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Particular solutions of the Burgers equations (BE) with zero boundary conditions are investigated in an analytical form. For values of
the shape parameter a greater than I, but approximately equal to 1, the amplitude of the initial periodic perturbations depends
nonmonotonically on the spatial coordinate, i.e. the initial perturbation can be considered as a shock wave. Particular BE solutions with
zero boundary conditions describe a time decrease of the amplitude of initial nonmonotonic perturbations, which indicates the decay
of the initial shock wave. At large values of the shape parameter a >>1, the amplitude of the initial periodic perturbations depends
harmoniously on the spatial coordinate. It is shown that over time, the amplitude and the spatial derivative of the profile of such a
perturbation decrease and tend to zero. Emphasis was put on the fact that particular BE solutions can be used to control numerical
calculations related to the BE-based description of shock waves in the region of large spatial gradients, that is, under conditions of a
manifold increase in spatial derivatives. These solutions are employed to describe the profile of a one-dimensional train of elementary
steps with an orientation near <100>, formed during the growth of a NaCl single crystal from the vapor phase at the base of a
macroscopic cleavage step. It is shown that the distribution of the step concentration with distance from the initial position of the
macrostep adequately reflects the shock wave profile at the decay stage. The dimensionless parameters of the wave are determined, on
the basis of which the estimates of the characteristic time of the shock wave decay are made.
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PACS: PhySH: Surface & interfacial phenomena

It is known that vicinal surfaces during crystal growth from the vapor phase or solutions are subject to a certain type of
morphological instability — bunching of steps [1-4]. The formation of step bunching is a very serious problem when growing
perfect crystals and obtaining surfaces that are atomically smooth on a macroscale [5-7]. On the other hand, such instabilities
lead to the formation of large-scale nanostructured surfaces, which can be used to obtain low-dimensional structures actual
for various technological applications [8-13]. A theoretical description of the nonlinear processes that result in the
development of such kind of instabilities is very complicated due to a variety of causes leading to the step bunching in real
experimental conditions (stochasticity of growth processes in general, presence of impurities, surface electromigration effect,
Ehrlich-Schwdbel effect, elastic stress fields, variable macroscopic fields, non-quasi-static effects, etc.) [14-20]. The current
state of research of step bunching, in particular, induced by electric currents, is presented in the references given in [21],
where it is shown how the general picture of the process of bunching depends on the short-range repulsive force between the
steps. It is customary to distinguish between the steps bunching as a result of morphological instability and as a shock in a
kinematic wave, when the flux of steps is determined only by their local density [3].

The study of kinematic ("shock") waves of steps on crystal surfaces was first carried out by Frank [22], and by
Cabrera and Vermilyea [23], who used the results of the general analysis of kinematic waves done by Lighthill and
Whitham [24]. Later, it was shown that the appearance of shock waves is accompanied by a characteristic curvature of
the vicinal surface profile, reflecting the space-time distribution of the step density[25]. At the level of optical microscopy,
kinematic waves are usually perceived as steps of macroscopic height. At that, they should be distinguished from another
type of macro-steps associated with the anisotropy of the surface energy ("true" macro-steps) [25]. Subsequently, based
on the experimental data, it was concluded that the characteristic macroscopic relief of shock waves can be formed under
certain conditions of crystal growth (evaporation) on vicinal thermodynamically stable surfaces [26, 27]. As follows
from [25], the appearance of shock waves with a curved profile of the vicinal surface under such conditions is the main
result of the diffusion interaction of moving elementary steps.
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The dynamics of the macroscopic curved vicinal surface profile of a crystal growing from the vapor phase was
studied in [28], in which the expressions for the average values of the ad atom concentration and the velocity of elementary
steps were obtained by averaging over large spatial intervals. The nonlinear Korteweg-de Vries-Burgers (KVB) equation
was obtained from the continuity equation for average values of the ad atom concentration and the velocity of elementary
steps, taking phenomenological account of surface curvature [3, 29]. This equation describes the nonlinear dynamics of
a train of parallel elementary steps on a macroscopically curved vicinal crystal surface. In a particular case, the KVB
equation can transform into the Burgers equation (BE), which describes the formation and dynamics of shock waves.

