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In this work, a large-scale instability of the hydrodynamic  -effect in an obliquely rotating stratified nanofluid taking into account 
the effects of Brownian diffusion and particle flux under the influence of a temperature gradient (thermophoresis)  is obtained. The 
instability is caused by the action of an external small-scale non-spiral force, which excites small-scale velocity oscillations with zero 
helicity and a low Reynolds number. Nonlinear equations for large-scale motions are obtained using the method of multiscale 
asymptotic expansions by a small parameter (Reynolds number). A linear large-scale instability of hydrodynamic  -effect is 

investigated depending on the parameters of rotation D , temperature stratification Ra , and concentration of nanoparticles  nR . A 

new effect of the generation of large-scale vortex structures in nanofluid at  = 0Ra  is associated with an increase in the concentration 
of nanoparticles is obtained. The maximum instability increment  is reached  at inclination angles / 5   for the Prandtl numbers  
Pr = 5 , and for the Prandtl numbers Pr = 1   at  inclination angles  / 2   . It has been found that the frequency changing of the 
parametric impact will make it possible to control and track the generation of large-scale vortex structures. It is shown that circularly 
polarized Beltrami vortices appear in nanofluid as the result of new large-scale instability development. In this paper, the saturation 
regime of large-scale instability in an obliquely rotating stratified nanofluid with an external small-scale non-spiral force is 
investigated. In the stationary regime was obtained a dynamic system of equations for large-scale perturbations of the velocity field. 
Numerical solutions of this system of equations are obtained, which show the existence of localized vortex structures in the form of 
nonlinear Beltrami waves and kinks. The velocity  profile of kink tends to be constant at large Z values. 
KEY WORDS: stratified nanofluid, large-scale instability, Coriolis force, multiscale asymptotic expansions,  -effect, localized 
vortex structures 
 

In recent years there has been considerable attention to the problem of transfer processes in nanofluids, which 
describe a two-phase system consisting of a carrier medium (base fluid or gas) and nanoparticles with characteristic 
sizes from 1 to 100 nm [1]. Typical base fluids are water or some organic fluids, polymer solutions etc., and 
nanoparticles are usually particles of metals (A , )l Cu , metal oxides 2 3(A ,C )l O uO . It is obvious that the effective use of 

nanofluids will become possible only when carrying out the theoretical studies of transfer processes. Special attention 
should be paid to the processes of formation and evolution of large-scale structures that affect heat transfer in 
nanofluids. 

In works [2-4] were investigated conditions for convective structures (convective cells) formation in rotating 
layers of nanofluids taking into account the effects of thermophoresis and Brownian motion of particles. In [2] it was 
shown that the temperature gradient and rotation have a stabilizing effect, while the volume fraction of nanoparticles 
and the ratio of nanoparticles density to the base fluid have a destabilizing effect on the system. In [3] was carried out a 
weakly nonlinear analysis of stability in a horizontal rotating nanofluid layer using the minimum order of the Fourier 
series expansion. The values of heat transfer Nu  and transfer of nanoparticle concentration Nu  oscillate with time 

initially strongly but with time reach a stationary value. The parameters of the Rayleigh number concentration nR  and 

the Lewis number eL  increase the heat and mass transfer rates. An increase of the rotation parameter (Taylor number) 

leads to a decrease of the heat and mass transfer rates. In paper [4] was investigated the effect of variable gravity on the 
occurrence of thermal convection in a horizontal layer of rotating nanofluid for a porous medium. It was also shown 
there that a decrease in the gravity parameter has a stabilizing effect, while an increase in the gravity parameter has a 
destabilizing effect on the stationary convection. In this case, the critical Rayleigh number increases with an increase of 
the Taylor number, which indicates the suppression of the onset of convection. The influence of a periodic external 
action leads to the formation of oscillate convective structures. Therefore, it becomes possible to control the process of 
heat transfer through the cells, i.e., in the heat valve mode. Here it becomes possible to control the switching between 
high and low thermal conductivity modes of the cell [5]. 

Unlike preceding articles [2-5] in this paper we investigated the large-scale vortex structures (LSVS) formation 
mechanism in a rotating layer of stratified nanofluid under the influence of an external small-scale force. The generation 
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of LSVS in a Newtonian rotating and temperature stratified fluid under the action of a small-scale force with zero 

helicity 0 0 = 0F rotF
 

 was considered in [6]. A necessary condition for the occurrence of large-scale instability 

considered in [6] is the oblique rotation of the fluid. 
The aim of this work is to study generation and nonlinear evolution of vortices fields in a rotating stratified 

nanofluid under the action of the nonhelical force 0F


. Similartly to study [6], we also will use a mathematical 

formalism based on the asymptotic method of multiscale expansions in the small parameter of the Reynolds number 

0 0

0

= 1
v t

R

 [7]. 

 
PROBLEM STATEMENT AND BASIC EVOLUTION EQUATIONS 

We consider an infinite horizontal layer of incompressible nanofluid, which rotates with constant angular velocity 

 1 2 3= , ,   


. The vector of angular velocity of rotation 


 is inclined concerning to the plane ( , )X Y  as shown in 

Fig. 1.  

 
Figure 1. The angular velocity 


 is inclined to the plane ( , )X Y  where the external force 0F


 is located. 

