZT), and Power factor with respect to
relaxation time(Pgr/to) for the parabolic and non-parabolic considerations do differ as much as 16.7%, from 0.059% to
84.1%, 39.9% respectively. The magnitude of the difference 16.7% is obtained in favor of parabolic density of states
consideration as compared to non-parabolic density of states. It tells us as the carrier concentration increases with
incorporation of more impurities the Seebeck coefficient changes significantly in both cases with respective difference of
16.7%. This is evident in the pattern of the calculated data fitted with a quadratic curve where the good-of-fit has a maximum
value than other curves. When it comes to the Figure-of-merit(ZT) the maximum value of goodness-of-fit of the calculated
data is obtained for cubic curve as shown in Figure 2. The comparison is made between the respective values of ZT at the
minimum and maximum carrier concentration which gives the difference that ranges from 0.059% - 84.1% where the gap
between the values in the two cases increases as the carrier concentration increases. The calculation of the power factor with
respect to relaxation time is compared for the two cases with help of an exponential curve fitting which has a maximum
value of goodness-of-fit than other fitted curves. Therefore the calculations for the two cases differ as much as 39.9% in
favor of the parabolic density of states. This result reminds care should be taken in our calculation of thermoelectric
coefficients for higher carrier concentrations where non-parabolic density of states consideration is preferable.

The experimental work by [12] reported that, despite limited information available about thermoelectric properties
of single crystal silicon for higher doping concentration at higher temperature, they measured electrical conductivity,
Seeback coefficient, and thermal conductivity to get calculated value of ZT as much as 0.015 for n-type silicon and 0.008
for p-type silicon in the heavily doping range(10'® — 10?%/cm?) at temperature range from 300 — 1000K. In the current
study the maximum value is 0.0256 slightly different by 1.06% from the experimental value for the non-parabolic density
of consideration as it is closer than the parabolic consideration which differs as much as 12.4% from the experimental
value. Thermoelectric devices provide cooling when an applied current pumps heat from the cold side towards the hot
side through the Peltier effect, or enable waste heat recovery by converting a heat gradient to electrical power through the
Seebeck effect[13]. As cited in [13], a good thermoelectric material should possess a large Seebeck coefficient, a high
electrical conductivity, and low thermal conductivity to maximize the dimensionless Figure of merit for the thermoelectric
performance of a material. Reducing the thermal conductivity is therefore a natural way to improve the
performance(indicated by power factor and efficiency) of a thermoelectric material. [13] found that the thermal
conductivity is strongly reduced due to nanostructuration and the incorporation of impurities.

