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When studying the temperature dependences of the acoustic absorption and the modulus of elasticity, absorption peaks are often
observed, which correspond to the characteristic step on the temperature dependence of the modulus of elasticity. Such features are
called relaxation resonances. It is believed that the occurrence of such relaxation resonances is due to the presence in the structure of
the material of elementary microscopic relaxors that interact with the studied vibrational mode of mechanical vibrations of the
sample. In a sufficiently perfect material, such a process is characterized by a relaxation time 7, and in a real defective material by a

relaxation time spectrum P (z') . Most often such relaxation processes have a thermally activated character and the relaxation time
7(T) is determined by the Arrhenius ratio 7(7)=z,exp(U,/kT), and the characteristics of the process will be U, - activation
energy, 7, - period of attempts, A, - characteristic elementary contribution of a single relaxator to the dynamic response of the
material and their spectra. In the low temperatures region the statistical distribution of parameters 7, and A, can be neglected with
exponential accuracy, and the relaxation contribution to the temperature dependences of absorption and the dynamic elasticity
modulus of the material will be determined only by the activation energy spectrum P(U ) of microscopic relaxors. The main task of

mechanical spectroscopy in the analysis of such relaxation resonances is to determine U, , 7,, A, and P(U). It is shown, that the

problem of recovering of spectral function P(U ) of acoustic relaxation of a real crystal can be reduced to the solving of the

Fredholm integral equation of the first kind with an approximately known right part and concerns to a class of ill-posed problems.
The method based on Tikhonov regularizing algorithm for recovering P(U ) from experimental temperature dependences of

absorption or elasticity module is offered. It is established, that acoustic relaxation in high-purity iron single crystal in the
temperature range 5-100 K is characterized by two-modes spectral function P(U ) with maxima at 0.037 eV and 0.015 eV, which

correspond to the a-peak and its «' satellite.
KEYWORDS: acoustic relaxation, Tikhonov regularization method, energy activation spectrum, acoustic absorption, modulus of
elasticity

It was found [1] that the resonant frequency of forced resonant mechanical vibrations of solids is determined by
both the geometric characteristics of the sample and its modulus of elasticity M . The amplitude of such resonant
oscillations is proportional to the dissipation of the oscillation energy, which is characterized by the logarithmic
decrement of oscillations & . This fact underlies the method of resonant mechanical spectroscopy, which allows you
to study the elastic and dissipative properties of various materials. As a rule, the temperature dependences of
absorption and elastic modulus are studied. In this case, peaks are often observed on the temperature dependence of
absorption, which correspond to a characteristic step on the temperature dependence of the elastic modulus. Such an
absorption peak, together with the corresponding step on the temperature dependence of the elastic modulus, is
commonly called relaxation resonance. In the microscopic interpretation of such relaxation resonances, it is generally
accepted [1] that their appearance is associated with the presence in the bulk of the material of thermally activated
elementary microscopic relaxators (for example, a pair of kinks on a dislocation line) interacting with the studied
vibrational mode of mechanical vibrations of the sample. The thermal activation of an individual relaxator is

characterized by the relaxation time Z'(T ) , and its dependence on temperature 7 is described by the exponential

Arrhenius expressiona:
U,
o(T)=ryexp| — |, 1
(T)=170 P( ij (1)

where k is the Boltzmann constant, U, is the activation energy, 7, is the period of attempts.

If the mechanical vibrations of the sample excite a system of relaxators with the same values of the parameters U,
and 7,, then in the resonance region in the approximation of a linear response, the temperature dependences of the
© Y. A. Semerenko, 2021
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elastic and dissipative characteristics of the material have the form of a Debye peak for the vibration decrement
S(T,w) and a "step" for the modulus defect AM (T, w)/M, :

ot  AMT,0) 2CA, 1
l+o’t®’ M, oz l+o'c’
In a sufficiently perfect material, such a process can be associated with three parameters, the values of which are
determined by the energy and geometric parameters of a defect-free crystal: U,, 7, and A, (A, is the characteristic

3(T,w)=2C,A, (2)

elementary contribution of an individual relaxator to the dynamic response of the crystal; C, is the relative volume

concentration of such relaxators interacting with the considered vibrational mode of the sample). And the main task of
mechanical spectroscopy in the analysis of such relaxation resonances is reduced to the determination of these
parameters.