The nanofluid is enclosed between two parallel planes = 0z  and =z h , where the temperature and volume 
fraction of nanoparticles are kept constant:  

 = , = = 0,d dT T at z   (1) 

 = , = = ,u uT T at z h   

here > , >d u u dT T   . We assume that the both boundaries surfaces are free. The hydrodynamic equations of a viscous 

incompressible rotating nanofluid in the Boussinesq  approximation has the following form (see for example [2-4]):  

 2
00 00 00 0= [ (1 ) (1 ( ))] 2p u

V
V V P V T T g V F

t
      

 
             

      
 (2) 

  

 2( ) = ( )f f p B T
u

T T T
c V T k T c D T D

t T
  

               


 (3) 

  

 2 2= T
B

u

D
V D T

t T

  
    




 (4) 

  

 = 0V


 (5) 

Equations (2)-(5) are supplemented with boundary conditions for the velocity of nanofluid motion. The condition 
of impermeability of layer boundaries in the vertical direction and the absence of shear stresses at the boundaries of the 
layer give the following boundary conditions for the velocity  

 
2

2
= 0, = 0, = 0,z

z

V
V at z h

z




 (6) 
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Here   is the viscosity of nanofluid, 00 = (1 )p f      is the nanofluid density at the reference temperature uT , 

p  is the density of the nanoparticles, f  is the base fluid density at the reference temperature uT ,   is the volumetric 

fraction of nanoparticles,   is the thermal expansion coefficient, = (0,0,1)e


 is a unit vector in the direction of the axis 

OZ , g


 is the gravitational acceleration vector directed along the Z  axis: = (0,0, )g g


. ( ) , ( )f pc c   are the effective 

heat capacities of the base fluid and nanoparticles. BD  and TD  denote the Brownian diffusion coefficient and 

thermophoretic diffusion, respectively. The signs of the coefficients BD  and TD  are positive and they are respectively 

equal:  

 
0.26

= , = ,
3 2

f fB
B T

p f f p

kk T
D D

d k k




 
  
      

 

where pd  is the diameter of nanoparticles, Bk  is the Boltzmann's constant, ,f pk k  are the thermal conductivity of base 

nanofluid and nanoparticle, f  is the viscosity of base nanofluid. 

The external small-scale force 0F


 is included in the Navier-Stokes equation (2). This force simulates the excitation 

source of small-scale and high-frequency pulsations of the velocity field 0v


 in the medium with a small Reynolds 

number 0 0

0

= 1
v t

R

 . The main role of the force 0F


 is to maintain a moderate level of small-scale movements in the 

presence of dissipation. An explicit form of the external force 0F


 is given below. Let us pass in equations (2)-(5) and 

boundary conditions (1), (6) to dimensionless variables, which we denoted by the asterisk ( ) :  

 
2

* * * * * * * *
2

( , , )( , , )
( , , ) = , = ( , , ) = , = , = ,x y z f

x y z
f f

V V V h tx y z P h
x y z V V V V t P

h h


  

 
 

 
3

* * * *
0 0

0

= , = , = , = , = .
( )

fd u
f

u d d u f f

kT T h
T F F

T T c

 
 

    
 


  

  
 

Omitting the asterisk )(  in the system of dimensionless equations (2)-(5) and boundary conditions (1), (6) we get  

 2
0

1
= ( )

Pr n m

V
V V P V eR eR eRaT Ta V F

t


 
           

        
 (7) 

 2= ( ) ( )B A B

e e

N N NT
V T T T T T

t L L


        



 (8) 

 2 21
= A

e e

N
V T

t L L

  
    




 (9) 

 = 0V 


 (10) 

 
2

2
= 1, = 0, = = 0 = 0,z

d d z

V
T V at z

z





 (11) 

 
2

2
= 0, = 1, = = 0 = 1,z

u u z

V
T V at z

z





 

where 
00

Pr =
f


 

 is the Prandtl number, 
3( )( )

= p f u d
n

f

gh
R

   


 
 is the concentration Rayleigh number, 

3( (1 ))
= p d f d

m
f

gh
R

   


 
 is the basic density Rayleigh number, 

3
00( )

= d u

f

T T g h
Ra

 



 is the thermal Rayleigh 
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number, 
2 4 2
0 00

2

4
=

h
Ta





 is the Taylor number, = /e f BL D  is the Lewis number, 

( )
= ( )

( )
p

B u d
f

c
N

c


 


   is the 

modified particle density increment, 
( )

=
( )

T d u
A

B u u d

D T T
N

D T  



 is the modified diffusivity ratio. 

 We represented all quantities in equations (7)-(10) as the sum of the ground (stationary) and perturbed states:  

 ' ' ' '= , = ( ) , = ( ) , = ( ) .b b bV V T T z T z P P z P    
 

 (12) 

After substituting (12) into equations (7)-(10), we find the evolution equations for perturbed quantities ' ' ', ,V T 


  

 
'

' ' ' 2 ' ' ' '
0

1
= ( )

Pr n

V
V V P V eR eRaT Ta V F

t


 
          

       
 

 

 
' ' '

' ' ' 2 ' ' '= ( )b b bB B
z

e e

dT d dTN NT dT d
V T V T T

t dz L L dz dz dz dz

 
 

            


 (13) 

  

 
'

' ' 2
( ) bA B A B

e e

dTN N N N dT
T T

L L dz dz
     

 

 
'

' ' ' 2 ' 2 '1
=b A

z
e e

d N
V V T

t dz L L

  
     




 

against the background of the ground equilibrium state given by constant gradients of temperature and volume fraction 
of nanoparticles:  

 0 = b
m n b b

dP
R R RaT

dz
     

 

 
22

2
0 = b b b bB A B

e e

d T d dT dTN N N

L dz dz L dzdz

       
   

 (14) 

  

 
2 2

2 2
0 = .b b

A

d d T
N

dz dz


  

Using the boundary conditions (11), from the equations (14) we find solutions for = 1bT z  and =b z , which have a 

linear dependence on z . 

Let the external force 0F


 have the following properties:  

 0 0 0 0 0 0 0
0 0

= 0, = 0, 0, = ;
x t

divF F rotF rotF F f F
t

 
  

 

     
 (15) 

where 0  is the characteristic scale, 0t  is the characteristic time, and 0f  is the characteristic amplitude. The external 

force 0F


 is specified in the ( , )X Y  plane orthogonal to the rotation axis and satisfy all properties (15), i.e.  

