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The nonlinear magnetosonic solitons are investigated in magnetized dense plasma for quantum effects of degenerate electrons in this 
research work. After reviewing the basic introduction of quantum plasma, we described the nonlinear phenomenon of magnetosonic 
wave. The reductive perturbation technique is employed for low frequency nonlinear magnetosonic waves in magnetized quantum 
plasma. In this paper, we have derived the Korteweg-de Vries (KdV) equation of magnetosonic solitons in a magnetized quantum 
plasma with degenerate electrons having arbitrary electron temperature. It is observed that the propagation of magnetosonic solitons in 
a magnetized dense plasma with the quantum effects of degenerate electrons and Bohm diffraction. The quantum or degeneracy effects 
become relevant in plasmas when fermi temperature and thermodynamic temperatures of degenerate electrons have same order. 
Keywords: Magnetosonic wave, Quantum Plasma, Korteweg-de Vries equation (KdV) equation. 
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The study of quantum plasma has been growing interest during the last decade due to its enormous applications on 

large scale systems in compact astrophysical objects such as white dwarfs, neutron stars and pulsars containing dense 
plasmas and on short scale systems such as in semiconductors, quantum devices and on nanometer scales such as quantum 
wells, quantum dots, nano-tubes and spintronics. The quantum or degeneracy effects become relevant in plasmas when 
the de Broglie wavelength associated with charge carriers becomes of the order of the average inter-particle distance so 
that there is a significant overlap of the corresponding wave functions or the Fermi temperature is same as the temperature 
of the system.  

Firstly, Haas [1] introduced the quantum hydrodynamic (QHD) model used for quantum corrections in plasma. 
Thereafter, the proposal of QMHD model explaining spin-1/2 effect of degenerate electrons for low-frequency waves in 
magnetized quantum plasmas was given by Marklund and Brodin [2]. In a quantum magnetoplasma, the quantum Bohm 
potential and electron spin-1/2 effects using the Sagdeev potential approach was studied for magnetosonic solitons [3]. 
In the system of QMHD, the electron spin-1/2 changes to the shape of the magnetosonic solitary waves due to the balance 
between the nonlinearity and quantum diffraction/ tunneling effects. Spin Alfv´en solitons were investigated in 
magnetized electron-positron plasmas [4] by deriving a modified KdV equation in the MHD limit. It was shown that the 
collective spin effects may influence the wave characteristics in a strongly magnetized quantum plasma.The QHD model 
can be generalized by adding the quantum statistical pressure term (the Fermi-Dirac distribution) and the quantum 
diffraction term (the Bohm potential) to the fluid model [5, 6]. 

The QHD was used to investigate the quantum magnetosonic waves and a deformed Korteweg-de Vries (KdV) 
equation was derived by Haas et al. [7]. In classical plasma, the KdV equation is well known for the small but limited 
amplitude of ionic sound wave [8], [9]. Both degenerate (without spin) and non-degenerate (with spin) quantum plasmas 
were studied respectively by using small amplitude limited perturbation scheme obliquely two-dimensional nonlinear 
magnetosonic waves [10 – 11]. Many authors have studied the linear and nonlinear low-frequency waves in quantum 
plasma such as ion acoustic waves, drift waves etc. [12 - 14]. 

It has been proved that by adding positrons to the plasma as usual, their collective behavior has changed considerably 
[15] - [18]. Plasma [29] smashing [18], [20] the early universe, the vital role of survival and electron-positron (E-P) have 
collective behavior. Although most of the astronomical environments can be considered by the EP plasma existent senses 
[21], [22], the EP plasma combination in nonrelativistic regimes is astronomical plasma in some aspects [20], [23]. 
Verheest et al. studied through a reductive disturbance analysis, large amplitude in electron-positron plasma studied 
solitary electromagnetic waves and received a modified Korteweg-de verse (mKdV) equation [24]. Using two fluid 
plasma samples, Kourakis et al. [25] the pair studied parallel wavelength packets in parallel magnetic plasma in pairs. 
With this approach, Esfandyari-Kalejahi et al. E-P-I is considered nonlinear propagation of amplitude collective 
electrostatic wave-packets in Plasma [26]. Esfandyari-Kalejahi et al. [27] Studied electrostatic waves which unmagnified 
collision pair modulation of nonlinear amplitude propagation in plasma. Furthermore, many researchers have examined 
solder tissue structures in magnetic plasma, which are derived from the Zakharov-Kuznetsov (ZK) equation in various 
media. For example, Kourakis et al. have studied Magnetic mixed pair-ion plasma molecular electrostatic reactions are 
equated with linear dissemination analysis and forming their dimensional solutions [28]. The spread of shear Alfven 
waves in a strongly magnetic e-P-I plasma has been investigated by U. et al. [29], and also in Quantum E-P-I plasma, 
solitary waves were examined [20]. In the presence of stable ions, in the presence of Mahmoud et al., QHD for 
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disseminating nonlinear acoustic wave in dense magnetic e-p plasma, ZK has found the equation and found that the 
positron concentration decreases the wave dimension increases. 

