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When studying the temperature dependences of the acoustic absorption and the modulus of elasticity, absorption peaks are often 
observed, which correspond to the characteristic step on the temperature dependence of the modulus of elasticity. Such features are 
called relaxation resonances. It is believed that the occurrence of such relaxation resonances is due to the presence in the structure of 
the material of elementary microscopic relaxors that interact with the studied vibrational mode of mechanical vibrations of the 
sample. In a sufficiently perfect material, such a process is characterized by a relaxation time  , and in a real defective material by a 
relaxation time spectrum  P  . Most often such relaxation processes have a thermally activated character and the relaxation time 

 T  is determined by the Arrhenius ratio    0 0expT U kT  , and the characteristics of the process will be 0U  - activation 
energy, 0  - period of attempts, 0  - characteristic elementary contribution of a single relaxator to the dynamic response of the 
material and their spectra. In the low temperatures region the statistical distribution of parameters 0  and 0  can be neglected with 
exponential accuracy, and the relaxation contribution to the temperature dependences of absorption and the dynamic elasticity 
modulus of the material will be determined only by the activation energy spectrum  P U of microscopic relaxors. The main task of 

mechanical spectroscopy in the analysis of such relaxation resonances is to determine 0U , 0 , 0  and  P U . It is shown, that the 

problem of recovering of spectral function  P U  of acoustic relaxation of a real crystal can be reduced to the solving of the 
Fredholm integral equation of the first kind with an approximately known right part and concerns to a class of ill-posed problems. 
The method based on Tikhonov regularizing algorithm for recovering  P U  from experimental temperature dependences of 
absorption or elasticity module is offered. It is established, that acoustic relaxation in high-purity iron single crystal in the 
temperature range 5-100 K is characterized by two-modes spectral function  P U  with maxima at 0.037 eV and 0.015 eV, which 

correspond to the -peak and its ' satellite. 
KEYWORDS: acoustic relaxation, Tikhonov regularization method, energy activation spectrum, acoustic absorption, modulus of 
elasticity 

 
It was found [1] that the resonant frequency of forced resonant mechanical vibrations of solids is determined by 

both the geometric characteristics of the sample and its modulus of elasticity M . The amplitude of such resonant 
oscillations is proportional to the dissipation of the oscillation energy, which is characterized by the logarithmic 
decrement of oscillations  . This fact underlies the method of resonant mechanical spectroscopy, which allows you 
to study the elastic and dissipative properties of various materials. As a rule, the temperature dependences of 
absorption and elastic modulus are studied. In this case, peaks are often observed on the temperature dependence of 
absorption, which correspond to a characteristic step on the temperature dependence of the elastic modulus. Such an 
absorption peak, together with the corresponding step on the temperature dependence of the elastic modulus, is 
commonly called relaxation resonance. In the microscopic interpretation of such relaxation resonances, it is generally 
accepted [1] that their appearance is associated with the presence in the bulk of the material of thermally activated 
elementary microscopic relaxators (for example, a pair of kinks on a dislocation line) interacting with the studied 
vibrational mode of mechanical vibrations of the sample. The thermal activation of an individual relaxator is 
characterized by the relaxation time  T , and its dependence on temperature T  is described by the exponential 
Arrhenius expressionа: 

   0
0 exp U

T
kT

     
 

, (1) 

where k  is the Boltzmann constant, 0U  is the activation energy, 0  is the period of attempts. 
If the mechanical vibrations of the sample excite a system of relaxators with the same values of the parameters 0U  

and 0 , then in the resonance region in the approximation of a linear response, the temperature dependences of the 
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elastic and dissipative characteristics of the material have the form of a Debye peak for the vibration decrement 
( , )T   and a "step" for the modulus defect 0( , )M T M : 

 0 2 2( , ) 2
1rT C  

 
 


;      0

2 2
0

2( , ) 1
1

rCM T
M


  





 (2) 

In a sufficiently perfect material, such a process can be associated with three parameters, the values of which are 
determined by the energy and geometric parameters of a defect-free crystal: 0U , 0  and 0  ( 0  is the characteristic 
elementary contribution of an individual relaxator to the dynamic response of the crystal; rC  is the relative volume 
concentration of such relaxators interacting with the considered vibrational mode of the sample). And the main task of 
mechanical spectroscopy in the analysis of such relaxation resonances is reduced to the determination of these 
parameters. 