  0 0 0 2 1 1 0 0 2 0 0= 0, = , = , =zF F f icos jcos k x t k y t        
  

 (16) 

Here 0 0, k  are the frequency and wavenumber of the external parametric action, respectively. A simple physical form 

of an external force (16) can be easily implemented in laboratory experiments. Let us rescale the variables in the 
equations for perturbations (13):  

 
' '

0
0

0 0 0 0 0

, , , , ,
Fx t V P

x t V P F
t v p f

    
  

 

 
' '

0 0 0 0 0
2

0 0 0 0

, , = = = 1.
p t f t tT

T
R R v v


 

   

As a result, we obtained the following system of equations for perturbations  
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  2
0

1
=

Pr
n

V
RV V P V e R e RaT V D F

t


 
          

       
 (17) 

 2= ( )B B
z

e e

N NT dT d
RV T V T R T

t L L dz dz

              


 (18) 

 
2

( )A B A B

e e

N N N N dT
R T T

L L dz
     

 2 21
= A

z
e e

N
RV V T

t L L

  
     




 (19) 

 where the new notation is introduced  

  
2

2 3 3
00 0 0 0

2
= , = , = .n n

h
D R R Ra Ra   


  

 
 

Let us consider the Reynolds number R  for small-scale motions to be a small parameter of the asymptotic 

expansion and assume  , ,nD R Ra


 to be arbitrary parameters that do not affect the expansion scheme. We consider the 
external force as being of small scale and high frequency. This force leads to small scale fluctuations in velocity. After 
averaging, these rapidly oscillating fluctuations vanish. Nevertheless, due to small nonlinear interactions in some orders 
of perturbation theory, nonzero terms can occur after averaging. In the next section, we consider in detail how to find 
the solvability conditions for the multi-scale asymptotic expansion, which define the evolution equations for large-scale 
perturbations. 

 
EQUATIONS FOR LARGE-SCALE FIELDS 

In this section, we consider in more detail the application of the method of multiscale asymptotic expansions to the 
problem of nonlinear evolution of large-scale vortex disturbances in an obliquely rotating nanofluid. The method of 
asymptotic equations is well presented in works [6-7]. Following these papers we introduce spatial and temporal 
derivatives in equations (17)-(19) in the form of asymptotic expansions:  

 4 2,t T i i
i

R R
t x

 
       

 
 (20) 

where i  and t  denote derivatives concerning fast variables  0 0 0= ,x x t


 and i , T  derivatives concerning slow 

variable  = ,X X T


. Variables 0x  and X  can be called small-scale and large-scale variables. To construct the 

nonlinear theory, the variables V


, T , , P  are presented in the form of asymptotic series:  

 2 3
1 0 1 2 3

1
( , ) = ( )V x t W X v Rv R v R v

R      
        

 2 3
1 0 1 2 3

1
( , ) = ( )T x t T X T RT R T R T

R      
   (21) 

 2 3
1 0 1 2 3

1
( , ) = ( )x t X R R R

R
          
   

 2 3
13 2 1 0 1 2 33 2

1 1 1
( ) = ( ( ))P x P P P P R P P X R P R P

RR R           

By substituting developments (20)-(21) into the initial equations (17)-(19) and then gathering together the terms of the 
same order, we obtained the equations of the multi-scale asymptotic development and wrote down the obtained 
equations up to order 3R  including. The algebraic structure of the asymptotic development of equations (17)-(19) in 
various orders of R  is given in Appendix A. It is also shown that in the order 3R  we got the main secular equation or 
equation for the large-scale fields in a stratified nanofluid:  
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    11 0 0 1

1
=

Pr
i k i i

T k iW v v P W       (22) 

  

      1 0 0 1 1 1 1 1=k B A B
T k k k k k

e e

N N N
T v T T T T T

L L
               (23) 

  

  1 0 0 1 1

1
=k A

T k
e e

N
v T

L L
          (24) 

Equations (22)-(24) are supplemented by the secular equations obtained in Appendix A:  

  
3 1 1 = 0,ni i i ijk j kP e R e RaT W D        (25) 

 1 1= 0, = 0,z i
iW W   (26) 

 1 1 1

1
= ,

Pr
k i

k iW W P     (27) 

  1 1 1 1 1

2
= ,k B A B

k Z Z Z
e e

N N N
W T T T

L L
           (28) 

 1 1 = 0.k
kW    (29) 

The influence of small-scale oscillations excited by the external force 0F


 on the evolution of large-scale motion 1W


 is 

described by the equation (22). It can be seen from this equation that the large-scale temperature 1T  and the volume 

fraction of nanoparticles 1  do not influence on the dynamics of the large-scale velocity field 1W


. Therefore, we 

restrict ourselves to studying the equation (22). This equation takes on a closed-form after calculating the correlation 

function - Reynolds stress 0 0( )k i
k v v . The calculation of the Reynolds stress will be greatly simplified if we use the 

«quasi-two-dimensional» approximation, where the horizontal scales significantly exceed the vertical ones. As a part of 
this approach, the large-scale derivatives according to are more preferable, i.e  

 ,Z Z X Y

  
 

  
  

and the geometry of large-scale fields is following:  

  1 1 1 1 1 1 1 1= ( ), ( ),0 , = ( ), = ( ), =x yW W Z W Z T T Z Z P const        


 (30) 

Then the equation (22) is simplified and takes the following form:  

  2
1 1 0 0 1 1= 0, =z x x

T Z ZW W v v W W    (31) 

  2
2 2 0 0 1 2= 0, =z y y

T Z ZW W v v W W    (32) 

Equations (31)-(32) describe the evolution of large-scale eddy fields W


. In order to obtain the final closed form of 

equations (31)-(32) we have to calculate the Reynolds stresses  0 0
k i

k v v . This shows that we need to find solutions for 

the small-scale velocity field 0v


. Appendix B contains a detailed technique to calculate the velocity field in a rotating 

stratified nanofluid. Further, in Appendix C solutions for small-scale velocity field 0v


 are used to find the Reynolds 

stresses. Then equations (31)-(32) take a closed form:  

 
 



22 2 4
20 2 0 02 2

1 24
20 2

( )
( ) =

2( )

n

T Z Z

f D k k Ra l
W

k





           