In a real material, due to the presence of various defects and randomly distributed structural distortions they create,

there is a statistical scatter of parameters U, , 7, and A,. It is known [2] that the decrement of vibrations & (T,») and

the defect of the elastic modulus AM (T ,a)) / M, of areal material with defects in the low-temperature region kT < U,

are determined by the statistical averaging of Debye expressions (2) over the entire spectrum of activation energies U
of local structural rearrangements (relaxators), characterized by a statistical distribution function P(U ) , with a

statistical spread of parameters 7, and A, with an exponential accuracy is negligible:
— T wr(T,U)

o(T,w)=2C.A)| —F——""—

(7-2) O'([1+a)212(T,U)

AM (T,0) 2C,A, T P(U)

M, 7 yl+e’c* (T,U)

P(U)dU ,

du 3

U

where (T, U)=17,exp| — |.

(r0)=sewn| 15 |

In [3], it was suggested that the energy spectrum of low-temperature acoustic relaxation in iron can be described
by the quasi-Gaussian distribution function
2

U-U,

exp | -0 | @)

U
\27zDU, 2D?

with two parameters — the seed value of the activation energy U, corresponding to relaxation in an ideal defect-free

PO(U) =

crystal and its dispersion D*. Under this assumption, it was possible to achieve a good description of the experimental
temperature spectra & and AM/M,, in the region of the a-peak (U, =0.037 eV, 7, =2.4:10"""s), observed at a

temperature of ~54 K (vibration frequency ~ 88 kHz), by theoretical dependences (3) (Fig. 1).

1,6

Figure 1. Temperature dependences of the vibration decrement in
a single-crystal sample of high-purity iron with orientation <731>
in various structural states:

1 —specimen deformed at 7=300K to a residual plastic
deformation of 3%, measurements were carried out immediately
after deformation; 2 — the same sample, annealed at 7= 300 K for
3 days; 3 — the same sample, annealed at 7= 300 K for 11 years.

open symbols — experimental data [31; shaded
symbols - theoretical dependences calculated by formula (3) for

the spectral function P’ (U) that was found by the Tikhonov
regularization method; solid lines — theoretical dependences
calculated by formula (3) for the spectral function P°(U)

(quasi-Gaussian distribution function of activation energy values
given by expression (4) with an appropriate choice of values of
distribution parameters).
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However, in the temperature range ~ 15K, some discrepancy between the experimental and theoretical
dependences was observed. A thorough analysis of a large amount of experimental data obtained by various authors,
carried out in [4], showed that this discrepancy is probably associated with the presence of a weakly expressed o'-peak,
which is more clearly manifested under other experimental conditions.

It seems advisable to solve the inverse problem - to restore P(U ) from experimental dependences &, AM /M,
and compare it with the "guessed" expression P°(U). This formulation of the problem belongs to the so-called inverse

problems. The solution of inverse problems of mechanical spectroscopy has been repeatedly considered by various
authors both from a theoretical and practical point of view [5], [6].

RESTORATION OF THE ACTIVATION ENERGY SPECTRUM
BY THE TIKHONOV REGULARIZATION METHOD
Following the approach proposed in [7], we consider the problem of determining the energy spectrum of acoustic
relaxation in a material with defects from the known temperature spectrum of the vibration decrement & (T ,a)) or

defect of elastic modulus AM (T,w)/M, .

Practically without limiting the generality of further consideration, one can replace in expressions (3) the infinite
upper limit of integration by some value U __  corresponding to the upper limit of the spectrum, then the problem of

X

finding the spectral function P(U), from a known experimental spectrum & (T,@) or AM (T,w)/M, at a fixed
frequency @ = const , is reduced to solving the Fredholm integral equation of the first kind with respect to P (U ) :

Umm(

J K (T,U)PU)dU = z4m (T) orin operator form Ap =z, 5)
Unin

where the kernel of the integral operator in the case of a decrement of vibrations and a defect of the modulus of
elasticity, respectively, is

W7y EXP [j
K (T,U)=2C,A, and K" (T,U) = 264 :

2U 2UY°
1+ 0’7] exp(ij o1+ 't} exp(ij
— AM (T
the experimental spectrum Z? (T) =5 (T) and Z” (T)= (1) .