In a real material, due to the presence of various defects and randomly distributed structural distortions they create, 
there is a statistical scatter of parameters 0U , 0  and 0 . It is known [2] that the decrement of vibrations  ,T   and 

the defect of the elastic modulus   0,M T M  of a real material with defects in the low-temperature region 0kT U  
are determined by the statistical averaging of Debye expressions (2) over the entire spectrum of activation energies U  
of local structural rearrangements (relaxators), characterized by a statistical distribution function  P U , with a 
statistical spread of parameters 0  and 0  with an exponential accuracy is negligible: 

   
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M T U
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

  (3) 

where   0, exp UT U
kT

     
 

. 

In [3], it was suggested that the energy spectrum of low-temperature acoustic relaxation in iron can be described 
by the quasi-Gaussian distribution function 

 
 2

0
2

0

-
( )  exp  

2 2
G U UUP U

DU D

 
  
  

, (4) 

with two parameters – the seed value of the activation energy 0U  corresponding to relaxation in an ideal defect-free 
crystal and its dispersion 2D . Under this assumption, it was possible to achieve a good description of the experimental 
temperature spectra   and 0M M  in the region of the -peak ( 0U  = 0.037 eV, 0  = 2.4·10-11 s), observed at a 
temperature of 54 K (vibration frequency  88 kHz), by theoretical dependences (3) (Fig. 1). 

Figure 1. Temperature dependences of the vibration decrement in 
a single-crystal sample of high-purity iron with orientation <731> 
in various structural states: 
 
1 – specimen deformed at T = 300 K to a residual plastic 
deformation of 3%, measurements were carried out immediately 
after deformation; 2 – the same sample, annealed at T = 300 K for 
3 days; 3 – the same sample, annealed at T = 300 K for 11 years. 
 
open symbols – experimental data [3]; shaded 
symbols - theoretical dependences calculated by formula (3) for 
the spectral function  TP U  that was found by the Tikhonov 
regularization method; solid lines – theoretical dependences 
calculated by formula (3) for the spectral function  GP U  
(quasi-Gaussian distribution function of activation energy values 
given by expression (4) with an appropriate choice of values of 
distribution parameters). 



75
Energy Activation Spectrum of Low-Temperature Acoustic Relaxation...          EEJP. 2 (2021)

However, in the temperature range  15 К, some discrepancy between the experimental and theoretical 
dependences was observed. A thorough analysis of a large amount of experimental data obtained by various authors, 
carried out in [4], showed that this discrepancy is probably associated with the presence of a weakly expressed '-peak, 
which is more clearly manifested under other experimental conditions. 

It seems advisable to solve the inverse problem - to restore  P U  from experimental dependences  , 0M M  
and compare it with the "guessed" expression  GP U . This formulation of the problem belongs to the so-called inverse 
problems. The solution of inverse problems of mechanical spectroscopy has been repeatedly considered by various 
authors both from a theoretical and practical point of view [5], [6]. 

 
RESTORATION OF THE ACTIVATION ENERGY SPECTRUM 

BY THE TIKHONOV REGULARIZATION METHOD 
Following the approach proposed in [7], we consider the problem of determining the energy spectrum of acoustic 

relaxation in a material with defects from the known temperature spectrum of the vibration decrement  ,T   or 

defect of elastic modulus   0,M T M . 
Practically without limiting the generality of further consideration, one can replace in expressions (3) the infinite 

upper limit of integration by some value maxU  corresponding to the upper limit of the spectrum, then the problem of 
finding the spectral function  P U , from a known experimental spectrum  ,T   or   0,M T M  at a fixed 

frequency const  , is reduced to solving the Fredholm integral equation of the first kind with respect to  P U : 

    
max

min

, ,, ( )
U

d m d m

U

K T U P U dU Z T  or in operator form Ap z , (5) 

where the kernel of the integral operator in the case of a decrement of vibrations and a defect of the modulus of 
elasticity, respectively, is 
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the experimental spectrum    dZ T T  and    
0

m M T
Z T

M


 . 