The BE is a partial differential equation and it can be derived from the Navier-Stokes equations in the special case
when the system under consideration has one spatial dimension [30].Following [30], the BE for the fluid flow velocity
u(x,1) is written in the next form:

ou ou ou
—_— + u—= —, 1
o ax Moe )

where ¢ and x are the time and coordinate along the flow, respectively, x>0 is the kinematic viscosity of the fluid. We
consider the quantities¢, x, and 4 to be dimensionless.

Equation (1) is used in various fields of applied physics: to study the appearance of shock waves in hydrodynamic
mediums[31], to describe the steepening and overturning of waves on the water surface [32]. The BE is also used in
nonlinear acoustics to study cylindrical and spherical shock waves, as well as waves in relaxing mediums[33,34].

It is known that the BE can be reduced to the heat conduction equation using the Hopf-Cole transformation [35, 36].
The analytical solution obtained in this case describes the velocity of the medium for an arbitrary initial spatial
distribution [37]. However, the integrals included in the solution cannot be always represented in an analytical form.
Therefore, preference is given to such analytical solutions that are expressed in terms of elementary functions and can be
easily applied to the problem being solved.

The scientific literature provides analytical and numerical methods for solving the BE [31, 35-37]. The asymptotic
of solutions of the BE with initial or boundary conditions on a finite interval with periodic boundary conditions is analyzed
in [38]. It is shown that in a viscous medium, the profile initially at rest transforms into a traveling wave with decreasing
amplitude. At viscosity values approaching zero, the asymptotic profile takes on a saw tooth shape with periodic derivative
discontinuities, similar to Fay's solution on the half-line.

Numerical calculations of the BE on a finite interval allow us not only to find new solutions, but also to verify
experimentally their asymptotic using analytical estimates. It is noted that the numerical simulation of functions with a
discontinuous derivative complicates the calculations, because in the vicinity of the discontinuities, the standard methods
become unstable. The latter fact causes multiple oscillations, leading to a loss of accuracy and incorrect results. The only
way to avoid that is to use an adaptive step length on the spatial coordinate, which corresponds to a step reduction of 10-
20 times compared to the original step length. But the marked possibility is limited. Therefore, all calculations must be
checked using model analytical solutions.

Analytical solutions of the BE with periodic boundary conditions were obtained in [39]. These solutions are
proposed to be considered as a model for the development of stable and convergent grid methods for the numerical
analysis of viscous media motion. However, the analytical solutions obtained in this work, as reference ones, do not
describe the formation of a shock wave, but its decay.

The purpose of this work is to obtain analytical solutions of the BE that describe both the formation of a shock wave,
which is expressed in an increase in the steepness of the wave profile, and its decay, accompanied by a decrease in the
steepness of its profile in a sufficiently wide time interval. The obtained solutions are used to describe some experimental
results related to growth from the vapor phase (or evaporation) of alkali-haloid crystals.

ANALYTICAL SOLUTIONS OF THE BE FOR SPATIALLY PERIODIC PERTURBATIONS WITH ZERO
BOUNDARY CONDITIONS

Let us find the bounded solutions |u(x,t)| <o of the BE (1) on the interval x€ [0,L], for times t€ [0,c0]with the

boundary conditions:
u(0,6) =u(L,t)=0. 2)

. ov(x,t
The Hopf-Cole transformation (HC) u (x,) = —2;1; v(x0)

[37] reduces the nonlinear equation (1) to the
v(x,t) ox

linear heat equation for the function v (x,z) :

ov(x,t) lazv(x,t)
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The boundary condition (2) implies the property of the function v (x,7) in the range of its variation and its boundary

conditions are the following:
v(x,1)#0, “)

ov(0,1) ov(L,t)

= =0, 5
ox Oox )

where 0<x<L,0<t<w.
Equation (3) has an infinite set of functions and conditions (4), (5) [39]:

v, (x1)= cos(lnx)exp(—yxljt), (6)

where A, =nz/L, n=1,2,3,...
Particular solutions (3) is determined up to a constant. Therefore, they can be represented as:

w, (x,0)=v,(x1)+a, @)

where a is a constant. It follows from (4) that ¢ > 1.
As a result of the HC transformation, we obtain particular BE solutions:

sin(4,x)
cos(4,x)+ aexp(,uﬂnzt) '

u, (x,t) =2uA, ®)

Solution (8) describes an infinite number of BE particular solutions for different values of constants a, x, n . Further,

we call a the shape parameter of BE particular solutions, since its value determines the shape of the initial perturbation.
Let us consider the dependence of solutions (8) on the value of the parameter a .