0
Let, for some right-hand side Z%" (T), the function ﬁ’(U ) be a solution to equation (5). However, since instead

of the function Z%" (T) we know only its experimental approximation Z“” (), which differs little from Zam (T),

then we can only talk about finding an approximate to the ﬁ’(U ) “solution” P(U) of equation (5). The solution to
such a problem is associated with significant difficulties caused by the lack of stability of the solution to small changes
in the right-hand side. This instability is connected with the fact that if instead of the exact right-hand side zZam (T ) of

Eq. (5) we know only a certain approximation Z d.m (T ) of it and a number v >0 characterizing the accuracy of the

experimental data such that the deviation
ps(2.2)<0?, (©)

then, as possible approximate solutions, it is natural to take functions P(U ) for which

Pz (4p.Z)<0?, 7
where
Tmax
p7(2.2,)= [ {Z,(T)-2,(T)} aT . ®)
T;

min
However, there are infinitely many functions P(U ) satisfying this condition, and among them there are functions

that differ as much as you like. Consequently, under these conditions, the problem of solving the integral equation (5) is
underdetermined and unstable to small changes in the right-hand side. Therefore, it is impossible to take the exact
solution of this equation (with an approximate right-hand side) as an approximate solution to equation (5). To find an
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approximate solution P“ (U ) to equation (5) that satisfies the natural requirements that are embedded in the meaning

of an approximate solution by the physical determinism of the phenomenon described by this equation and the
possibility of physical interpretation of the solution, namely the conditions

P*(U)—>P(U) atv—>0, )

it is necessary from the entire set of formal solutions P(U) that satisfy condition (7) to select a function P (U)that
satisfies condition (9). This can be done if there is additional information, at least of a qualitative nature, regarding the
desired solution. We will assume that the desired spectrum P* (U ) does not have a fine structure, i.e. we can assume that

the solution to the problem under consideration is a smooth function. As a measure of smoothness, consider the quantity

U,

alr]- ey Py 0 | law. (10

where &(U) and x(U) are given non-negative continuous functions satisfying the condition &> (U)+ z°(U)#0 for
any U e (U U,

minsUnmax ) - This definition of smoothness is consistent with the visual representation of the smoothness of

the graphs of functions.

Following [7], as the required spectrum P (U ), we will choose from the family of approximate solutions P(U)
a function with the greatest smoothness (minimum fine structure). Mathematically, this problem is reduced to finding
such a function P* (U ) that will achieve the minimum of the functional (10). The solution of such a problem for a

conditional extremum is reduced to a problem for an unconditional extremum of a functional

2
Tmax Umax
M, [P.Z]= | { | K(T,U)P(U)dU—Z(T)} dT +aQ[P], (11)
Tnin (Umin

where a >0 is the regularization parameter, which can be determined by a given accuracy v and, therefore, depends
on v,ie. a=a(v).Itcanbeshown [7] that &(v) is the function that convex downward, besides there is an estimate

ol 4f

a< .
|2 -v

(12)

The solution to the minimum problem for functional (11) is called a regularized (approximate) solution P* (U ) to

equation (5) and can be found from the Euler equation for the functional M, :

a{rj(U).P(U)_i{Z(U).M}}+UTX R(U.0)P()di=g(U), (13)

dU awu ||}
with boundary conditions
dpP dpP
E(Umin)zo’ E(Umax)zo’ (14)
Tmax Tmax
where K (U,t)= [ K(T,U)-K(T,t)dT ,a g(U)= [ K(T,U)-Z(T)dT .
T T

min min

Another difficulty lies in the fact that the right-hand side of (5) in our problem is the result of an experiment, i.e.
known on the grid by T : {T1 oo T N} . With this right-hand side, equation (5) has no solution at all, understood in the
classical sense, i.e. determined by the formula p = A™'z (47" is the operator inverse to the operator A ) in equation (5)

since the kernel K" (T U ) has a continuous derivative with respect to 7' and, therefore, the right-hand side must also
have a continuous derivative with respect to 7 . This means that in this formulation of the problem, the exact solution
13(U ) of this equation with an approximately known right-hand side Z d,m (T ) % Z4m (T ) cannot be taken as an
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approximate to P(U ) solution of equation (5), since such a solution may not exist. In this regard, it becomes necessary

to pass from the continuous initial problem of finding regularized approximate solutions (5) to its discrete analogue. This
transition is carried out by discretizing the boundary value problem for the Euler equation by solving the resulting SLAE [7].
Following the variational approach, we take a discrete analogue of stabilizer (10) and form an analogue of the smoothing
functional (11). Then we turn to his Euler equation (13), which will represent the regularized SLAE. The solution to this
system (with an appropriately selected regularization parameter) will be an approximate solution to the original problem.

