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The nonlinear magnetosonic solitons are investigated in magnetized dense plasma for quantum effects of degenerate electrons in this
research work. After reviewing the basic introduction of quantum plasma, we described the nonlinear phenomenon of magnetosonic
wave. The reductive perturbation technique is employed for low frequency nonlinear magnetosonic waves in magnetized quantum
plasma. In this paper, we have derived the Korteweg-de Vries (KdV) equation of magnetosonic solitons in a magnetized quantum
plasma with degenerate electrons having arbitrary electron temperature. It is observed that the propagation of magnetosonic solitons in
a magnetized dense plasma with the quantum effects of degenerate electrons and Bohm diffraction. The quantum or degeneracy effects
become relevant in plasmas when fermi temperature and thermodynamic temperatures of degenerate electrons have same order.
Keywords: Magnetosonic wave, Quantum Plasma, Korteweg-de Vries equation (KdV) equation.
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The study of quantum plasma has been growing interest during the last decade due to its enormous applications on
large scale systems in compact astrophysical objects such as white dwarfs, neutron stars and pulsars containing dense
plasmas and on short scale systems such as in semiconductors, quantum devices and on nanometer scales such as quantum
wells, quantum dots, nano-tubes and spintronics. The quantum or degeneracy effects become relevant in plasmas when
the de Broglie wavelength associated with charge carriers becomes of the order of the average inter-particle distance so
that there is a significant overlap of the corresponding wave functions or the Fermi temperature is same as the temperature
of the system.

Firstly, Haas [1] introduced the quantum hydrodynamic (QHD) model used for quantum corrections in plasma.
Thereafter, the proposal of QMHD model explaining spin-1/2 effect of degenerate electrons for low-frequency waves in
magnetized quantum plasmas was given by Marklund and Brodin [2]. In a quantum magnetoplasma, the quantum Bohm
potential and electron spin-1/2 effects using the Sagdeev potential approach was studied for magnetosonic solitons [3].
In the system of QMHD, the electron spin-1/2 changes to the shape of the magnetosonic solitary waves due to the balance
between the nonlinearity and quantum diffraction/ tunneling effects. Spin Alfv’en solitons were investigated in
magnetized electron-positron plasmas [4] by deriving a modified KdV equation in the MHD limit. It was shown that the
collective spin effects may influence the wave characteristics in a strongly magnetized quantum plasma.The QHD model
can be generalized by adding the quantum statistical pressure term (the Fermi-Dirac distribution) and the quantum
diffraction term (the Bohm potential) to the fluid model [5, 6].

The QHD was used to investigate the quantum magnetosonic waves and a deformed Korteweg-de Vries (KdV)
equation was derived by Haas et al. [7]. In classical plasma, the KdV equation is well known for the small but limited
amplitude of ionic sound wave [8], [9]. Both degenerate (without spin) and non-degenerate (with spin) quantum plasmas
were studied respectively by using small amplitude limited perturbation scheme obliquely two-dimensional nonlinear
magnetosonic waves [10 — 11]. Many authors have studied the linear and nonlinear low-frequency waves in quantum
plasma such as ion acoustic waves, drift waves etc. [12 - 14].

