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The paper presents an algorithm for constructing the family of the atomic radial basis functions of three independent variables
AHorp, (x,,x,,x,) generated by Helmholtz-type operator, which may be used as basis functions for the implementation of meshless
methods for solving boundary-value problems in anisotropic solids. Helmholtz-type equations play a significant role in mathematical
physics because of the applications in which they arise. In particular, the heat equation in anisotropic solids in the process of numerical
solution is reduced to the equation that contains the differential operator of the special form (Helmholtz-type operator), which includes
components of the tensor of the second rank, which determines the anisotropy of the material. The family of functions
AHorp, (x,,x,,x;) is infinitely differentiable and finite (compactly supported) solutions of the functional-differential equation of the
special form. The choice of compactly supported functions as basis functions makes it possible to consider boundary-value problems
on domains with complex geometric shapes. Functions AHorp, (x,,x,,x;) include the shape parameter k , which allows varying the
size of the support and may be adjusted in the process of solving the boundary-value problem. Explicit formulas for calculating the
considered functions and their Fourier transform are obtained. Visualizations of the atomic functions 4AHorp, (x,,x,,x,) and their first
derivatives with respect to the variables x, and x, at the fixed value of the variable x, =0 for isotropic and anisotropic cases are
presented. The efficiency of using atomic functions AHorp,(x,,x,,x;) as basis functions is demonstrated by the solution of the non-
stationary heat conduction problem with the moving heat source. This work contains the results of the numerical solution of the
considered boundary-value problem, as well as average relative error, average absolute error and maximum error are calculated using
atomic radial basis functions AHorp, (x,,x,,x;) and multiquadric radial basis functions.

Keywords: atomic radial basis function, Helmholtz-type operator, meshless methods, boundary-value problems, anisotropic thermal

conductivity.
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Currently, meshless methods for the numerical solution of boundary-value problems are being actively
developed [1-5]. In particular, methods that implement the approximation of a differential equation in the strong form
(collocation methods) using compactly supported radial functions as basis [6-10]. The use of compactly supported radial
basis functions leads to a sparse interpolation matrix and allows effectively avoiding ill-conditioning, and therefore,
reduces computational costs. However, the lower order of accuracy of compactly supported radial basis functions
compared to global supported functions is a serious obstacle to their practical use.

New opportunities for the practical implementation of meshless schemes appear with the use of atomic radial basis
functions. The discovery of classes of atomic functions is due to Rvachev V. L. and Rvachev V. A. [11], who constructed
the simplest one-dimensional atomic function up(x) in 1971. The special properties of the function up(x) (infinite

differentiability and compact support) made it possible to construct algorithmically simple computational schemes for
solving problems of interpolation and approximation of functions [12]. These functions were used to solve boundary-value
problems through the application of variational methods. The expansion of the concept of atomic function in case of many
independent variables was presented in the works of Kolodyazhny V. M., Rvachev V. A. and Lisina O. Yu. [13-17]. Atomic
functions generated by various differential operators such as the Laplace, Helmholtz, Klein-Gordon, biharmonic operator,
etc. have been constructed. The obtained atomic radial basis functions have demonstrated their efficiency in the numerical
solution of unsteady heat conduction problems in isotropic solids using meshless schemes [18,19].

Currently, there are many natural and synthetic materials, whose thermophysical properties depend on the direction;
they are called anisotropic materials. Common examples of anisotropic materials are crystals and single crystals, steel
and alloy billets (rolling, stamping), fibrous materials and thin films, fiber reinforced plastics, quartz, graphite, etc. In this
case the heat equation in anisotropic solids in the process of numerical solution is reduced to the equation that contains
the differential operator of the special form (Helmholtz-type operator), which includes components of the tensor of the
second rank, which determines the anisotropy of the material.

The study of heat conduction processes in anisotropic solids is a major focus of modern engineering research in the
energy, machine-building, nuclear and other industries.
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Goals of article is constructing family of the atomic radial basis functions generated by Helmholtz-type operator,
which extends the subclass of functions used as basis functions in the implementation of meshless methods for solving
boundary-value problems in anisotropic solids.