For simplicity of further consideration, we will accept £(U)=¢ and y(U)=yx (& and y are positive
numbers). Then the difference analogue of Eq.(13) on a uniform grid of N nodes by U in increments of
U U

min

AU = % will have the following form:

N-l = =
AU + K -A+Kiy i+l

.PNAU+0:§-PI-+a;( ! >
=2 2 (AU)

2P-P_,-P,
l——lzgi,l-zl’...’N’ (15)

+(i-1)-AU, P.=P(U;), g =¢g(U;), K; = K(Ui,TJ-). In this expression the integral is replaced

ij
d’P(U)
dU?

where U, =U

i min

by the corresponding integral sum by the trapezoidal formula, and by the corresponding difference relation.

I
For simplicity, we will assume that the number of grid nodes by T is also N, and the step AT = % Then

T; =T + (j—1)-AT and the values 1?1-]- and g; can also be calculated using the trapezoidal formula:
_ N K. K. +Kxr K N-1 K. Z 4K -7
li 1 Ni N i i
K= K, K, AT+ ! “AT and g; =Y K;-Z, - AT +—— > N ZN
m=2 j=2

where Z; =Z(Tj) and K ; :K(Tj,Ul-).

For i=1 and i =N, (15) contains unknown values of F, and Py,,. To satisfy the boundary conditions (14), we
put Ay =A and Py, =PFy.

System (15) can be written in matrix form with respect to the vector P = (P1 ;o Py ) :

B-P+aC-P=g, (16)

where the vector g =(g;,---,gy ), the matrix B has the form:

%AU K AU - Ky AU K%AU
B= . >
%AU Ky,AU -+ Ky AU K%AU
and aC is a symmetric matrix of the form:
X ax
a| {+——— - 0 0 0
[ (AU)zJ (AU
azz o+ 2}(2 B alz 0 0
(av) a0y ) (av)
ay 2x ay
0 - al &+ - 0
(AU [ (AU)Z] (AU’
[ ] L] [ ]
ax X
0 0 0 al &+
i (aUY [ (AU)ZJ_
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max)zO,in

In our case, boundary conditions (14) can be supplemented by conditions of the form: P(Umm) = P(U

this case, the matrix oC will have the form:

7 . 0 0 w0

(aU)
o{§+ %4 J - 0 0

(AU)’ (AU’

0 ax a[§+ 24 ] X 0
(AU’ AUy ) (AU

0 0 o

I (av)” |

Thus, the problem is reduced to solving the SLAE with respect to the vector P = (P1 S PN) .

DISCUSSION OF THE RESULTS
The spectral function P’ (U) found by the Tikhonov regularization method has a maximum in the region of

0.04 eV corresponding to the a-peak of acoustic absorption and largely coincides with the quasi-Gaussian function
P¢(U) empirically selected in [3] (Fig. 2).

In this case, the position of the maximum of the P’ (U ) depends on the structural state of the sample. This fact

numerically and qualitatively correlates with the conclusions of [3] about the change in the effective value of the
2

activation energy U, =IUP(U )dU =U, +5— due to the change in the statistical scatter characterized by the
0 0

dispersion parameter D (Table).