DEPENDENCE OF THE BE SOLUTIONS ON TIME FOR DIFFERENT VALUES
OF THE SHAPE PARAMETER a
At the initial moment of time (¢ = 0 ), ordinary BE particular solutions are described by a periodic function in the
following form:

nr  sin(nzx/L)

u, (x,0)=24———-——"—. 9
 (%.0)=24 L cos(nzx/L)+a ©)
For large positive values of the shape parameter « >> 1, the initial perturbation is close to a harmonic signal:
u,(x,0)= 2,u%sin(n7rx/L)(l —-a’ cos(nﬂx/L)). (10)
a

For finite values of the shape parameter a =1+ ¢ , where 0 < ¢ << 1, a particular solution of the BE at the initial

moment of time (9) is a periodic function which, at points x = (2k+1)L / nwhen {—0 (a —> 1), has a singularity
of the form:
nrw nrwx
u (x,0)=2u—1t s 11
 (%0)=24— g[ ZLJ (11

where k = 0;+1;+2..., (2k+1)<n .

It follows from (11) that solutions (8) are inapplicable for the shape parameter « =1, since the boundedness
condition of solutions is violated already for the initial perturbations (¢ = 0 ). Therefore, the range of variation of the shape
parameter a , as noted above, is determined by the conditiona > 1 .

Let us determine the extreme values of the initial perturbation in the specified intervals of change in the shape

e : . 2L .
parameter. For 0 < ¢ <1 at the initial moment of time (9) at points x,, = —arccos| ———| , the BE positive

" onx J1+24A2

particular solutions are bounded and have extreme values:
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u, (3%,0) = 22— (12)

ext 2 \/E\/ﬁa

where A, = J_r\/z .
- 2

It follows from (12) that, for example, for » = 2 , when ¢ increases from zero to infinity, the parameter A_
changes from zero to minus infinity, and the coordinate of the maximum shifts from L/2 to L/4. When ¢ increases
from zero to infinity, the parameter A, , on the contrary, changes from zero to plus infinity, and the coordinate of the
minimum shifts from L/2 to 3L/4 . In all these cases, as ¢ increases, the initial wave profile spreads and its amplitude
decreases.

NUMERICAL ANALYSIS OF THE TEMPORAL DYNAMICS
OF THE BE PARTICULAR SOLUTIONS
As an example of how the profile of (8) changes over time, let us plot the dependence of the dimensionless velocity

v, (x,7,)=u, (x,t)/(2n7u/L) on the dimensionless time 7, = 4(nz/ L)2 t and the dimensionless coordinate & = x/L for

a given mode 7 . At that, the areas of time and coordinate changes remain the same:0<7, <0, 0<&<1.
The BE particular solution in new variables takes the form:

sin (nmj)

cos(nzé)+aexp(r,)

v, (&7,)= (13)

Figure 1(a) shows the time dynamics of the BE particular solution (13) for the mode » =1 and for the shape
parameter value « =1.001. Such particular solution describes the decrease in the nonmonotonical initial perturbation
amplitude (11) with time, which corresponds to shock waves. The figure shows an exponential decrease in y, (£,7, ) over
time.

Figure 1(b) shows the time dynamics of the BE particular solution (13) for the mode » = 6 and for a large value of
the shape parameter ¢ =15 . The ordinary BE particular solution describes the decrease in the initial perturbation
amplitude (10) with time. The figure shows an exponential decrease in y, (£,z,) over time.

(b)

Figure. 1.Time dynamics of the BE particular solution (13): (a) - for » = 1 and the shape parametera =1.001;

(b) - for n = 6 and the shape parametera =15 .

Thus, the study of periodic particular BE solutions shows that the amplitude of the perturbation, as well as its spatial
derivative, decreases with time to zero. This behavior of the perturbation indicates its decay and does not describe the
formation of shock waves.