 
THEORETICAL FORMULATION 

In order to study the nonlinear low frequency magnetosonic wave propagation, we take the set of dynamic equations 
for solving our problem. The set of quantum magnetohydrodynamic include the ion continuity equation and momentum 
equations as follows. 

The ion continuity equation and for nondegenerate ions fluid are –  
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where ui is ion fluid velocity, ni is ionic number density and mi is the ion mass. 
The electron continuity equation and momentum equation for degenerate electrons are –  
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where ne is unperturbed electron number density, Pe is electron pressure and the term 2  arises due to electron tunneling 
through the Bohm potential. The numerical coefficient α is expressed as-  
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Let z = exp(βμ). In the classical limit (z << 1) then α ≈ 1, whereas in the full degenerate limit (z >> 1) then α ≈ 1/3. 
The Fermi-Dirac particle distribution function for electron is –  
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where β=1/kBT, E=mev2/2, v=|u|, kB is the Boltzmann constant and μ is the chemical potential regarded as a slowly varying 
function of position r and time t. 

 

The scalar pressure for equilibrium with zero drifts velocity as -  
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This is equal to – 
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The Maxwell’s equations are - 
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The current density is – 
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The equilibrium ni0 = ne0 = n0 (say) has been defined. In order to study the obliquely propagating nonlinear magnetosonic 

wave propagating in x direction, i.e.,

 

 ,0,0x  
 
and electric field in a plane (xy) i.e.,
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dispersion relation for magnetosonic waves in a quantum plasma with arbitrary electron degeneracy is written as – 
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where  s is ion acoustic speed and defined as – 
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The dispersion relation is described as - 
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The phase velocity is defined as – 
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where  A is Alfven speed.
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The dispersion relation for magnetosonic waves in quantum plasma with fully degenerate case can be written as –  
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To explore the nonlinear structures, it is convenient to write governing equations in dimensionless and component 
form and it is convenient to use of normalized quantities. For this, we introduce the following dimensionless variables: 

, , /e i e i su u  , , , 0/e i e in n n , , /e i p sx x  , pt t  / i s pE eE m 
 

 and 0/B B B
 

, 

here 

 
1/ 2

1/ 2

3/2

( )

( )3

pe Li e
H

Li e





 
 

   


,  

is the quantum diffraction dimensionless parameter and β = kBT, kB is the Boltzmann constant, T is the temperature and 
μ is the equilibrium chemical potential and γ = mi / me is ion electron mass ratio. The space (x) and time (t) variables are 
normalized by ion plasma frequency. Hereafter, we will be using these new variables and remove all the bars for simplicity 
of notations. The normalized ion continuity and momentum equations in the component form of dimensionless variables 
can be written as follows: 
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The normalized electron continuity and momentum equations in the component form of dimensionless variables can 
be written as follows:

 

 ( ) 0e
e ex

n
n u

t x

 
 

 
, (21) 

 
(0)

(0)

2 2
1/2

2

1/2

( ) 1

2( )
ex

ex ex x ey e e

e

u Li e H
u u E u B n n

t x x x xnLi e





     
       

       
, (22)

 

 iy
iy iy y ix

u
u u E u B

t x

 
  

 
. (23) 

 
The component form of Faraday’s law – 
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The components form of Ampere’s law - 
 

 0 i ix e e xn u n u  , (25) 

  
2

2
s

e ey i iy

B
n u n u

x c


  



, (26) 

 
where Ω = ωci/ωpi has been defined as normalized parameter of ion cyclotron and ion plasma frequency ratio. Where 
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DERIVATION OF KDV EQUATION FOR MAGNETOSONIC WAVES 

 
Now, we derive the Korteweg-de Vries equation from (18)-(26) by employing the reductive perturbation technique 

and the stretched coordinates – 

 δ= ɛ1/2 (x-vpt) and τ = ɛ3/2 t, (27) 

where ɛ is a smallness parameter proportional to the amplitude of the perturbation and vp is the phase velocity of wave.  
 
We can expand the variables ne(i), ue(i), E, B and μ in a power series of ε as – 
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Now collecting the lowest order (ε3/2) terms from ion continuity and momentum equations of components form (18) to 
(20) give – 
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Now collecting the lowest order (ε3/2) terms from electron continuity and momentum equations of components form (21) 
to (23) give – 
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The lowest order (ε3/2) terms from component form of Faraday’s law (24) – 
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The lowest order (ε3/2) terms from components form of Ampere’s law (25-26) - 
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Now, using (34) – (42) we have – 
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Now collecting the next higher order (ε) terms can be written as following - 
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In order to study the nonlinear magnetosonic wave propagation characteristics we using this equation (1) (1)
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Now, using above equation and eliminating ne(i), ui, E and B we obtain –  
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Equation (60) is the Korteweg-de Vries (KdV) equation of the nonlinear magnetosonic wave in magnetized quantum 
plasma in terms of uex