3of ’
251
20t

S 1s]

% qof Figure 2. Spectral functions (distribution
5f functions of activation energy  values)
o P°(U)and P"(U) for various structural states
25 of the sample (the numbering of structural states
20l corresponds to that shown in Fig. 1):

S 15}

2 4ol m, o, A — the spectral function P'(U) which
5¢ was found by the Tikhonov regularization
s method; solid lines - spectral function P°(U)
251 ’ calculated by formula (4) for the quasi-Gaussian
20t distribution function with an appropriate choice

S 15 of values U, and D

T g0l .
5t //

000 0015 0037 005
U, eV

The spectral function P’ (U ) also has a feature in the form of a second mode in the region of 0.015 eV; the

position of this feature is practically independent of the structural state of the sample. If we assume that this feature
corresponds to a relaxation resonance (a'-peak) with the same value of 1y as the main resonance, then it should
correspond to a feature in the form of a peak on temperature dependence of the & and a step on temperature
dependence of the AM /M, in the region of 14-16 K (at an oscillation frequency sample 88 kHz). In [3] these features

were not found experimentally, which may be associated with a significant broadening of the main relaxation resonance
at a temperature of =~ 54 K. However, in one form or another, the «’-peak was repeatedly observed by various
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authors [8]-[19]. For example, in [10] a resonance in the region of 17 K was found in Fe single crystal with an
orientation <100>. It was shown in [16] that annealing leads to a narrowing and a shift toward lower temperatures of the
a-peak and the appearance of a o-peak that was not observed in the initial curves. It was shown in [17], [18] that the
a'-peak should be characterized by the same period of attempts as the a-peak and have a value of the order of 107! s.

Table. Acoustic relaxation parameters in a single-crystal sample of high-purity iron with orientation <731> in various structural
states, according to the data of [3], [4]:

Relaxation Structural state of the sample
parameters 1 | 2 | 3
Uy, eV 0.037
D” , eV 0.0177 0.0143 0.0136
C.A, 0.00472 0.00271 0.00180
Ug eV 0.046 0.043 0.042
77 -10",s 2.4
U, ev 0.015

In order to detect the a-peak in Fe single crystals of the <731> orientation, additional experimental studies were
carried out in [4]. A sample in the form of a thin plate was made from the same single crystal as in [3]. The acoustic
properties of this sample were studied in the temperature range 4.5-150 K. It was found that in the undeformed sample
o and o' peaks are not observed, deformation leads to the appearance of a-peak localized at 35 K and its o' satellite at a
temperature of 13 K. Subsequent annealing at 320 K leads to a decrease in the height of the o peak, narrowing and
shifting to lower temperatures, while the a'-peak becomes more pronounced. The analysis performed in [4] made it
possible to establish the microscopic nature of the &' -peak and determine the corresponding activation energy of an
elementary relaxator UZ = 0.015 eV; it was also shown that the activation energy values corresponding to the a’-peak
have a small statistical spread, which practically does not change with a change in the structural state sample.

Thus, the values of the activation energy U, =0.037 eV and U(‘,Z' =0.015 eV determined experimentally in [4]

corresponding to the a-peak and its o' satellite are in good agreement (taking into account the statistical spread) with
the positions of the peaks on the dependence P” (U ) obtained by solving the inverse problem, and its substitution into

expression (3) makes it possible to exhaustively describe the experimentally observed spectrum of low-temperature
acoustic relaxation in iron (Fig. 1).

CONCLUSIONS
A mathematical procedure for processing experimental data is proposed that allows solving the inverse problem of
low-temperature mechanical spectroscopy - to restore the energy spectrum of relaxation by analyzing the temperature
dependence of acoustic absorption.
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CIHEKTP EHEPI'Ti AKTUBAIIIi HU3BKOTEMIIEPATYPHOI AKYCTUYHOI PEJTAKCAIIII B
MOHOKPUCTAJITYHOMY UMCTOMY 3AJI31. BAPIIIEHHSA 3BOPOTHOI 3AJIAYI MEXAHIYHOI
CIEKTPOCKOIII METOIOM PETYJIAPHU3AIII THXOHOBA
10.0. Cemepenko
Incmumym ¢hizuxu ma mexuixu Huzokux memnepamyp imeni 5. Bepxina, HAH Ykpainu
np. Hayxu 47, 61103, Xapxis, Yxpaina
[Ipu BUBYEHHI TeMIIepaTypHUX 3aJICKHOCTEH aKyCTUYHOTO MOTJIMHAHHS Ta MOAYJIS IPYXKHOCTI YaCTO CIOCTEPIraroThCs peslakcalliiHi
pPE30HAHCH - IIKM IOTJIMHAHHS, SKAM HA TEMIIEpaTypHId 3aJIe)KHOCTI MOAYJsS INpPYXKHOCTI BIIINOBiIae XapakTepHa CXOIUHKA.
BBakaeTbcs, 10 BUHUKHEHHS TAKWX pellaKcalliiHUX PE30HAHCIB MOB’S3aHO 3 HASBHICTIO B CTPYKTYpi Marepiany eIeMEeHTapHUX
MIKPOCKOIMIYHMX PEIaKcaTtopiB, ILI0 B3a€EMOJIIOTH 3 JOCHTI[KYBAaHOI KOJMBAJIHHOIO MOJOK MEXaHIYHHUX KOJIMBAaHb 3pa3Ka.
B noctatHRO [IOCKOHAJIOMY MaTrepiali TaKHH TIpOIEeC XapaKTEePU3yeEThCS YacoM pelakcalii 7, a y peaJbHOMY MaTepiaii