THE CONSTRUCTION ALGORITHM
Consider algorithm for constructing family of the atomic radial basis functions of three independent variables, which
are the solution of the functional-differential equation of the following form:

LK (5%, = 571(x,, %5, ) = A [l (o, = &), k(o = ),k (xry = £))d @+ (o, K, o, ), (1)
oQ
3 2
where L(K)-6> = Z K, 8x68x — 6% — Helmholtz-type operator; K = [K[.j ]m o symmetric positive definite tensor
ij=1 iOA o

of the second rank, which determines the anisotropy of the material; 0Q — boundary of the sphere of radius
2 k+1

T :;éz =1, 7 :rk(k)zj;

condition guaranteeing the existence of the compactly supported solution of equation (1); &> — parameter of the

Helmbholtz-type operator.
Apply the three-dimensional Fourier transform to equation (1):

k — shape parameter; A, u — parameters whose values are determined from the

T T T[L(K)”(xl Xy %) = 8 u(X, X, X, )] e N g . dx, =

—00 —00 —00

2

oQ

—00 —00 —00

=2[[] {” u(k(x, — &),k (x, — &), k(x, - &)dw+ yu(locl,kxz,kx3)}e_i("x' 55 g, dix
Denote by U(t,,t,,t,) the result of applying the three-dimensional Fourier transform to the function u(x,,x,,x;):

Ut tyty) = [ [ [ 5,3, )e7 0200 d dix, di,

—00 —00 —00

Let k(x,-¢&)=n,, i=1,2,3, in this case x, = %+ &, . On the right-hand side of equation (2), we change the order
of applying the operation of integration over the surface of the sphere and the operation of the three-dimensional Fourier

transform. As a result, equation (2) can be rewritten as

—(K\ 8 + Kty + Kt + 2K 1ty + 2K syt + 2Kt U (4, 5,1) = 5 Ut 15,15 ) =

=] fff”(kﬂ K kﬁ]e_{t'("]‘]%)%(Ukz%’}’“[’f%ﬂdﬂd”—zdﬂ do+2u (t_l 3 tij :
’ k' kT k k k k Bo\kkk)

After applying the three-dimensional Fourier transform on the right-hand side of equation (3), we obtain

—(K\ 8]+ Kot; + Kty +2K 1ty + 2K, ity + 2K ity + 87 U (1, 1,8) =

. 4
=L3U t—l,t—z,tij lj‘jefl(t'f'“ﬁ”"‘f‘)da)+,u . @
Pokw )| Y

For further solution, it is necessary to consider the integral over the surface of the sphere 6Q: & + & + & =7 on
the right-hand side of equation (4). It should be noted that the exponent of the integrand represents the dot product of two

vectors T = (4,1,,1,) , E=(£,6,,4,) -
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We will assume that the vector T is directed along the z-axis of the Cartesian coordinate system in which the sphere

2Q is defined, and the vector Z is directed along the radius vector that describes this sphere. To simplify the integration
procedure, we introduce spherical coordinates as x =rsinfcos@, y=rsinfsing, z=rcosg. This representation
allows the surface integral to be rewritten in the form

2z

2r —
J’J‘ e‘i(f15| +t2§2+t3§3)da) _ rkz J‘ J‘e—n A3+ G +E +EF cosO sin 9d9d¢ _ rkz J' J'e—irk 17 +13 +£3 cos O sin Gdadgo (5)
oQ 00 00

The implementation of the integration procedure in (5) leads to the representation of the integral as the elementary
function

. [2 2, »2
J‘J‘ e‘i(t1§| +tz§z+t3§3)da) _ 472’}"k2 Syt +1, +1 .
Py FAL G+

Based on the above, equation (4) can be rewritten as follows

Lot ot L sinr il +6 +18
Ul 2,25 || A2 Y23 4y
k k k N T (6)

Ut 1,,8) = — .
U R (K + Koty + Koy + 2Kt + 2K 11ty + 2K 1yt + 57

In order for the expression in braces to be an entire function, we will use the possibility of choosing the parameter
4, considering that £+ +6£ -0, Kt +K,t; +Kt; +2K,tt, + 2Kt + 2K t,t, > 0. In  this case

M= —ﬁﬂq sin(#,id) .
io

The structure of equation (6) makes it possible to represent the ratio
X
fx)=Cx)f (;j

where f (fj , C(x) — functions which are analytic everywhere on the numerical axis, a >0, a=const, C(0)=1,
a

f(0)=1, in the form of the infinite product [16]: f(x) = H C [ihj . Thus, equation (6) can be written in the following
h=0 a

form:

7
: k 2 2 2
s —n tl + t2 + t3

. ]:—"h,/tf +6 +1 7)
U(t19t2’t3) = H

2 2 2 :
4 (K“tl + Koty + Kty + 2Kty + 2Kt + 2Kty | o
k2h

w—4rr A

To ensure the convergence of the infinite product (7), we choose the parameter A from the conditions: A =0,
(k)i
4rr, (sin(rid)+rid)

£+ +1 >0, K ] +Kpto + Kt; + 2K ,tt, + 2Kt t, + 2K ,t,t, — 0 , in this case 4 = —
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Based on the generalization of the Paley-Wiener theorem [20] for the multidimensional case and the Polya-
Plancherel theorem [21], we establish that the function u(x,,x,,x;) is an infinitely differentiable compactly supported

function, for which the Fourier transform U(t,t,,t,) is represented by the rapidly decreasing entire function of
exponential type at f +# +t; >0, K, 17 +K t; + Kt +2K,tt, + 2K t,t; + 2K ;t,t, — . Thus, as a result of
applying the inverse Fourier transform to expression (7), we obtain the required finite function (the support of this function
will be the sphere of unit radius). This function will be denoted by AHorp, (x,,x,,x;), and will be called the atomic

function.
From the above it is clear that the Fourier transform of the function AHorp, (x,,x,,x;) is

-
. k 2 2 2
sin-X [t} +14; +1,

w—4xr A

h [2 . 2 2
© kT I+t +4 (8)

AHoip, (1,,t,,t;) = .
2 2 2
0 4 [Kl £+ Kol + Kt + 2Kt +2K,50it, + 2K 510ty 52j

k2h

Function 4Horp, (x,,x,,x;) is even with respect to its variables and can be expanded in the triple Fourier series

AHorp, (x,,%,,X;) = Z Z Z a,, cos(prx,)cos(qzx,)cos(rzx,), ©)

p=0¢g=0 r=0

in which the Fourier coefficients are calculated by the following formulas:

1
Qoo = g;
1 +00
Gy =7 [ AHorp, (¢,0,0)cos(prz,)d&;
1 +00 00
0 = EI [ AHorp, (&.£,,0)cos( prg )cos(gng, ) d&dé,;

1 +00
dogo =7 j AHorp, (0,&,,0)cos(g7&, )dé,;

o (10)
o, :%jw jw AHorp, (0,£,,&,)cos(qg, )cos(rag,)d&,dé&;;
a,, = %TTAHorpk (&.0,& ) cos(prg, ) cos(ras, ) dEdE;;

1 +00
Ay, = 7 J AHorp, (0, 0,&, )cos(r7z§3 )d§3;

+00 +00 +00

Apr = I I jAHorpk (61,52,53)COS(pﬂ'fl)COS(qﬂéfz)COS(rﬁ§3)d§1d§2d§3,

—00 —00 —00

where p,q,r=1,2,...
It is clear that, since the function AHorp, (x,,x,,x;) is finite, supp AHorp, €[-1,1]x[-1,1]x[~1,1] and even with
respect to variables x,,x,,x,, in the expressions for the Fourier coefficients (10), improper integrals can be replaced by

definite integrals, and integrands can be replaced by exponential functions. These transformations make it possible to
rewrite the Fourier coefficients (10) of series (9) in the following form:
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1 .
Qoo = PR
1 , 1
Gy =5 [ 4Horp, (£,0,0)e "™ d¢, = S AHOD, (p7,0,0);
-1
1Lt _ ‘ 1
Ay = —J I AHorp, (£,,&,,0)e "™ e "™ dEdE, = EAHéfpk (p7,qr,0);
-1-1
1 : 1
Qoo =7 j AHorp, (0,£,,0)e = d¢&, = 4 AHaip, (0,97,0);
, (an

1 [ —iqm —ir 1 ~~
Ay, =EIIAH0rpk (0,52,53)e 1720 53d§2d§3 =EAH0rpk (O,q;r,r;r);

-1-1

11
a,, = lj‘ J. AHorp, (£,0,&,)e "™ e "™ dEdE, = %AH&Fpk (pz,0,r7);

-1-1
1

gy = [ 4Horp, (0,0,&,)e "™ d¢, = %AH&fpk (0,0,r7);
-1

111

a,, = JIIAHorpk (fl ,§2,§3)e’i"”‘f‘ e 117 oIS d&dé,dE, = AHorp, (pﬂ', qr, rﬁ),

—1-1-1
where p,q,r=1,2,...