RESULTS AND DISCUSSION
Experimental results on the study of the growth of alkali halide crystals from the vapor phase
In [28], the density waves of monatomic steps with <10> orientation on thermodynamically stable vicinal surfaces of
NaCl(100) were investigated under conditions of very low super saturation (10-°-10#)and high temperatures ( ~ 10° K). The
wave structure is adequately described on the basis of the analytical solution of the KVB equation obtained by the
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averaging method for the one-dimensional (1D) model of the train of steps. This allows, on the one hand, to confirm the
conclusion that the observed step bunches have a kinematic origin, on the other hand, to show that they are monotonic
shock waves without oscillations. Dimensionless characteristics of shock waves, such as the average step density p,4, ,

amplitude 4, , wave number ¢,and velocity u , were determined. Here /4, is the ad molecule mean free path, p, =1//;,1,

is the average width of the vicinal surface terrace. Since the dimensionless coefficients of the obtained KVB equation are
determined by the crystal parameters at the growth (evaporation) stage, this allowed us to take a fresh look at the physics
of the process and take into account the effects of dispersion and dissipation in the experimental studies. The value of the
parameter v_' = p,A /g, >1 obtained in [28] indicated that, during the formation of the investigated kinematic waves,

the contribution of the dispersion effect to the competition with nonlinear effects is quite significant. This value agrees
with the ratio of the coefficients at spatial derivatives of higher order in the KVB equation obtained using the method of
many scales [29], and allows us to conclude that shock waves described by the BE should be expected on vicinal
NaCl (100) surfaces in the temperature range under study at higher values of super saturation, whenv « 1. Such shock
waves, characterized by the presence of a saw tooth profile and discontinuities in the density of elementary steps, were
found on the pore growth surfaces formed during the thermally induced motion of pores in NaCl single crystals [40].

The microcrystallization conditions that can be created in pores (high temperatures and low super saturations [28])
are difficult to implement in conventional growth experiments. This is mainly due to the technical difficulties in
maintaining and controlling both the required super saturation values and the temperatures themselves. The value of
(super-) under saturation on the (growing) evaporating surfaces of pores inside a crystal can be controlled either by the
value of the temperature gradient during their thermally induced motion, or by the difference in local surface curvatures
during relaxation of their shape under isothermal conditions (see, references in [28]).

A similar technique for studying the processes of dissolution and growth of crystals from solutions has been
developed for liquid inclusions (see references in [41, 42]). In the case of saturated solution inclusions in alkali-halide
crystals, the activation energies of dissolution (growth) processes are quite small. This makes it possible to study the
spontaneous displacement of inclusions as a whole by creating inhomogeneous distributions of structural defects in the
crystal (point defects of radiation origin, dislocations, etc.) [41], as well as the transition from the kinetic regime of motion
of inclusions, when the processes at the inclusion-matrix interface are determining, to the diffusion regime, when the
processes of substance transfer through the inclusion volume are decisive [42].

Meanwhile, the use of the moving pore (liquid inclusion) technique excludes the possibility of studying the dynamics
of elementary steps in-situ and allows one to study only stationary stages of the growth processes of alkali halide crystals.
And in order to obtain data on the characteristic times of formation (decay) of shock waves of the elementary steps density,
necessary for the interpretation of theoretical results, it is important to study exactly the non-stationary stages of the
growth (evaporation) on the vicinal surfaces of crystals.

Thm

2200 nm x 2200 nm
(a) (b)

Figure 2.(a) - AFM micrograph showing the macrostep formed on the KCI(100) surface during crystal cleavage in vacuum [44] and
(b) — the electron microscope image of the surface decorated with gold particles showing the “decay” of a similar macrostep into
elementary steps during growth of NaCI(100) from the vapor phase (T = 620 K, R/R,=5,Au=0,09¢eV, A=10nm) [43].