It has been proved that by adding positrons to the plasma as usual, their collective behavior has changed considerably
[15] - [18]. Plasma [29] smashing [18], [20] the early universe, the vital role of survival and electron-positron (E-P) have
collective behavior. Although most of the astronomical environments can be considered by the EP plasma existent senses
[21], [22], the EP plasma combination in nonrelativistic regimes is astronomical plasma in some aspects [20], [23].
Verheest et al. studied through a reductive disturbance analysis, large amplitude in electron-positron plasma studied
solitary electromagnetic waves and received a modified Korteweg-de verse (mKdV) equation [24]. Using two fluid
plasma samples, Kourakis et al. [25] the pair studied parallel wavelength packets in parallel magnetic plasma in pairs.
With this approach, Esfandyari-Kalejahi et al. E-P-I is considered nonlinear propagation of amplitude collective
electrostatic wave-packets in Plasma [26]. Esfandyari-Kalejahi et al. [27] Studied electrostatic waves which unmagnified
collision pair modulation of nonlinear amplitude propagation in plasma. Furthermore, many researchers have examined
solder tissue structures in magnetic plasma, which are derived from the Zakharov-Kuznetsov (ZK) equation in various
media. For example, Kourakis et al. have studied Magnetic mixed pair-ion plasma molecular electrostatic reactions are
equated with linear dissemination analysis and forming their dimensional solutions [28]. The spread of shear Alfven
waves in a strongly magnetic e-P-I plasma has been investigated by U. et al. [29], and also in Quantum E-P-I plasma,
solitary waves were examined [20]. In the presence of stable ions, in the presence of Mahmoud et al., QHD for

T Cite as: N. Rani, and M. Yadav, East. Eur. J. Phys. 4, 180 (2021), https://doi.org/10.26565/2312-4334-2021-4-24
© N. Rani, M. Yadav, 2021


https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://doi.org/10.26565/2312-4334-2021-4-24

181
Pressure of Electromagnetic Radiation on a Linear Vibrator EEJP. 4 (2021)

disseminating nonlinear acoustic wave in dense magnetic e-p plasma, ZK has found the equation and found that the
positron concentration decreases the wave dimension increases.

THEORETICAL FORMULATION
In order to study the nonlinear low frequency magnetosonic wave propagation, we take the set of dynamic equations
for solving our problem. The set of quantum magnetohydrodynamic include the ion continuity equation and momentum
equations as follows.
The ion continuity equation and for nondegenerate ions fluid are —

on.

—+V.(nu)=0 1

Py (nu;)=0, ey
%+(u V)u —i(E+u xf?) 2)
ot T m, ' ’
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where u; is ion fluid velocity, n; is ionic number density and m; is the ion mass.
The electron continuity equation and momentum equation for degenerate electrons are —
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where n, is unperturbed electron number density, P, is electron pressure and the term %° arises due to electron tunneling
through the Bohm potential. The numerical coefficient a is expressed as-
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Let z = exp(fu). In the classical limit (z << 1) then a = 1, whereas in the full degenerate limit (z >> 1) then a = 1/3.
The Fermi-Dirac particle distribution function for electron is —

A
e ©
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where B=1/ksT, E=mev?/2, v=|u|, kg is the Boltzmann constant and  is the chemical potential regarded as a slowly varying
function of position r and time t.
The scalar pressure for equilibrium with zero drifts velocity as -
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The Maxwell’s equations are -
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The current density is —

J=e(nu,—nu,). an
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The equilibrium 7,0 = n.o = no (say) has been defined. In order to study the obliquely propagating nonlinear magnetosonic
wave propagating in x direction, i.e., V = (6}(, 0, 0) and electric field in a plane (xy) i.e., E= Exﬁ+ E‘f .The linear

dispersion relation for magnetosonic waves in a quantum plasma with arbitrary electron degeneracy is written as —

2 2.2
o =| v’ NN k2+&, (12)
12 m;m, 1+k° A

where L s is ion acoustic Speed and defined as —
1/2
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The dispersion relation is described as -
2
o :[uz+ﬁh—k2]k2+Q,Qe. (14)

The phase velocity is defined as —

%:Jujwj, (15)

where U 4 is Alfven speed.
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The dispersion relation for magnetosonic waves in quantum plasma with fully degenerate case can be written as —

o =g e K (17)
36mm, 1+k%2;