Let, for some right-hand side  ,ˆ d mZ T , the function  P̂ U  be a solution to equation (5). However, since instead 

of the function  ,ˆ d mZ T  we know only its experimental approximation  ,d mZ T , which differs little from  ,ˆ d mZ T , 

then we can only talk about finding an approximate to the  P̂ U  “solution”  P U  of equation (5). The solution to 
such a problem is associated with significant difficulties caused by the lack of stability of the solution to small changes 
in the right-hand side. This instability is connected with the fact that if instead of the exact right-hand side  ,ˆ d mZ T  of 

Eq. (5) we know only a certain approximation  ,d mZ T  of it and a number 0   characterizing the accuracy of the 
experimental data such that the deviation 

   2ˆ,Z Z Z  , (6) 

then, as possible approximate solutions, it is natural to take functions  P U  for which 

   2,Z Ap Z  , (7) 

where 

       
max

min

2
1 2 1 2,

T

Z
T

Z Z Z T Z T dT   . (8) 

However, there are infinitely many functions  P U  satisfying this condition, and among them there are functions 
that differ as much as you like. Consequently, under these conditions, the problem of solving the integral equation (5) is 
underdetermined and unstable to small changes in the right-hand side. Therefore, it is impossible to take the exact 
solution of this equation (with an approximate right-hand side) as an approximate solution to equation (5). To find an 
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approximate solution  P U  to equation (5) that satisfies the natural requirements that are embedded in the meaning 
of an approximate solution by the physical determinism of the phenomenon described by this equation and the 
possibility of physical interpretation of the solution, namely the conditions 

    ˆP U P U   at 0  , (9) 

it is necessary from the entire set of formal solutions  P U  that satisfy condition (7) to select a function  P U that 
satisfies condition (9). This can be done if there is additional information, at least of a qualitative nature, regarding the 
desired solution. We will assume that the desired spectrum  P U  does not have a fine structure, i.e. we can assume that 
the solution to the problem under consideration is a smooth function. As a measure of smoothness, consider the quantity 

          max

min

2
2

U

U

dP U
P U P U U dU

dU
 
         

   
 , (10) 

where  U  and  U  are given non-negative continuous functions satisfying the condition    2 2 0U U    for 

any  min max,U U U . This definition of smoothness is consistent with the visual representation of the smoothness of 
the graphs of functions. 

Following [7], as the required spectrum  P U , we will choose from the family of approximate solutions  P U  
a function with the greatest smoothness (minimum fine structure). Mathematically, this problem is reduced to finding 
such a function  P U  that will achieve the minimum of the functional (10). The solution of such a problem for a 
conditional extremum is reduced to a problem for an unconditional extremum of a functional 

          
max max

min min
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, ,
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  , (11) 

where 0   is the regularization parameter, which can be determined by a given accuracy   and, therefore, depends 
on  , i.e.     . It can be shown [7] that     is the function that convex downward, besides there is an estimate 

 
2A

z








. (12) 

The solution to the minimum problem for functional (11) is called a regularized (approximate) solution  P U  to 
equation (5) and can be found from the Euler equation for the functional M : 

              
max

min

,
U

U

dP UdU P U U K U t P t dt g U
dU dU

  
         
   

 , (13) 

with boundary conditions 

    min max0,          0dP dPU U
dU dU

  , (14) 

where      
max

min

, , ,
T

T

K U t K T U K T t dT  , а      
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,
T

T

g U K T U Z T dT  . 

Another difficulty lies in the fact that the right-hand side of (5) in our problem is the result of an experiment, i.e. 
known on the grid by T :  1, , NT T . With this right-hand side, equation (5) has no solution at all, understood in the 

classical sense, i.e. determined by the formula 1p A z  ( 1A  is the operator inverse to the operator A ) in equation (5) 

since the kernel  , ,d mK T U  has a continuous derivative with respect to T  and, therefore, the right-hand side must also 
have a continuous derivative with respect to T . This means that in this formulation of the problem, the exact solution 
 P̂ U  of this equation with an approximately known right-hand side    , ,ˆd m d mZ T Z T  cannot be taken as an 
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approximate to  P U  solution of equation (5), since such a solution may not exist. In this regard, it becomes necessary 
to pass from the continuous initial problem of finding regularized approximate solutions (5) to its discrete analogue. This 
transition is carried out by discretizing the boundary value problem for the Euler equation by solving the resulting SLAE [7]. 
Following the variational approach, we take a discrete analogue of stabilizer (10) and form an analogue of the smoothing 
functional (11). Then we turn to his Euler equation (13), which will represent the regularized SLAE. The solution to this 
system (with an appropriately selected regularization parameter) will be an approximate solution to the original problem. 