Figure 2 shows the atomic force microscopy (AFM) image of the KCI(100) surface (a) and the electron microscope
image of the NaCI(100) surface decorated with gold particles (b). The image (b) of the “decay” process during the growth
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from the vapor phase of a macroscopic step formed on NaCl(100) upon cleavage of the crystal in vacuum is taken
from [43]. The presence of such steps and their height can be reliably monitored by AFM, as it seen from Figure 2(a)
taken from [44]. By decay we mean the process of forming a train of elementary steps of variable density at macrostep’s
base. At a distant stage of this process, one should expect a complete “splitting” of the macrostep into elementary steps.
The reason is that vicinal NaCl surfaces near (100) are thermodynamically stable and the existence of such macrosteps is
thermodynamically disadvantageous [28]. In this case, the elementary steps have a height of 2a, which is obviously due
to a relatively high value of super saturation in the vapor phase at a given temperature (7 = 620 K) [43]. However,
Figure 2(b) clearly shows the process of simultaneous decay of double-height steps into monoatomic ones. This process
is assisted by the deviation of the orientation of both the macrostep itself and the double steps attached to it from the dense
packing direction. The observed faceting of the double steps indicates that their disintegration into monoatomic steps
begins from the <11> directions, for which the speeds of the steps are greater than that in the <10> direction.

The area of the NaCl(100) growth surface decorated with gold particles, shown in Figure 2(b), allows us to
reconstruct its topography quite accurately and estimate the formation time of the studied train of elementary (2a) steps
of variable density. Therefore, the experimental data presented in Figure 2(b) were used to interpret the obtained
theoretical results describing the decay of shock waves, i.e. the space-time evolution of perturbations with the amplitudes
a >1 at the initial moment of time. Here A is the thickness of the evaporated layer, R is the evaporation rate, R/R, is

the super saturation coefficient calculated from 7 and R on the basis of the temperature dependence of the saturated
vapor pressure £ [45], Au=kTIn(R/R,). The train of elementary (2a) steps in Figure 2(b) was digitized and the

obtained values of the concentration ( pA4,) of steps, taking into account the width (/ =1/p) of the terraces adjacent to
them, are presented as a function of the longitudinal coordinate x (in units A, ) in Figure 3.
To make the values of the step density ( p ) and longitudinal coordinate dimensionless, we used the value 4 , obtained

at 7 = 620 K on the basis of the empirical temperature dependence presented in [29].This value agrees to within tenths
with the data presented in [43] for the conditions of the considered growth experiment.

15

J>
10

i
=

Concentration of steps

ol nnaqﬁ—aia-g_%—'wzg/

0 5 10 15
Longitudinal coordinate, x

Figure 3. The structure of the shock wave of the elementary step density, shown in Figure 2(b), at the decay stage: symbols "o" are the
experimental values of the step concentration in the wave; the solid line and symbols "o"are the result of calculations using formula (8).

Description of the experimental results of the NaCl crystal growth from the vapor phase
by the BE particular solutions

The structure of the kinematic wave, represented by the grouping of elementary (2a) steps shown in Figure (b), is
distinguished by the following characteristic features: the presence of a segment of the sharp change in the profile of the
initial perturbation and its subsequent smooth decrease to the minimum value. Such the change in the step concentration
with the distance from the macrostep initial position is in qualitative agreement with the profile of the shock wave
described by the BE particular solution at the stage of its decay at a given mode » =1 (Figure 1(a)).

Before moving on to the interpretation of the experimental data based on the analytical solutions (8) and (13), we
made the estimates of the coefficient , [28] taking into account the equilibrium concentration of ad molecules on an

atomically smooth surface &,, . Estimating &, ~107 by the saturated vapor pressure of NaCl [45] and assuming
g ~0.01(p,4, ) , with the known o and 4 [28], we found that the coefficient at the dissipative term in the BE is gz ~ 1.

Using the Wolfram Mathematica package, the obtained experimental dependence of the step concentration on the
longitudinal coordinate was approximated by the theoretical dependence based on equation (8) at » =1 (solid line and
symbols"o" in Figure 3). This made it possible to obtain the values of the dimensionless parameters of the shock wave at
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the decay stage (Table 1). Here f, is the amplitude of the wave, f; is its pedestal, a is the shape parameter of the initial
perturbation, L is the half-width of the wave front, ¢ is the dimensionless time.
Table 1.Parameters of the shock wave (Figure 3) at the decay stage.