 (33) 
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22 2 4
10 1 0 02 1

2 24
10 1

( )
( ) =

2( )

n

T Z Z

f D k k Ra l
W

k





           

 (34) 

We used here the following notations:  

  2 2
1,2 0 0 1,2 1,2= ( ) , =k W     

 

    


 



22 4 1
2 2 1,24 2 4 2 0
1,2 1,20 0 2 2 1,24 4

1,2 1,20 0

Pr
Pr Pr 2 n

kRa
k k Ra r

k k


 

 


 

        
   

 

 

   



24 1
2 1,22 4 2 40
1,21,2 0 1,22 1,24

1,20
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2 Pr ,n

k
D k Ra p D
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2 2 2 24 1 4 1 2 1 2 1 2 2 1 1
1,2 1,2 1,2 1,20 0 0 0 0 0

2 21,2 4 2 4
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( )( Pr ) ( Pr (1 Pr ))

= 2
( )( )

A
e e e

e
nn

e

N
k L k k L k k k L

L
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2 24 2 1
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2 2 2 24 2 4 4 2 4
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2
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A A A
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e e e
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e e

N N N
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R R Ra

k L k k L k

 

   



 

   
       

      
   

 

 

 
   

 

2 2 2 24 1 4 1 4 1 4 1 1 1
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2 21,2 4 2 4
1,2 1,20 0

( )( Pr ) ( Pr (Pr 1))

= ,
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A
e e e

e
nn

e

N
k L k k L k L

L
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2
1,21 2 1

0 2
0 24

1,2021,2 2 4
1,20

= ( ).

A
e e

e
nn

e

N
L k L

L k
l R k

L k






 



 
  
 
   


 

Thus, in this section, we obtained the closed equations (33)-(34), which are called the equations of nonlinear 
vortex dynamo in obliquely rotating stratified nanofluid under the parametric action of a small-scale non-spiral force. 
The large-scale fields decay due to viscous dissipation if rotation ( = 0 ) or external force ( 0 = 0f ) disappears. For the 

limit of a homogeneous fluid  = = 0nRa R  and the absence of nanoparticles, the equation (33)-(34) coincide with the 
results of [8]. At first, we will consider the stability of small perturbations of fields (linear theory). 
 

LARGE-SCALE INSTABILITY 

Equations (33)-(34) describe the nonlinear dynamics of large scale disturbances of the vortex field  1 2= ,W W W


. 

Therefore it is interesting to clarify the question of the stability of small perturbations of the field W


. Then for small 

values  1 2,W W  the equations (33)-(34) are linearized and can be reduced to the following system of linear equations:  

 
2

1 1 2 2
2

2 2 1 1

= 0

= 0
T Z Z

T Z Z

W W W

W W W




   

   

 (35) 

here 1.2  are the coefficients of the linear vortex dynamo:  

 
 22

(1,2)1,2 00 6
1.2 0 0 4 2

0(1,2) 0(1,2) 0 0 4 2
0 0 0

= ( 1) , = ,
2

( )

nD kf a RRa
R R R

k
a k
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00 0 6 0 0 6

64 2 2 4 24 2
0 00 0 0 00 0

2 2
= ,

( ) ( )

nk Ra a b k aR
R b

k ka k a
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  4 2 2 2 2 4 2 2 2 2 ' 4
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 4 2 2 2 54
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Here the coefficients  ' '
0 06 6 0 1 0 1 5 5 4 4 3 3 2 2 1 1 0 0, , , , , , , , , , , , , , , . , , ,a b a b a b a b a b a b a b a b     included in (36) have the form:  
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N
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 4 4 1 2 1 1
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e e
e
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L
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e e
e

N
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We choose perturbations  21,WW  in (35) in the form of plane waves with the wave vector K OZ

 , i. e.  

 1 21 2
= exp( )sin , = exp( )cosW WW A t KZ W A t KZ   (37) 

The solutions (37) describe a circularly polarized plane wave whose amplitude increases exponentially with time. Such 
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waves are called Beltrami waves because the large-scale velocity field (37) satisfies the Beltrami flow under which the 
following condition is fulfilled:  

 = 0W rotW
 

 

Substituting (37) into the system of equations (35) we obtained the dispersion equation:  

  22 2
1 2 = 0K K    (38) 

From here we found:  

 2
1 2= K K     (39) 

Solutions (39) show the existence of instabilities for large-scale vortical perturbations when 1 2 > 0  . When 1 2 < 0  , 

damped oscillations arise with frequency 0 1 2= K    instead of the instabilities. The maximum increment of 

instability 1 2=
4max

 
  is reached on the wavenumber 1 2=

2maxK
 

. Coefficients 1 , 2  give a positive feedback 

loop between velocity components. It should be noted that in the linear theory, the coefficients 1 , 2  do not depend 

on field amplitudes but depend only on dimensionless parameters 1,2D , Ra , Pr ,  , ,n A eR N L  and the external force 

amplitude 0f . Let us analyze the dependence of these coefficients on the dimensionless parameters assuming, for 

simplicity, that the dimensionless amplitude of the external force 0f  is equal to 0 = 10f . Fixing the level of 

dimensionless force means the selection of a certain level of the stationary background of small-scale and fast 
oscillations.  As for the coefficients 1 , 2 , instead of the Cartesian projections 1D  and 2D  it is convenient to use their 

projections in the spherical coordinate system ( , , )D    (see Fig. 2). The coordinate surface =D const  is the sphere, 

  is the latitude [0, ]   ,   is the longitude [0, 2 ]  . Let us analyze the dependence of the coefficients 1 , 2  

on the effects of rotation, stratification and concentration of nanoparticles. Then we assumed 1 2=D D  for simplicity 

that corresponds to a fixed value of longitude = / 4 n   , where = 0,1,2...n k , k  is an integer. In this case, the 

amplification coefficients of the vortex perturbations are, respectively, equal to:  

 
2 2

0 0
1 2 0

0 0

( )
= = = 2 sin ( 1)

4 ( ) ( )nf

f k
D R R

   
 

 
    

 

It should be noted that at inclination angles ( = 0, = )    vortex disturbances are not generated since = 0nf . It 

is also interesting to find out how the coefficient nf  depends on the inclination angle   of the nanofluid rotation axis. 