Functions 4Horp, (x,,x,,x;) form the family of atomic functions that are generated by the differential operator

L(K)—-&". Fig. 1 shows the visualization of the function AHorp, (x,,x,,x,) at the fixed value of the variable x, =0 for
g k 1 2 3 3

isotropic (a) and anisotropic (K, =0.5,K,, =1.5,K,, =2.0,K,, =K, = K,, =0) (b) cases.

15

10

AHorpy(x1, x2,0)
AHorpg(z1, x2,0)

a) Isotropic case (b) Anisotropic case
P /2

Figure 1. Visualization of the function AHorp,(x,,x,,x;) atthe fixed value of the variable x, =0 for isotropic (a) and anisotropic (b)

cases.
Theorem 1. The family of atomic functions AHorp, (x,,x,,x,), which are solutions of the functional-differential equation

(1) with the values of the parameters

3.
u= —ﬁﬂrk sin(ri6); A= .(ké) !
i5 4zr (sin(1,i0) +1i5)
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are finite, infinitely differentiable functions with support in the form of the sphere of unit radius, normalized by the

+00 +00 +00

condition j j jAHorpk(xl,xz,x3)dx1dx2dx3 =1, which are represented in the cube: [-1,1]x[-11]x[-L1] by the

—00 —00 —00

Fourier series (9) with the coefficients (11). The Fourier transform of functions AHorp,(x,,x,,x;) (8) is rapidly
decreasing function of exponential type at t} +t, +t; —> w0, K, 7 + K, t: + Kt + 2K ,t,t, + 2K 1t + 2K ;t,t, — 0.

Fig. 2 shows the visualization of the first derivatives of the function AHorp, (x,,x,,x,) with respect to the variables
x, and x, at the fixed value of the variable x,=0 for isotropic (a)-(b) and anisotropic

(K, =05,K,, =1.5,K,, =2.0,K, =K,, =K,, =0) (c)-(d) cases.

OAHorpi(z1, 2, 0)
89:2

OAHorpi(z1, 22, 0)
85[31

OAHo orpy(z1, 2,0)
81‘2

OAHorpy(x1, 22,0)
6$1

(c) Anisotropic case (d) Anisotropic case

Figure 2. Visualization of the first derivatives of the function AHorp,(x,,x,,x;) with respect to the variables x, and x, at the fixed
value of the variable x, =0 for isotropic («)-(b) and anisotropic (c)-(d) cases.

Fig. 3 shows the visualization of the function ( L(K)-§8 Z)AHorpk (x,,x,,x;) at the fixed value of the variable

x; =0 for isotropic (a) and anisotropic (K, =0.5,K,, =1.5,K,, =2.0,K,, =K, = K,, =0) (b) cases.
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Figure 3. Visualization of the function (L(K )—0o 2)AHorpk(xl,xz,x3) at the fixed value of the variable x, =0 for isotropic (a) and

anisotropic (b) cases.

NUMERICAL RESULTS
We will illustrate the use of atomic functions AHorp, (x,,x,,x,) as basis functions in the implementation of the
meshless method for solving three-dimensional non-stationary heat conduction problems in materials with anisotropy,
described in [1]. In this approach, the combination of the dual reciprocity method [22] using anisotropic radial basis
function and the method of fundamental solutions [23] is used for solving boundary-value problem. The method of
fundamental solutions is used for obtaining of homogenous part of the solution and the dual reciprocity method using

anisotropic radial basis functions is used for obtaining of particular solution.

Problem statement
Consider the three-dimensional non-stationary heat conduction problem in the closed parallelepipedic domain

Q=[0,2]x[0,2]x[0,0.5] bounded by T . The unsteady heat equation in homogeneous anisotropic solids has the form:

ou o%u o’u o’u ( o’u o’u o’u ]
2 +g

c, — = —+K,, —+K;; — +K +K
Pl ~ Mg T o ot Yoz Poaxey  "oxez P oyoz

where p =1 —density, ¢, =1 — specific heat at constant pressure, u = u(x, y,z,t) — temperature, g = g(x, y,z,7) —heat
source, t € [0,2] , At =0.01 — time step, N =2646 — the total number of interpolation nodes.