Y7 L a t fo fA
0.55 10.35 1.0001 0.005 1.37 11.50

To interpret the obtained values of the dimensionless parameters under the conditions of the considered experiment,
the data on the real time of formation of the train of double-height steps in Figure 2(b) are needed. Unfortunately, these
data are not given in [43]; however, the image of a spiral consisting of monoatomic height steps under the same
experimental conditions at the nonstationary growth stage is presented. Earlier, when studying the morphology of
evaporation (growth) spirals and the dynamics of motion of monatomic and double-height steps in a wide range of
temperatures and under saturations, the normalized velocities of isolated steps were measured [46]. On their basis, the
velocities of steps in the spiral and in the train (Figure 2(b)) were calculated, which, when reduced to the same effective
super saturation under the experimental conditions [43], were 3.3-107° m/s and 1.3-107'° m/s, respectively. This
allowed us to estimate the time of the nonstationary growth stage in Figure 2(b) as ¢, ~ 1 hour, taking into account the

value R/R,=5.

In the kinematic wave theory, the characteristic time of a shock wave decay is considered to be the time during
which the wave amplitude decreases by a factor of e . For the shock wave parameters presented in Table 1, the
characteristic decay time was?, = 0.057 . During this time, under the conditions of the considered experiment, a train of

elementary steps could propagate over a distance L, =109.4in A, units with the speed of double steps, or over a distance
L, =277.9 with the speed of monoatomic steps. Assuming g ~ /2L , we obtain for the parameter v ~ g/(p,4,) =0.019,
which is close to the value used to estimate the value of x . However, at that, the corresponding values of the average
width of the terraces are several times greater than the value of 24 . This indicates that the diffusion interaction of

elementary steps, which is responsible for the formation of shock waves, is very weak under these experimental
conditions. Since, theoretically, the processes of formation and decay of shock waves are mutually reversible, their
detection under the considered experimental conditions is practically unlikely. Anyway, despite the numerous published
results of studies of the morphology of the growth (evaporation) surfaces of alkaline-halide crystals in the considered
temperature range, we do not know such data. It should be noted that the considered experiment is a model one in the
sense that it is not the decay of the “true” shock wave that is investigated, but its model in the form of a macrostep on the
singular crystal surface, the vicinals to which are thermodynamically stable.

CONCLUSIONS

In this paper, particular solutions of the BE with zero boundary conditions are investigated in an analytical form to
describe the decay of shock waves. It is shown that the amplitude of the initial periodic perturbation for values of the shape
parameter a greater than 1, but about 1, nonmonotonically depends on the spatial coordinate. The particular solution of the
BE describes a time decrease of the amplitude of the initial nonmonotonic perturbation, which can be considered as a shock
wave. Such behavior of the perturbation indicates the decay of the initial shock wave. For large values of the shape parameter
a >> 1, the amplitude of the initial periodic perturbation depends harmonically on the spatial coordinate. It is shown that
over time the amplitude and the spatial derivative of such perturbation decrease and tend to zero. Particular solutions of the
BE with zero boundary conditions may be used to control numerical calculations related to the BE-based description of
shock waves in the region of large spatial gradients, that is, under conditions of a manifold increase in spatial derivatives.
Such solutions were employed to describe the profile of a one-dimensional train of elementary steps with an orientation near
<100>, formed during the growth of a NaCl single crystal from the vapor phase at the base of a macroscopic cleavage step.
It is shown that the distribution of the step concentration with a distance from the initial position of the macrostep adequately
reflected the shock wave profile at the decay stage. The dimensionless wave parameters were determined, on the basis of
which the estimates of the characteristic decay time of the shock wave were performed.
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3ACTOCYBAHHSA YACTUHHHAX PO3B’SA3KIB PIBHAHHSA BIOPTEPCA JIJIS1 OIIMCY EBOJIIOII YIAPHAX
XBWJIb I'YCTUHU EJIEMEHTAPHUX CXOJUH
Okxcana JI. Auapeesa®®, Bikrop L. Tkauenko™?, Oaexcanap I1. Kyauk®,
Oxcana B. llogmusanosa®, Boaoaumup A. Fnatiok?, Topy Aoki®
“HHI] “Xapriecoruii izuxo-mexuiunuil incmumym’” HAH Vkpainu, Xaprie, Yrpaina
bXapxiscoruii nayionanonuii ynicepcumem imeni B.H. Kapasiua, Xapxie, Yxpaina
“Hayionanvuuil aepokocmiunuil ynigepcumem “Xapriecokuti agiayitinuil incmumym”’, Xapkis, Yxpaina
Iuemumym ¢pisuxu nanienposionuxie imeni B.€C. Jlawxapvosa HAH Yrpainu, Kuis, Yipaina
¢Hayxogo-0ocnionuii incmumym eaekmponiku, Yuieepcumem Illusyoxu, Xamamayy, Anonis