 
Figure 2. Relation of Cartesian projections of rotation parameter D


 (or angular rotation velocity 


) with their projections in a 

spherical coordinate system.   

This dependence ( )nf   is shown in Fig. 3 by a solid line obtained for fixed values 

 
0 0= 2, = 2, = = 1,Pr = 5, = 0.122, = 5, = 5000n A eD Ra k R N L . The values of the nanofluid parameters Pr, , ,n A eR N L  

( 2 3Al O -water) are taken from [2]. As seen from Fig. 3 a maximum value of nf  for nanofluid is inclination angle 

/ 5max n    , and a minimum value for / 2min n    . The dashed line in Fig. 3 a corresponds to the dependence 
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( )b   on the case of a pure fluid with the Prandtl number Pr = 5 . Graphs Fig. 3a shows that the maximum coefficient 

 0
= ( )b nf Rn

 


 for a pure fluid is greater than for a nanofluid. This conclusion remains valid for the Prandtl numbers 

Pr = 1 . In this case, the maximum coefficients ( )b
nf  in nano- and pure fluid are at inclination angles / 2 n     

(see Fig. 3b). 

 
Figure 3. The solid line shows the dependence of the coefficient nf  for nanofluid on the inclination angle   and the dashed line 

shows the dependence of the coefficient b  for the pure liquid on the inclination angle  . Graphs a) and b) are plotted for the 

Prandtl numbers Pr = 5  and Pr = 1  respectively. 

Consequently, the characteristic time nfT  and the characteristic scale nfL  of generated large-scale vortices in 

nanofluid exceed the corresponding scales ,b bT L  in a pure fluid  

 2 1 1 2 1 1, , ( / 4) , ( / 2) , ( / 4) , ( / 2)nf b nf b nf nf nf nf b b b bT T L L T L T L            

Let us consider the influence of the nanofluid rotation effect on the coefficient nf  or the process of generation of 

large-scale vortices. For this, we fixed the parameters of the nanofluid Pr, , ,n A eR N L  and the Rayleigh number  = 2Ra . 

We chose the inclination angle equal to / 5max  , which corresponds to maximum values of the coefficient nf  (see 

Fig. 3a). As see from Fig. 4a for a certain value of the rotation parameter D  the coefficient ( )nf b   reaches its 

maximum value ( , )
max

nf b . Then with the increasing of D  the coefficient   tends gradually to zero i. e. the suppression 

of   - effect occurs. A similar phenomenon was described in [9]. 

 

Figure 4. a) The solid line shows the dependence of the coefficient nf  for the nanofluid on the rotation parameter D , and the 

dashed line shows the dependence of the coefficient b  for the pure liquid on the rotation parameter D ; b) The solid line shows the 

dependence of the coefficient nf  for the nanofluid on the Rayleigh number Ra , and the dashed line shows the dependence of the 

coefficient b  for the pure fluid on the Rayleigh number Ra ; c) point 1 corresponds to the value of nf  (nanofluid) at  = 0Ra , 

point 2 corresponds to the value of b  (pure fluid) at  = 0Ra .    
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Next, fixing the parameters of nanofluid Pr, , ,n A eR N L , rotation = 2D  and inclination angle / 5max  , we 

determine the dependence of the coefficient nf  of Rayleigh number Ra . From the graphs Fig. 4b it can be seen that 

the maximum value of the coefficient ( )nf b   corresponds to small Rayleigh numbers Ra . Large-scale vortices are 

efficiently generated in the range of Rayleigh numbers  [0,3]Ra , then we observed the decay ( )nf b   (Fig. 4b) with 

an increase in Ra  and the generation of the LSVS becomes ineffective. It means that for large Rayleigh numbers Ra , 
large-scale instability in nano- and ordinary fluids is not realized and the ordinary convective instability is arisen. Under 

the condition that there is no heating  = 0Ra , the gain coefficient in pure fluid b  (point 2 in Fig. 4c) is less than in 

nanofluid nf  (point 1 in Fig. 4c): >nf b  .  In Fig. 4a-4b it is also seen that the maximum coefficient  0
= ( )b nf Rn

 


 

is larger for pure fluid than for nanofluid.  

In Fig. 5a is a graph showing the combined effects of rotation and temperature stratification in the plane ( , )D Ra . 

Here the instability region > 0nf  is highlighted in gray. Curve 1 corresponds to the instability boundary for nanofluid 

(  = 0.122nR ) and curve 2 corresponds to the instability boundary for pure fluid ( = 0)nR . 

Let us analyze the influence of the Rayleigh concentration number  nR  on the coefficient nf  or the generation of 

LSVS for the following fixed parameters 
0 0= 2, = 3, = = 1,Pr = 5, = 5, = 5000, / 5A eD Ra k N L   . In Fig. 5b 

shows the intersection of graphs (curve 1 and curve 2) at the point  (0) (0),n nfC R  . Curve 1 is plotted for the case when 

there is a temperature gradient  = 3Ra . For  = 0nR , curve 1 shows the maximum value of st
b  (point A ) 

corresponding to a pure stratified fluid. 

 
Figure 5. a) The plot for nf  in the plane ( , )D Ra , where the gray color shows the region corresponding to positive values   

(unstable solutions), and the white color region shows negative values  . Curve 1 corresponds to the instability boundary for 

nanofluid (  = 0.122nR ), and curve 2 corresponds to the instability boundary for pure fluid ( = 0)nR . b) The plot of the dependence 

on the 9nf  - effect on the Rayleigh concentration number  nR . 