The initial condition is

u(x,y,z,0)=0, (x,y,z)eQ

The Dirichlet boundary conditions are

u(x,y,z,t)=0, (x,y,z)el

Moving heat source is given by the equation:

g(x,y,z,t) =exp —80{(x—%(2+sin(m))] +(y—%(2+cos(ﬂt))j} , (x,1,2)eQ

500
The heat conduction tensor for this boundary-value problem has the foorm K ={0 5 0
0 0 10
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Fig. 4 shows the visualization of slices of the numerical solution by the plane z = 0.3 at different time moments.

///,// N\
- ////
-4 _ =
x10 _—
10—

R

o

)

S
S—

3

u(z,y,0.3)

(c) t=15 d) t=2

Figure 4. Visualization of slices of the numerical solution by the plane z=0.3 at different time moments.

The exact solution for this boundary-value problem is:

Sh Y . wm . mn . Tk
ZZum,n,k (¢)sin (—x]sm(—y}sm(—z}
1 =1 k=1 l1 ]2 /

3

u(x,y,z,t) =

[Ms

3
Il
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i g %% . . . k
where u, , , (t) = Il:WIIIg(5777,é’,t)sm(ﬂl_mg}m(gnjsm[i—é’}dfd?]dg}exp(—Am’n’k ( t—z’))dz';
o] “19253FCp 000 1 2 3

2 2 k 2 K K K
Ay p =4y, (mj +a,, (ﬂj +ay, (”—J ;@ =—%, ay =—2,a,=—2; {1} - geometric dimensions of the
A I / pc, pc, pc,

3
parallelepipedic domain; g(&,7,¢,¢) —heat source.
To estimate the accuracy of the approximation of the numerical solution, the average relative error rerr(u), the

average absolute error aerr(u) and the maximum error merr(u) are used, which are calculated by the formulas:

merr(u) = mjlx|uj - L?j|

where u; and i, are exact and numerical solutions, respectively.

Table 1 shows the errors of the numerical solution of the boundary-value problem regarding to the exact solution obtained
using the atomic radial basis function (ARBF) and multiquadric radial basis function (MQ) at different time moments.

Table 1. Errors of the numerical solution of the boundary-value problem.

Basis function t rerr(u) aerr(u) merr(u)

0.5 1.20529052 x 1073 4.44930401 x 10 7.16979247 x 1073

ARBF 1 1.16163349 x 1073 4.28814625 x 10 6.90741195 x 103

1.5 1.12912489 x 1073 416814019 x 10°° 6.71658645 x 107

2 1.16305499 x 1073 4.29339239 x 107 6.93488164 x 107

0.5 3.41366269 x 1073 1.26014623 x 103 1.05639294 x 10+

MQ 1 3.27575942 x 1073 1.20923987 x 103 1.10745011 x 10+

1.5 2.98933244 x 1073 1.10350563 x 1073 1.04590253 x 10*

2 2.99707792 x 1073 1.10636484 x 1073 1.07216618 x 10+

CONCLUSIONS
This paper presents the algorithm for constructing family of the atomic radial basis functions of three independent
variables generated by Helmholtz-type operator. The functions AHorp, (x,,x,,x,) extend the subclass of functions used
as basis in the implementation of meshless methods for solving boundary-value problems in anisotropic solids. The
efficiency of using atomic functions as basis functions is demonstrated by the benchmark problem, for which the average
relative, average absolute and maximum errors were calculated. It should be noted that the shape parameter £ of the
functions AHorp, (x,,x,,x;) allows varying the size of the support and may be adjusted in the process of solving the