To explore the nonlinear structures, it is convenient to write governing equations in dimensionless and component
form and it is convenient to use of normalized quantities. For this, we introduce the following dimensionless variables:

i, =u,, /v, i, =n,/n, %, =oxlv,i=0t E=eE/myvw, and B=B/B,,

e,

here
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is the quantum diffraction dimensionless parameter and § = kgT, kg is the Boltzmann constant, T is the temperature and
w is the equilibrium chemical potential and y = mi / me is ion electron mass ratio. The space (x) and time (#) variables are
normalized by ion plasma frequency. Hereafter, we will be using these new variables and remove all the bars for simplicity
of notations. The normalized ion continuity and momentum equations in the component form of dimensionless variables
can be written as follows:
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The normalized electron continuity and momentum equations in the component form of dimensionless variables can
be written as follows:
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The component form of Faraday’s law —
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where Q = o./mpi has been defined as normalized parameter of ion cyclotron and ion plasma frequency ratio. Where
n,e’
E,m,

i

i = eBo/m; is the ion cyclotron frequency and o, = is the ion plasma frequency respectively.

DERIVATION OF KDV EQUATION FOR MAGNETOSONIC WAVES

Now, we derive the Korteweg-de Vries equation from (18)-(26) by employing the reductive perturbation technique
and the stretched coordinates —

8= €2 (x-vpt) and T = 3¢, 27
where ¢ is a smallness parameter proportional to the amplitude of the perturbation and v, is the phase velocity of wave.

We can expand the variables ne), i), E, B and p in a power series of € as —
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Now collecting the lowest order (£¥?) terms from ion continuity and momentum equations of components form (18) to
(20) give —
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Now collecting the lowest order (¢¥?) terms from electron continuity and momentum equations of components form (21)
to (23) give —
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The lowest order (£*?) terms from component form of Faraday’s law (24) —
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The lowest order (¢*?) terms from components form of Ampere’s law (25-26) -
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In order to study the nonlinear magnetosonic wave propagation characteristics we using this equation uev(” = —du,.y(” and

other variables can be expressed in terms of ue" as followings-
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Now, using above equation and eliminating ne), Ui, E and B we obtain —
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Equation (60) is the Korteweg-de Vries (KdV) equation of the nonlinear magnetosonic wave in magnetized quantum
plasma in terms of ue"’ = y. Where the nonlinear coefficient 4; and the dispersion coefficients 4 are given by —

4, = 1[3 - iz]
2 v, . (61)

2
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The solution of the Korteweg-de Vries (KdV) equation is found by transforming the independent variables X and 7 to -

K=6-Cot,1=T1, (62)

where, Co is a constant velocity normalized by c.



186
EEJP. 4 (2021) Neelam Rani, Manikant Yadav

Therefore, the solution of the Korteweg-de Vries (KdV) equation is —
K
w =y, sech’ (X] . (63)

In order to get the existence of solitons structures, it is necessary to apply the boundary condition on wave. The exact
solution of KdV is not possible because this equation is not exactly integral solution. However, a particular solution of
KdV is possible. The boundary condition is —

2
W—)O,d—w—m,d l/;
dK dK

— 0atK — «,

where ¥/ , is the amplitude and A = 1/a is the width of magnetosonic soliton is given by —

3,
l//m Al
Nk (64)
CO
RESULT AND DISCUSSION

1. The theory of magnetosonic waves can be applied to all degeneracy of electrons. However, here the Fermi
temperature and thermodynamic temperatures have same order and strong interactions between charge carriers. The
quantum diffraction parameter depends on electron thermal temperatures as shown in Figure 1. It can be seen from
the figure that quantum diffraction parameter attains large value for cold plasma.

0.5+

0.4

0.2
0.1 4

0.0

T T T T T
5 6 7 8 9 10

log,, T(K)

Figure 1. Variation of Quantum diffraction parameter H with temperature

2. Variation of Nonlinear dispersive coefficient A, as a function of temperature for magnetosonic waves is shown in
Figure 2.

(a) The rarefactive magnetosonic solitons structures are formed only when velocity of nonlinear structure Cyp < 0 and
nonlinear coefficient A; remains positive and nonlinear dispersive coefficient A, < 0 for electron temperature T >
10°K. The speed of the nonlinear rarefactive soliton will be less than the phase speed of the magnetosonic waves.