A further increase in the concentration of nanoparticles leads to a decrease in nf . Curve 2 is plotted for the case 

when there is no temperature gradient  = 0Ra . It can be seen from the behavior of curve 2 that an increase in the 

concentration of nanoparticles at first leads to an increase in nf , and then to a decrease. For  = 0nR , curve 2 shows the 

maximum value of h
b  (point B ), corresponding to the coefficient   for a homogeneous fluid [8]. Here we see that in 

a pure stratified fluid the generation of LSVS is more efficient than in a homogeneous fluid, which is consistent with the 

conclusions of the work [6]. Thus, for a certain value of the number 
(0)
nR  (concentration of nanoparticles), we obtained 

equal rates generation of LSVS (point C  in Fig. 5b) in nanofluid as in the presence of a temperature gradient  0Ra  , 

and without it  = 0Ra . Physically, this process can be explained as follows. An increase in the concentration of 
nanoparticles on the upper surface layer leads to the appearance of a flow due to the gravitational segregation of 
nanoparticles to the lower surface. In turn, the presence of a temperature gradient arises a heat flux ( ) /d uq e T T h

  , 

which prevents the deposition of nanoparticles on the lower surface layer. An increase in the concentration of 

nanoparticles  nR  decreases the part of the heat flux and as a consequence, the coefficient nf  is decreased. 
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Figure 6. a) The graph of the dependence on the instability growth rate   on wavenumbers K  for different frequencies 0  of the 

external force 0F


 at 0 = 1k . b) The graph of the dependence on the instability growth rate   on wavenumbers K  for different 

wavenumbers 0k  of the external force 0F


 at 0 = 1 . 

Fig. 6 shows the dependence on the instability increment   on the wavenumbers K  for the hydrodynamic nf  - 

effect in nanofluid at constant parameters  = 2, = 2,Pr = 5, = 0.122, = 5, = 5000, / 5n A eD Ra R N L   . As it is shown 

in Fig. 6a with an increase in the frequency 0  of the external force 0F


 at 0 = 1k  the maximum growth rate max  of 

large-scale vortex disturbances is decreased. Fixing the frequency of the external force 0F


 at 0 = 1  we constructed a 

graph of the increment ( )K  (see Fig. 6b) when the small-scale wavenumber 0k  changes. For numbers 0 < 1k  we 

observed an increase in the maximum growth rate max  of large-scale vortex disturbances ( 0 = 0.8k ) relative to the 

level max  at 0 = 1k , and a decrease the maximum growth rate of large-scale vortex disturbances at 0 = 0.5k . This 

behavior is due to the structural dependence of the coefficient nf  on the small-scale parameters of the external 

force 0 0( , )k . 

Thus, as a result of the large-scale instability development in an obliquely rotating stratified nanofluid, the large-
scale spiral circularly polarized Beltrami-type vortices are generated. 
 

INSTABILITY SATURATION AND NON LINEAR STRUCTURES 
The increase of 1W  and 2W  leads to the saturation of the instability. As a result of the development and 

stabilization of the instability, non-linear structures appear. The study of these structures is of interest. In order to find 
these structures let us examine the stationary case of equations (33)-(34) and integrate once by Z . For the sake of 
simplicity, we assume that 1 2=D D , = / 2   (latitude), = / 4   (longitude), and Prandtl number Pr = 1 . As a result, 

we get a system of nonlinear equations of the following form:  

 
 



22 42 20 001 2
124

20 2

( )2
=

4 2( )

nDk k Ra lfdW
C

dZ k





  


 
, (40) 

 
 



22 42 10 002 1
224

20 1

( )2
=

4 2( )

nDk k Ra lfdW
C

dZ k





  
 

 
. (41) 

Here 1 2,C C  are arbitrary constants of integration. It should be noted that the dynamic system of equations (40)-(41) is 

conservative, and hence is Hamiltonian. It's easy to find it we write down the equations (40)-(41) in the Hamiltonian 
form:  

 1 2

2 1

d dd d
= , =

d d d d

W WH H

Z W Z W
 , 

where the Hamiltonian has the form:  

 1 1 2 2 1 2 2 1= ( ) ( )H H W H W C W C W    (42) 
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The functions 1,2H  are respectively equal to: 

 
 



22 4
2 1,20 0 1,21,20

1,2 24
20 1,2

( )d2
= sin

4 2Pr( )

nk k Ra l Wf
H D

k






  

 
  (43) 

The integral in the Hamiltonian 1,2H  cannot be calculated exactly in quadratures. We used the values of the nanofluid 

parameters Pr = 1, = 0.122, = 5, = 5000n A eR N L  (for 2 3Al O  -water) from the paper [2]. The equations (40)-(41) are 

Hamiltonian thus only fixed points of two types: elliptic and hyperbolic can be observed in phase space. This can be 
checked if we carry out a qualitative analysis of the system of equations (40)-(41). Linearizing the right-hand sides of 
equations (40)-(41) in the neighborhood of fixed points, we establish their type and construct a phase portrait. As a 
result of the analysis, we find the appearance of four fixed points, two of hyperbolic and two of elliptic type. Phase 
portrait of a dynamical system of equations (40)-(41) for the constants 1 = 0.005C  , 2 = 0.005C  and parameters 

= = 2D Ra , 0 0= = 1k  , 0 = 10f  is shown in Fig. 7. 

 
Figure 7. The phase plane of the dynamical system equations (40)-(41) with 1 = 0.05C   and 2 = 0.05C . One can see the presence of 

closed trajectories around the elliptic points and separatrices that connect the hyperbolic points.  

The phase portrait allows us to describe qualitatively the possible stationary solutions. The most interesting 
localized solutions correspond to the phase portrait trajectories, which connect the stationary (singular) points on the 
phase plane. Fig. 7 presents closed trajectories on the phase plane around the elliptic points and separatrices which 
connect the hyperbolic points. Closed trajectories correspond to nonlinear periodic solutions or nonlinear waves. The 
separatrices correspond to localized vortex structures of the kinks type (see Fig. 8). 

 
Figure 8. On the left a nonlinear helical wave, which corresponds to a closed trajectory on the phase plane; on the right a localized 
nonlinear vortex structure (kink), which corresponds to the separatrix on the phase plane. 
 