CONCLUSION

The thermoelectric effect is investigated in terms of thermoelectric power, Figure of merit, and power factor which
have primary importance in device application. There is considerable difference of 16.7% between calculated value of
thermoelectric power based on the parabolic density of states and the modified density of states in favor of the latter case.
The difference between Figure of merit values calculated for two cases ranges from 0.059% - 84.1%% in favor of the
non-parabolic case. The same trend is expected for the electron concentration exceeding 2x10%%/m3. The calculated values
of the power factor with respect to the relaxation time differ between the two case by 39.9% in favor of parabolic
consideration. Laws of modern physics are used in the derivation of modified non-parabolic density of states to make
corrections for parabolic density of states consideration as applied for heavily doped silicon, by doing so we get significant
agreement with experimental results.
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APPENDIX
Table 1. Calculated values for parabolic density of states
S;E)al mo| o1 Fin F Fs Fi a(x10% VK1) zT Prr/to(10' "W m!-K2s71)
1 0.2 | -2.6 | 0.064 0.147 0.444 1.778 -3.4539 0.0069 2.607564
2 03 | -22 | 0.095 0.22 0.66 2.65 -3.4631 0.0067 3.964446
3 05 | -1.7 0.15 0.37 1.08 4.36 -3.4819 0.0061 7.1154
4 08 | -1.2 0.24 0.58 1.77 7.16 -3.489 0.0068 11.20056
5 1 -0.9 0.32 0.78 2.38 9.64 -3.4935 0.0068 14.15646
6 1.3 | -0.6 0.41 1.03 3.19 12.96 -3.5041 0.0071 19.08449
7 1.5 | -0.5 | 0.445 1.13 3.51 14.3 -3.5139 0.0071 22.38165
8 2 -0.1 | 0.626 1.65 5.17 21.163 -3.5306 0.0072 31.27236
9 25 ] 02 | 0.781 2.16 6.87 28.337 -3.5576 0.0074 41.63925
10 3 0.4 0.94 2.583 8.288 34.38 -3.5778 0.0075 50.21136
11 5 1.2 1.56 5.105 17.214 73.58 -3.6867 0.008 105.8283
12 6 1.5 1.875 6.494 22.41 97.230 -3.7421 0.0084 138.4848
13 8 2 2.5 9.513 343 153.18 -3.8518 0.009 214.9205
14 10 | 24 | 3.125 12.68 47.5 218.15 -3.9611 0.0096 302.9532
15 12 2.8 3.75 16.65 65.06 307.59 -4.0777 0.0104 421.5715
16 15 34 4.688 24.35 101.6 504.83 -4.2856 0.0117 680.95
17 18 39 | 5.625 32.64 144.13 748.52 -4.4793 0.0129 997.218
18 20 | 42 6.25 38.5 176.12 940.14 -4.604 0.0139 1242.752
Table 2. Calculated values for modified density of states having band tails
Serial -4 Y-l 10 2.1
No np n Yo Ys2 Y72 273 a(x10* VK ZT Pre/to(10"°W-m!-K=-s71)
1 0.2 2.9 0.08 0..9627 5.047 33.1 -3.455 0.0128 2.32
2 0.3 -2.57 0.09 0.6821 3.015 16.7 -3.45 0.0133 3.35
3 0.5 -2.09 0.12 0.472 1.6809 7.5 -3.439 0.0133 4.9
4 0.8 -1.69 0.14 0.3227 0.9416 3.46 -3.428 0.0128 7.44
5 1 -1.5 0.15 0.2681 0.7124 2.38 -3.425 0.0128 9.09
6 1.3 -1.28 0.17 0.2167 0.5167 1.55 -3.429 0.0128 11.1
7 1.5 -1.15 0.18 0.1933 0.4351 1.23 -3.435 0.0128 12.57
8 2 -0.89 0.2 0.1533 0.3079 0.77 -3.456 0.0133 16.3
9 2.5 -0.68 0.21 0.1287 0.2373 0.55 -3.482 0.0128 20.87
10 3 -0.49 0.23 0.1125 0.1938 0.41 -3.51 0.0145 24.57
11 5 0.1 0.28 0.0803 0.1156 0.20 -3.629 0.0167 43.4
12 6 0.34 0.3 0.0726 0.0984 0.16 -3.686 0.0167 55.94
13 8 0.77 0.33 0.0642 0.0795 0.12 -3.798 0.0152 85.28
14 10 1.16 0.36 0.0606 0.0704 0.1 -3.909 0.0152 124.18
15 12 1.52 0.39 0.0592 0.0656 0.086 -4.022 0.0185 169.64
16 15 2.0 0.42 0.058 0.062 0.08 -4.258 0.0159 259.83
17 18 2.46 0.45 0.059 0.061 0.07 -4.444 0.0303 409.6
18 20 2.74 0.47 0.0604 0.0608 0.069 -4.520 0.0256 514.98

TEPMOEJIEKTPUYHI KOE®INIEHTU CHJIBHO JIETOBAHOI'O KPEMHIIO N-THITY
Myayrera Xaote I'edpy
Dizuunuil paxynemem Ynieepcumemy Apba Minu, Apoa Minu, Egionis

JlocTiKeHO TepMOCIIEKTPHYHNIT e(eKT 3 TOYKH 30py TEPMOCICKTPUYHOT MOTYKHOCTI, 100poTHOCTI (ZT) 1 KoediuieHTa MOTYKHOCTI.
Po3paxyHKH MpOBOAWIN HAa OCHOBI PIBHSHHS MepeHocy BonbliMaHa, B3sBIIM iOHI30BaHE PO3CIIOBAHHS JOMIILIOK 5K JOMiHYIOYHi
MEXaHi3M JUIs CUJILHO JIETOBAHOTO KpeMHiro n-tumy npu 300 K 3 konuenrpauiero 3apsay Big 2x10'%/cm® — 20x10%%/cm’. Bigomo, mo
JIETyBaHHS MaTepialiiB MOXXE BUKIMKATH 3MilleHHs piBHSA DepMmi, a JEryBaHHSA TaKOX MOXKE BUKIMKATH 3MiHH TPaHCIIOPTHUX
MexaHi3MiB. Pe3ysbTaTi 1bOro JOCIIKEHHS ITOKa3yIOTh, IO JICTYBaHHS TaKOX BHUKIHMKAE 3MiHH TEPMOEJICKTPHYHOI MOTYKHOCTI,
J0OpOTHOCTI Ta KoedimieHTa NOTY>KHOCTI. Benmurna 3MiHM pi3Ha /U BpaxyBaHHS NapaboTivHOl IUIBHOCTI CTaHIB 1 HenapaboIiaHol
MO IKOBAHOI IIIBHOCTI CTaHIB, SIKa CTAHOBUTH 16,7% aist TepmoenekTpudnoi eneprii, Big 0,059% - 84,1% ans moka3HUKa SKOCTI
(ZT) na xopucTh HenapaboiyHOI BifnoBiaHo. IcHye Takox pizHULE B 39,9% U1 KoedilieHTa ITOTYKHOCTI 00 Yacy pesakcarii Mix
JIBOMa BHIIAJKAMH Ha KOPUCTb apabosIiqHOTO PO3IIsLY.

KurouoBi ci10Ba: sieryBaHHs, TEPMOCIEKTPHIHUH eEeKT, TEPMOCIEKTPHYHA SHEPTist