For simplicity of further consideration, we will accept  U   and  U   (  and   are positive 
numbers). Then the difference analogue of Eq. (13) on a uniform grid of N  nodes by U  in increments of 

max min

1
U U

U
N


 


 will have the following form: 
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where  min 1iU U i U    ,  i iP P U ,  i ig g U ,  ,ij i jK K U T . In this expression the integral is replaced 

by the corresponding integral sum by the trapezoidal formula, and  2
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where  j jZ Z T  and  ,ji j iK K T U . 

For 1i   and i N , (15) contains unknown values of 0P  and 1NP  . To satisfy the boundary conditions (14), we 
put 0 1P P  and 1N NP P  . 

System (15) can be written in matrix form with respect to the vector  1, NP P P  : 

 B P C P g    , (16) 

where the vector  1, , Ng g g  , the matrix B  has the form: 
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and C  is a symmetric matrix of the form: 

   

     

     

   

2 2

2 2 2

2 2 2

2 2

0 0 0

2 0 0

20 0

0 0 0

U U

U U U

U U U

U U

  

   

   

  

  
   

     
  
    

      
  
    

      
   
 

  
        









 



78
EEJP. 2 (2021) Yuri A. Semerenko

In our case, boundary conditions (14) can be supplemented by conditions of the form:    min max 0P U P U  , in 
this case, the matrix C  will have the form: 
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. 

Thus, the problem is reduced to solving the SLAE with respect to the vector  1, NP P P  . 
 

DISCUSSION OF THE RESULTS 
The spectral function  TP U  found by the Tikhonov regularization method has a maximum in the region of 

0.04 eV corresponding to the -peak of acoustic absorption and largely coincides with the quasi-Gaussian function 
 GP U  empirically selected in [3] (Fig. 2). 

In this case, the position of the maximum of the  TP U  depends on the structural state of the sample. This fact 
numerically and qualitatively correlates with the conclusions of [3] about the change in the effective value of the 

activation energy 
2

0
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( )eff
DU UP U dU U
U



    due to the change in the statistical scatter characterized by the 

dispersion parameter D  (Table). 

 

Figure 2. Spectral functions (distribution 
functions of activation energy values) 

 GP U and  TP U for various structural states 
of the sample (the numbering of structural states 
corresponds to that shown in Fig. 1): 
 
■, ●, ▲ – the spectral function  TP U  which 
was found by the Tikhonov regularization 
method; solid lines - spectral function  GP U  
calculated by formula (4) for the quasi-Gaussian 
distribution function with an appropriate choice 
of values 0U  and D  

The spectral function  TP U  also has a feature in the form of a second mode in the region of 0.015 eV; the 
position of this feature is practically independent of the structural state of the sample. If we assume that this feature 
corresponds to a relaxation resonance ('-peak) with the same value of 0 as the main resonance, then it should 
correspond to a feature in the form of a peak on temperature dependence of the   and a step on temperature 
dependence of the 0M M  in the region of 14-16 K (at an oscillation frequency sample 88 kHz). In [3] these features 
were not found experimentally, which may be associated with a significant broadening of the main relaxation resonance 
at a temperature of  54 К. However, in one form or another, the ’-peak was repeatedly observed by various 
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authors [8]-[19]. For example, in [10] a resonance in the region of 17 K was found in Fe single crystal with an 
orientation <100>. It was shown in [16] that annealing leads to a narrowing and a shift toward lower temperatures of the 
-peak and the appearance of a '-peak that was not observed in the initial curves. It was shown in [17], [18] that the 
'-peak should be characterized by the same period of attempts as the -peak and have a value of the order of 10-11 s. 
Table. Acoustic relaxation parameters in a single-crystal sample of high-purity iron with orientation <731> in various structural 
states, according to the data of [3], [4]: 

Relaxation 
parameters 

Structural state of the sample
1 2 3 

0U  , eV 0.037 

D , eV 0.0177 0.0143 0.0136 

0rC   0.00472 0.00271 0.00180 

effU  , eV 0.046 0.043 0.042 
11

0 10  , s 2.4 

0U   , eV 0.015 

In order to detect the '-peak in Fe single crystals of the <731> orientation, additional experimental studies were 
carried out in [4]. A sample in the form of a thin plate was made from the same single crystal as in [3]. The acoustic 
properties of this sample were studied in the temperature range 4.5-150 K. It was found that in the undeformed sample 
 and ' peaks are not observed, deformation leads to the appearance of -peak localized at 35 K and its ' satellite at a 
temperature of 13 K. Subsequent annealing at 320 K leads to a decrease in the height of the  peak, narrowing and 
shifting to lower temperatures, while the '-peak becomes more pronounced. The analysis performed in [4] made it 
possible to establish the microscopic nature of the ' -peak and determine the corresponding activation energy of an 
elementary relaxator 0U    = 0.015 eV; it was also shown that the activation energy values corresponding to the '-peak 
have a small statistical spread, which practically does not change with a change in the structural state sample. 