CONCLUSION 
In this work, we have obtained a new type of large-scale instability caused by the temperature gradient and the 

specific concentration of nanoparticles gradient under the action of a small-scale force with zero helicity 0 0 = 0F rotF
 

 in 
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an obliquely rotating nanofluid. This force maintains small-scale fluctuations in the nanofluid and simulates the action 
of small-scale turbulence with Reynolds number 1R . We assumed that the external force is in the plane ( , )X Y  and 

the gravity field is directed g


 vertically downward along an axis OZ . Applying the method of multiscale asymptotic 

expansions we obtained a closed system of equations for large-scale perturbations of the nanofluid velocity W


. For 

small amplitudes W


 this system of equations describes the instability of the hydrodynamic  -effect, since positive 
feedback appears between the velocity components. We have shown that the instability occurs only when the vector of 
the angular velocity of rotation is inclined from the axis OZ . Moreover, for the Prandtl numbers Pr = 5 , the maximum 
instability increment reaches inclination angles / 5  , and for the Prandtl numbers Pr = 1  inclination angles 

/ 2   . Taking into account the effects of rotation and temperature stratification of the nanofluid together leads to a 
significant increase in large-scale vortex disturbances in contrast to the case of a homogeneous medium [8]. In addition, 

we have obtained a new effect of generation of LSVS in nanofluids at  = 0Ra  associated with an increase in the 
concentration of nanoparticles (see Fig. 5b, curve 2). With an increase in the frequency of the parametric action of an 
external force, the generation of LSVS becomes less efficient. This effect allows you to control and monitor the process 

of generating LSVS. The instability becomes nonlinear with increasing amplitude W


. In this case, the emergence of 
stationary nonlinear vortex structures is assumed. The numerical solutions show that in the non-linear stage, the 
instability saturation leads to specific velocity profiles (kinks) for which the velocity tends to be constant for large 
values of Z . The phase portrait contains elliptic stationary points therefore, there are nonlinear periodic solutions in the 
form of nonlinear Beltrami waves that correspond to closed trajectories. These structures are the result of saturation of 
large-scale instability (see section LARGE-SCALE INSTABILITY). Obtained results can find their applications in 
many problems of laboratory experiments on rotating stratified nanofluids. 
 
  APPENDIX 

A. MULTISCALE ASYMPTOTIC DEVELOPMENTS 
Let us find the algebraic structure of the asymptotic development in various orders of R , starting from the lowest 

one. In order of 3R  there is only one equation:  

 3 3 3= 0 = ( )i P P P X     (44) 

In order 2R  appears the equations:  

 2 2 2= 0 = ( )i P P P X     (45) 

In order 1R , we obtain the more complicated system of equations:  
   

    2
1 1 1 1 3 1 1 1

1
=

Pr
i k i i

nt k i i k i i ijk j kW W W P P W e R e RaT W D                   (46) 

  2
1 1 1 1 1 1 1 1 1=k z B B

t k k k k z z
e e

N N
T W T W T T T

L L
                       (47) 

  1 1 1

2A B A B
k k z

e e

N N N N
T T T

L L        

 2 2
1 1 1 1 1 1

1
=k z A

t k k k
e e

N
W W T

L L
               (48) 

 1 = 0i
iW  (49) 

The averaging of equations (46)-(49) over the fast variables gives the following secular equations:  
  

  
3 1 1 = 0ni i i ijk j kP e R e RaT W D        (50) 

 1 = 0zW  (51) 

In zero order in 0R  we have the equations:  

    2
0 1 0 0 1 0 2 0 0 0 0 0

1
=

Pr
i k i k i i j i

nt k k i i k i i ijk kv W v v W P P v e R e RaT v D F                 (52) 
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  2
0 1 0 0 1 0 0 1 0 0 1=k k z B

t k k k k k k k
e

N
T W T v T v T T T

L
                   (53) 

    0 0 1 0 0 1 0

2B A B A B
z z k k k k z

e e e

N N N N N
T T T T T T

L L L
               

 2 2
0 1 0 0 1 0 0 0

1
=k k z A

t k k k k
e e

N
W v v T

L L
              (54) 

 0 = 0i
iv  (55) 

These equations give one secular equation:  

 2 2= 0 =P P const    (56) 

Let us consider the equations of the first approximation 1R :  

     2
11 1 1 0 0 1 1 1 1 1 1 1

1
=

Pr
i k i k i k i k i i

t k k k k i i kv W v v v v W W W P P P v                    

 

  
1 1 1 12 i j

nk k i i ijk kW e R e RaT v D        (57) 

  
 2

1 1 1 1 1 0 0 1 1 1 1 1= 2k k k k z
t k k k k k k kT W T W T v T v T v T T                    

 

  1 1 1 1 0 0 1 1 1 1
B

k k k k k k k k k k
e

N
T T T T T

L
                         

 

  1 1 1 1 0 0 1 1 1 1
A B

k k k k k k k k k k
e

N N
T T T T T T T T T T

L                      (58) 

  

    1 1 1 1 1 1

2B A B
z Z z Z z Z

e e

N N N
T T T T

L L
                

 
 1 1 1 1 1 0 0 1 1 1 =k k k k z

t k k k kW W v v v                  (59) 

  

    2 2
1 1 1 1

1
= 2 2A

k k k k k k
e e

N
T T

L L
            

 
 1 1 = 0i i

i iv W   (60) 

The secular equations follow from this system of equations:  

  1 1 1 1 1 1 1 1

21
= , = ,

Pr
k i k B A B

k i k Z Z Z
e e

N N N
W W P W T T T

L L
                

 
 1 1 1= 0, = 0k i

k iW W     (61) 

Secular equations (61) satisfy the following field geometry:  

  1 1 1 1 1 1 1 1= ( ), ( ),0 , = ( ), = ( ), =x yW W Z W Z T T Z Z P const        


 (62) 

In the second order 2R , we obtain the equations:  