YactunHi po3s's3ku Pb 3 HybOBUMYM IpaHHMYHUMH YMOBaMH JOCTI/DKEeHI B aHATITHYHIN (opwmi. [ 3HaYeHs napamerpa Gpopmu d
Oinmpime, ane MpHONM3HO PIBHOMY 1, aMIIiTyZla MOYAaTKOBUX IEPIOAWYHUX 30ypeHb HEMOHOTOHHO 3alICKUTh Bil MPOCTOPOBOI
KOOPJIMHATH, TOOTO MOYaTKOBE 30yPEHHS MOXKHA PO3IJIAAATH SIK yapHy XBUIH0. YacTHHHI po3B'a3kd Pb 3 HyJlbOBUMH IpaHUYHUMHU
YMOBaMH OIHCYIOTH 3MEHIIIEHHS 3 YaCOM I0YaTKOBOI aMILIITy [ HEMOHOTOHHUX 30ypeHb, IO CBIAYUTH IIPO 3aTyXaHHS [I0YaTKOBOI
ymapHoi xBuii. IIpy Benmkux 3HaueHHSAX Hapamerpa (OpMH a >> | aMIUIITYAa IOYaTKOBUX HEPiONUYHMX 30ypeHb TapMOHIMHO
3aJIeKUTh BiJ MPOCTOPOBOi KoopauHaTH. [loka3aHo, 1[0 3 4acoM aMIUTITyJa Ta MPOCTOPOBA MOXigHa Mpodiaio Takoro 30ypeHHs
3MEHIIYIOTHCS 1 MparHyTh A0 Hyis. HaromormeHo, mo mepiogndHi aHamiTH4YHI po3B's3ku Pb 3 HynbOBUMH TpaHUYHHMH yMOBaMHU
MOXYTh OyTH BHKOPHCTaHi JJIsI KOHTPOJIO YHCIOBHX PO3PaxXyHKiB, MOB'SI3aHHUX 3 ONMHMCOM YIapHHUX XBHJIb Ha OcHOBi Pb B o0macri
BEJIMKHX IIPOCTOPOBUX TPANI€HTIB, TOOTO B yMOBaxX 0araropa3oBoro 301IbIIEHHS IPOCTOPOBHUX MOXimHUX. Lli po3B’s13kn BUKOpHCTaHI
JUISL OITHCY TIPO(LITI0 OHOBIMIPHOTO IIEIOHY eIeMEHTApHUX CXOIMHOK 3 opieHTalieio moommsy <100>, mo cdopmyBaBcs IpH pocTi
monokpuctana NaCl 3 mapoBoi ¢a3u 6ijist OCHOBH MaKpOCKOIIUHOI CXOIMHH BigKoiy. [lokazaHo, 10 pO3MOIisl KOHIIEHTPAIlIT CXOIHHOK
3 BIJICTAHHIO BiJ] TIOYAaTKOBOT'O TOJIOKCHHS MAaKPOCXOJMHH aJCKBAaTHO BimoOpakae mpodinb yaapHO! XBWII Ha CTamil po3many.
BuznadeHo 6e3po3MipHi mapaMeTpu XBHIII, Ha MiZCTaBi IKMX 3pO0JICHO OLIHKH XapaKTePHOro 4Yacy 1l po3mamy.

Kurouosi ciioBa: piBusiHHs Broprepca, Hy1bOBi rpaHHYHI YMOBH, aHAIITUYHI PO3B’I3KH, yIapHa XBHJISL, PO3Ma