(b) But the compressive magnetosonic solitons structures are formed when velocity of nonlinear structure Co > 0 and
nonlinear coefficient A; remains positive and nonlinear dispersive coefficient A, > 0 for electron temperature T <
10°K and it moves with a speed greater than the speed of the magnetosonic waves in the plasma with arbitrary
degeneracy of electrons. The formation of magnetosonic dip structures in the higher temperature region is decreased
with the increase of the magnetic field intensity.
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Figure 2. Nonlinear dispersive coefficient Az as a function of temperature

3. The variation of Q = m.i/wp; as normalized parameter of ion cyclotron and ion plasma frequency ratio with different
values of temperature as shown in Figure 3. It can be seen from the figure that the value of Q decreases with increase
in electron thermal temperature as well as magnetic field intensity.
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Figure 3. The ratio Q of ion cyclotron to ion plasma frequency as a function of temperature

CONCLUSION

The weakly nonlinear propagation of magnetosonic soliton in magnetized dense plasma has been analyzed with the
quantum effects of degenerate electrons, pressure degeneracy and Bohm diffraction. The reductive perturbation theory
was used to derive Korteweg-de Vries (KdV) equation for the propagation of quantum magnetosonic waves in magnetized
dense plasma. In weakly nonlinear limits, condition of shock wave has been discussed. Finally, we observed that this
result relevant in plasma when fermi temperature and thermodynamic temperatures have same order.
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HEJIHIVHI MATHITO3BYKOBI XBUJII B HAMATHIYEHIH IIJIBHOI IJIA3MI
JJIS1 KBAHTOBUX E®EKTIB BUPOKEHUX EJTEKTPOHiB
Hinam Pani, ManikanT SInas
Kageopa ¢isuxu, Yuieepcumem nayxu i mexuixu [Joic. K. Boze, YMCA, ®@apuoabao, Xap'ana, 121006

VY 1iif poOOTi AOCHIIKYIOTHCS HENiHIIfHI MarHiTO3BYKOBI COJIITOHM B HaMarHiueHid IIiIbHIA MasMmi JUis KBaHTOBHX c(EKTiB
BUPODKEHUX eNeKTpoHiB. O3HalOMHUBIIMCH 3 OCHOBHHM BIIPOBa/DKCHHSM KBaHTOBOI IUIa3MH, MU OIIMCAJIM HEJNiHIMHE sBUILE
MarHiTO3ByKOBOI XBWJIi. BUKOPHCTOBY€ETHCSI METO/] BIZIHOBHOTO 30ypEHHS Ul HU3bKOYACTOTHUX HENIHIMHUX MarHiTO3BYKOBUX XBHJIb
y HaMmarHiueHii KBaHTOBIH mma3mi. Y wiif poboti mu BuBenu piBHsHHs KopreBera-ne ®piza (KdV) Maruito3ByKOBHX COJNITOHIB y
HaMarHiueHi KBaHTOBIH I1a3Mi 3 BUPOHKEHIMH €JICKTPOHAMH, IO MAIOTh AOBUIBHY €NEKTPOHHY Temmeparypy. Crocrepiraerbes,
MOLIMPEHHS! MarHiTO3BYKOBUX COJITOHIB y HaMarHiueHid WIUTBHIA mia3mi 3 KBaHTOBUMH €()EeKTaMH BHPOKCHUX EJICKTPOHIB i
mudpakmii boma. KBantosi a6o edexT BUPOKEHHS CTAIOTh aKTyaJIbHHMH B IUIa3Mi, Koiu Temreparypa Pepmi i TepMoauHaMidHA
TeMIIepaTypa BUPOKEHHUX EJICKTPOHIB MAIOTh OJHAKOBUH ITOPSIIIOK.

KorouoBi ci10Ba: MarHiTo3BykoBa XBHJIsL, KBAHTOBA IU1a3Ma, piBHsHH Kopresera-ne ®piza (KuB).