(1) = ψ. Where the nonlinear coefficient A1 and the dispersion coefficients A2 are given by – 
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The solution of the Korteweg-de Vries (KdV) equation is found by transforming the independent variables X and τ to -  

 K = δ – C0τ, τ = τ, (62) 

where, C0 is a constant velocity normalized by c. 
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Therefore, the solution of the Korteweg-de Vries (KdV) equation is – 

 2sechm

K      
. (63) 

In order to get the existence of solitons structures, it is necessary to apply the boundary condition on wave. The exact 
solution of KdV is not possible because this equation is not exactly integral solution. However, a particular solution of 
KdV is possible. The boundary condition is – 
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where  m is the amplitude and Δ = 1/α is the width of magnetosonic soliton is given by –  
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RESULT AND DISCUSSION 
1. The theory of magnetosonic waves can be applied to all degeneracy of electrons. However, here the Fermi 

temperature and thermodynamic temperatures have same order and strong interactions between charge carriers. The 
quantum diffraction parameter depends on electron thermal temperatures as shown in Figure 1. It can be seen from 
the figure that quantum diffraction parameter attains large value for cold plasma. 

 

Figure 1. Variation of Quantum diffraction parameter H with temperature 

2. Variation of Nonlinear dispersive coefficient A2 as a function of temperature for magnetosonic waves is shown in 
Figure 2. 

(a) The rarefactive magnetosonic solitons structures are formed only when velocity of nonlinear structure C0 < 0 and 
nonlinear coefficient A1 remains positive and nonlinear dispersive coefficient A2 < 0 for electron temperature T > 
106K. The speed of the nonlinear rarefactive soliton will be less than the phase speed of the magnetosonic waves. 

(b) But the compressive magnetosonic solitons structures are formed when velocity of nonlinear structure C0 > 0 and 
nonlinear coefficient A1 remains positive and nonlinear dispersive coefficient A2 > 0 for electron temperature T < 
106K and it moves with a speed greater than the speed of the magnetosonic waves in the plasma with arbitrary 
degeneracy of electrons. The formation of magnetosonic dip structures in the higher temperature region is decreased 
with the increase of the magnetic field intensity. 
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Figure 2. Nonlinear dispersive coefficient A2 as a function of temperature 

3. The variation of Ω = ωci/ωpi as normalized parameter of ion cyclotron and ion plasma frequency ratio with different 
values of temperature as shown in Figure 3. It can be seen from the figure that the value of Ω decreases with increase 
in electron thermal temperature as well as magnetic field intensity. 

  
Figure 3. The ratio Ω of ion cyclotron to ion plasma frequency as a function of temperature 

 
CONCLUSION 

The weakly nonlinear propagation of magnetosonic soliton in magnetized dense plasma has been analyzed with the 
quantum effects of degenerate electrons, pressure degeneracy and Bohm diffraction. The reductive perturbation theory 
was used to derive Korteweg-de Vries (KdV) equation for the propagation of quantum magnetosonic waves in magnetized 
dense plasma. In weakly nonlinear limits, condition of shock wave has been discussed. Finally, we observed that this 
result relevant in plasma when fermi temperature and thermodynamic temperatures have same order. 
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НЕЛІНІЙНІ МАГНІТОЗВУКОВІ ХВИЛІ В НАМАГНІЧЕНІЙ ЩІЛЬНОЇ ПЛАЗМІ 
ДЛЯ КВАНТОВИХ ЕФЕКТІВ ВИРОЖЕНИХ ЕЛЕКТРОнів 

Нілам Рані, Манікант Ядав 
Кафедра фізики, Університет науки і техніки Дж. К. Бозе, YMCA, Фаридабад, Хар'яна, 121006 

У цій роботі досліджуються нелінійні магнітозвукові солітони в намагніченій щільній плазмі для квантових ефектів 
вироджених електронів. Ознайомившись з основним впровадженням квантової плазми, ми описали нелінійне явище 
магнітозвукової хвилі. Використовується метод відновного збурення для низькочастотних нелінійних магнітозвукових хвиль 
у намагніченій квантовій плазмі. У цій роботі ми вивели рівняння Кортевега-де Фріза (KdV) магнітозвукових солітонів у 
намагніченій квантовій плазмі з виродженими електронами, що мають довільну електронну температуру. Спостерігається, 
поширення магнітозвукових солітонів у намагніченій щільній плазмі з квантовими ефектами вироджених електронів і 
дифракції Бома. Квантові або ефекти виродження стають актуальними в плазмі, коли температура Фермі і термодинамічна 
температура вироджених електронів мають однаковий порядок. 
Ключові слова: магнітозвукова хвиля, квантова плазма, рівняння Кортевега-де Фріза (КдВ). 