Thus, the values of the activation energy 0U   = 0.037 eV and 0U    = 0.015 eV determined experimentally in [4] 
corresponding to the -peak and its ' satellite are in good agreement (taking into account the statistical spread) with 
the positions of the peaks on the dependence  TP U  obtained by solving the inverse problem, and its substitution into 
expression (3) makes it possible to exhaustively describe the experimentally observed spectrum of low-temperature 
acoustic relaxation in iron (Fig. 1). 

 
CONCLUSIONS 

A mathematical procedure for processing experimental data is proposed that allows solving the inverse problem of 
low-temperature mechanical spectroscopy - to restore the energy spectrum of relaxation by analyzing the temperature 
dependence of acoustic absorption. 
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СПЕКТР ЕНЕРГІЇ АКТИВАЦІЇ НИЗЬКОТЕМПЕРАТУРНОЇ АКУСТИЧНОЇ РЕЛАКСАЦІЇ В 
МОНОКРИСТАЛІЧНОМУ ЧИСТОМУ ЗАЛІЗІ. ВИРІШЕННЯ ЗВОРОТНОЇ ЗАДАЧІ МЕХАНІЧНОЇ 

СПЕКТРОСКОПІЇ МЕТОДОМ РЕГУЛЯРИЗАЦІЇ ТИХОНОВА 
Ю.О. Семеренко 

Інститут фізики та техніки низьких температур імені Б. Вєркіна, НАН України 
пр. Науки 47, 61103, Харків, Україна 

При вивченні температурних залежностей акустичного поглинання та модуля пружності часто спостерігаються релаксаційні 
резонанси - піки поглинання, яким на температурній залежності модуля пружності відповідає характерна сходинка. 
Вважається, що виникнення таких релаксаційних резонансів пов’язано з наявністю в структурі матеріалу елементарних 
мікроскопічних релаксаторів, що взаємодіють з досліджуваною коливальною модою механічних коливань зразка. 
В достатньо досконалому матеріалі такий процес характеризується часом релаксації  , а у реальному матеріалі 
з дефектами - спектром часу релаксації  P  . Найчастіше такі релаксаційні процеси мають термічно активований характер 

і час релаксації  T  визначається співвідношенням Ареніуса    0 0expT U kT  , а характеристиками процесу будуть 

0U  - енергія активації, 0  - період спроб, 0  - характерний елементарний внесок окремого релаксатора у динамічний 
відгук матеріалу та їх спектри. В області низьких температур 0kT U  статистичним розподілом параметрів 0  та 0  
з експоненційною точністю можна знехтувати, а релаксаційний внесок у температурні залежності поглинання та 
динамічного модуля пружності матеріалу будуть визначатися тільки спектром енергій активації  P U  мікроскопічних 
релаксаторів. Основна задача механічної спектроскопії при аналізі таких релаксаційних резонансів зводиться до визначення 

0U , 0 , 0  та  P U . У роботі показано, що проблема знаходження спектральної функції  P U  для енергії активації 
акустичної релаксації в реальних кристалах з дефектами, зводиться до вирішення інтегрального рівняння Фредгольма I роду 
з приблизно відомою правою частиною і відноситься до класу некоректно поставлених задач. Запропоновано метод 
визначення  P U  виходячи з експериментальних температурних залежностей акустичного поглинання чи модуля 
пружності, що ґрунтується на алгоритмі тихоновської регуляризації. Встановлено, що акустична релаксація у чистому 
монокристалічному залізі в області температур 5100 К характеризується двомодовою спектральною функцією  P U  з 

максимумами в області 0.037 еВ та 0.015 еВ, що відповідають -піку та його ' сателіту. 
КЛЮЧОВІ СЛОВА: акустична релаксація, регуляризація Тихонова, спектр енергії активації, акустичне поглинання, 
модуль пружності 