boundary-value problem. Increase of the parameter &k leads to decrease of the size of the support of the basis function
and increase of the sparsity of the interpolation matrix. The choice of the optimal shape parameter 4 remains the subject
for future research.
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CIMEHCTBO ATOMAPHHX PAJIAJIBHAX BASUCHHUX ®YHKIIIA TPbOX HE3AJIEXHUX 3MIHHUX,
AKI HOPOIKYIOTBCSA OIIEPATOPOM THUITY I'EJIBMI'OJIBIIA
J.0. IIporexTop
Xapxiecvruil nayionanvuuil ynieepcumem imeni B.H. Kapaszina
M. Ceéobo0u, 4, Xapxis, 61022, YVxpaina
VY crarTi NpesCcTaBIeHO ANrOPUTM MOOYJ0BU CIMEHCTBA aTOMapHUX pajiadbHMX Oa3sMCHMX (YHKLIH TPhOX HE3aNEKHUX 3MIHHHX
AHorp,(x,,X,,x,) , 110 IOPOJKYIOTbCS ONEpaTopoM TUIly ['ebMrosbla, sIki BUKOPHCTOBYIOTBCS B SIKOCTI 0a3MCHHX IIpH peanizauii
0€3CITKOBHX METO/IB PO3B’A3KYy KpallOBMX 3a/1a4 B aHI30TPOIHUX TBEPAMX TiNax. PiBHAHHA Tumy [enmpMrospua BiIirparoTh 3HAYHY
pOJb B MaTeMaTH4HIH (i3uili 3aBASIKH JOAATKAM, B IKHX BOHH BUHUKAIOTh. 30KpeMa, PiBHSAHHS TEIUIONPOBITHOCTI IS aHI30TPOITHUX
TBEPAXX T B IPOIIECi YHCEIBHOTO PO3B’SI3KY 3BOAUTHCS [0 PIBHSHHS, K€ MiCTHTh IU(EPEHIaNEHUN OIIepaTop CIeliaIbHOTO BHIY
(omepatop Tumy ['enpMromnbna), IKHH BKIIIOYae B cebe KOMIOHEHTH TEH30pa JIPYroro paHTy, IO BU3HAYAE aHI3O0TPOII0 MaTepiaiy.
CiMeiicTBO aTOMapHUX pajianbHUX OasucHUX OGyHKUIH AHorp, (X,,X,,x;) € HeckiH4eHHO JudepeHLUiioBaHUME (iHITHUMU
po3B’si3kaMu (PyHKITIOHATEHO- U (EPeHIIaIbHOTO PIBHSHHS CIIEIiaTbHOTO Buay. Bubip ¢iniTHHX (yHKIIH B sIKOCTI 0a3UCHHUX Jae
MOXUIUBICTh PO3IJISAATH KpaloBi 3ajaul Ha 0ONacTiX 3i CKJIAJHOI0 FEOMETPUYHOI0 KoHirypauiero. DyHkuii AHorp,(X,,X,,x;)

MicTsTh apametp Gopmu k , sIKHil JO3BOJISIE BapilOBaTH PO3MIp HOCIS Ta MOXE YTOUHIOBATHCSI B IIPOLIECi PO3B’sI3KY KpaioBoi 3a/1aui.
Orpumano siBHI Gopmynu Juii obuucnenHs ¢yHkuiii AHorp,(x,x,,x;) Ta ix nepersopeHHs @yp’e. B pobori npencrasieHi
Bisyauisauii aromapraux gynkuiit AHorp, (x,,x,,X;) TaiX nepmunx NOXiJHUX 3a 3MIHHUMU X, 1 X, pu (iKCOBAHOMY 3HaYCHHI 3MiHHOT
x; =0 JUIs i30TPONHOrO Ta aHi30TPONHOro BUNaaKiB. EdekTuBHICT BUKOpUCTaHHA aToMapHUX GyHKUiH AHorp, (x,,x,,X;) B AKOCTI

0a3MCHUX NEMOHCTPYEThCS Ha MPHKIAAI TPHBUMIPHOI HECTaliOHAPHOI 3aJadi TEIUIOMPOBIOHOCTI 3 PYXOMHM JDKEPEIOM Teruia.
HaBeieHO pe3ybTaTH YUCEIbHOTO PO3B’sI3Ky TECTOBOI KpaloBOI 3a/1aui, a TAK0OK 0OUYKCIICH] cepeiHs BIIHOCHA, Cepe/IHs aOCONIIOTHA
1 MakcUMaibHa MOXMOKM HAOIIDKEHHX pO3B’S3KIiB, AKI OTPUMaHI 3a JONOMOIOI0 aTOMAapHHX pajiadbHUX Oa3uCHUX (yHKIIH
AHorp, (x,,X,,%;) Ta MyJbTHKBaJIPaTUYHUX pajialbHUX O0a3MCHUX (YHKILIH.

Kuawuosi cioBa: atomapHa pafianbHa OasucHa (yHKIis, omeparop Tumy [enbMroibiia, 0E3CITKOBI METOAHM, KpailoBi 3amaui,
aHI30TPOITHA TETUIONPOBIHICTb.