3 neeKTaMu - CIEKTPOM Yacy pesraKcamii P(z’) . Haifuacrime Taki penakcamiifHi mpouecu MalTh TEPMIYHO aKTHBOBAHMH XapaKTep
i uac penakcauii 7(7) BusHauaetbes criBBinHomennsM Apeniyca 7(7T)=17,exp(Uy/kT), a XapakTepucTHKaMu npouecy GyIyTh
U, - eHeprid aktuBauii, r, - mepiox cnpoO, A, - XapakTepHHUH eJleMEHTapHUIl BHECOK OKPEMOro pejakcaTopa y JMHaMiuyHHH
BiATYK MaTepialy Ta ix crmexktpu. B obmacti Husbkux temneparyp k7 < U, CTaTHCTUYHUM PO3IOIUIOM NapaMerpiB 7, Ta A,
3 eKCIIOHEHIIHHOI0 TOYHICTIO MOKHA 3HEXTYBAaTH, a PENAKCAIIHHUA BHECOK Yy TEMIIEpaTypHi 3aJe)KHOCTI IOTJIMHAHHS Ta
JUHAMIYHOTO MOJYJSl IPY)XKHOCTI Martepiainy OyIyTb BHU3HAYaTHUCS TIIBKH CIEKTPOM CSHEpPrid akTuBaLil P(U ) MIiKPOCKOMIYHIX
penakcatopiB. OCHOBHa 3aa4a MEXaHIYHOT CHEKTPOCKOIIIT MIPH aHali3i TAKUX peNlaKcalliiHUX Pe30HAHCIB 3BOJMUTHCS 10 BU3HAYCHHS
Uy, 7y, A, Ta P(U ) VY po6oTi mokazaHo, MO MpodiieMa 3HAXOPKEHHS CIEKTPATBHOI (QYHKIIT P(U ) JUISL SHepril akTUBAIlii

aKyCTHYHOI perakcailii B peajbHuX KpHCcTanax 3 aedexramu, 3BOAUTHCS 10 BUPIILICHHS iHTErpaibHOro piBHsHHS Opearonsma I poay
3 IPUOJIM3HO BiZIOMOIO MPAaBOI0 YaCTHHOKO 1 BITHOCHTBCSA IO KJIACY HEKOPEKTHO IOCTaBIGHHMX 3a/ad. 3alpolOHOBAHO METOJ

BisHaucHHs  P(U ) BUXOJSIYM 3 EKCHEPHMEHTAJIbHUX TEMIIEPaTypHHX 3aJeXHOCTEH aKyCTHYHOTO IOTJIMHAHHS YM MOJYJIS
MIPY>KHOCTI, IO IPYHTYETHCS Ha aJrOPUTMI THXOHOBCHKOI peryisipusanii. BcTaHOBIIEHO, IO aKyCTHYHA pellakcalliss y YuCcTOMY
MOHOKPHCTAJIIYHOMY 3aii3i B obmacti Temmeparyp 5+100 K xapaxTepu3yeTbcst JBOMOJOBOIO CHEKTPAIBHOIO (DYHKIIIEIO P(U ) 3
Makcumymamu B o6xacti 0.037 eB ta 0.015 eB, mio BiamoBigaroTs @-miky Ta iHoro &' catemiry.

KJIIOYOBI CJIOBA: akycruyHa penakcamis, peryispu3sanis THXOHOBa, CIIEKTp €HEpril akTHBaIlii, aKyCTHYHE IOTJIMHAHHS,
MOJIyJIb TIPY>KHOCTI