  2 1 2 0 1 1 0 0 1 1 0 2 1

1
=

Pr
i k i k i k i k i k i k i

t k k k k k kv W v v v W v v W v v v W                 
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  2
2 0 2 0 2 2 2= 2i i j

ni i k k k i i ijk kP P v v e R e RaT v D            (63) 

 2 1 2 1 0 0 1 0 1 1 0 2 1 2 =k k k k k k z
t k k k k k kT W T W T v T v T v T v T v                  

 2
2 0= 2k k kT T      (64) 

 1 2 1 0 0 1 0 1 1 0(B
k k k k k k k k k k

e

N
T T T T T

L
                       

 2 1 1 0 0 1)k k k k k kT T T            

 1 2 1 0 0 1 0 1 1 0(A B
k k k k k k k k k k

e

N N
T T T T T T T T T T

L                    

 2 1 1 0 0 1)k k k k k kT T T T T T          

    2 0 2 0 2 0

2B A B
z Z z Z z Z

e e

N N N
T T T T

L L
              

 2 1 2 1 0 0 1 0 1 1 0 2 1 2 =k k k k k k z
t k k k k k kW W v v v v v                        (65) 

    2 2
2 0 2 0

1
= 2 2A

k k k k k k
e e

N
T T

L L
           

 2 0 = 0i i
i iv v   (66) 

After averaging the system of equations (63)-(66) over the fast variables, it can be seen that there are no secular terms in 
the order 2R . Finally, we come to the most important order 3R . In this order, the equations are following  

  3 1 1 3 0 2 1 1 0 0 1 1 1 1

1

Pr
i i k i k i k i k i k i k i

t T k k k k k kv W W v v v W v v v v v v W                    

    2
12 0 3 1 3 1 3 1 1= 2k i k i i i i

k k i i k k kv v v W P P P v v W                 

  
3 3 3

j
ni i ijk ke R e RaT v D     (67) 

 3 1 1 3 1 1 0 2 0 0 1 1
k k k k k

t T k k k k kT T W T W T v T v T v T                 

 2
1 1 2 0 3 1 3 3 1 1= 2k k k z

k k k k k kv T v T v T v T T T                 

 1 3 1 1 0 2 0 0 1 1 1 1(B
k k k k k k k k k k k k

e

N
T T T T T T

L
                           

 2 0 3 1 1 1 1 1 0 0 1 1)k k k k k k k k k k k kT T T T T T                        

 1 3 1 1 0 2 0 0 1 1 1 1(A B
k k k k k k k k k k k k

e

N N
T T T T T T T T T T T T

L                       (68) 

 2 0 3 1 1 1 1 1 0 0 1 1)k k k k k k k k k k k kT T T T T T T T T T T T                   

    3 1 3 1 3 1

2B A B
z Z z Z z Z

e e

N N N
T T T T

L L
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 3 1 1 3 1 1 0 2 0 0 1 1 1 1 2 0
k k k k k k k

t T k k k k k k kW W v v v v v                              

    2 2
3 1 3 3 1 1 3 1 1

1
= 2 2k z A

k k k k k k k
e e

N
v v T T T

L L
                      (69) 

 3 1 = 0i i
i iv v   (70) 

Averaging the system of equations (67)-(70) over the fast variables, we will obtain the basic secular equations that 
describe the evolution of large-scale perturbations:  

    11 0 0 1

1
=

Pr
i k i i

T k iW v v P W       (71) 

      1 0 0 1 1 1 1 1=k B A B
T k k k k k

e e

N N N
T v T T T T T

L L
               (72) 

  1 0 0 1 1

1
=k A

T k
e e

N
v T

L L
          (73) 

 
B. SMALL-SCALE FIELDS IN THE ZERO ORDER IN R  

Let us consider Eqs. (52)-(55) for the zeroth order in R  derived in Appendix A. By introducing the notation for 
the operators  

    1 2 2
1 1

2
= Pr , = ,k k B A B

W Tt k t k z z
e e

N N N
D W D W

L L


               

  1 2
1= ,k

t k eD W L


      

we can write the system of equations (52)-(55) as  

   
0 0 0 0 0 0=i j i

W ni i i ijk kD v P e R e RaT v D F       (74) 

 
0 0 0= z B

T z
e

N
D T v

L
   (75) 

  2
0 0 0= z A

e

N
D v T

L
     (76) 

 0 = 0i
iv  (77) 

Small-scale oscillations of temperature and volume fraction of nanoparticles are easily found from the equations (75)-
(76):  

 

 
  

2

2
0 0 0 0 2

= , = , =

B A
Tz

z ze e A B
T z

e

N N
D D

L L N N
T v v L D D

L
L L




   

   
 

 (78) 

Let us substitute (78) in (74) and using the condition of solenoidality of the fields 0v


 and 0F


, we obtain the pressure 

0P :  

   
1 2 30 0 0 0=P P u P v P w   (79) 

Where we introduce the designations for operators  

  2 3 3 1
1 22 2

= , = ,z y x z
D D D D

P P
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2

1 2
3 2

2 2

=

A B
Tz z z

y x e e
n

N N
D D

D D L L
P R Ra

L L


   

                 


 
 

 

and velocities: 0 0=xv u , 0 0=yv v , 0 0=zv w . Using the formula (79), we can eliminate the pressure from the equation (74), 

and, as the result, we obtained a system of equations for finding the zero-order velocity field:  

 

   

  

  

011 12 130 0 0

21 22 230 0 0 0

31 32 330 0 0

=

=

= 0

x

y

d u d v d w F

d u d v d w F

d u d v d w

    


 

 (80) 

The components of the tensor  ijd  are  
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As it is known, the solution of the system of equations (80) is found by Cramer's rule:  

           22 33 32 23 13 32 12 330 0 0

1
= x yu d d d d F d d d d F  


 (81) 

           23 31 21 33 11 33 13 310 0 0

1
= x yv d d d d F d d d d F  


 (82) 

           21 32 22 31 12 31 11 320 0 0

1
= x yw d d d d F d d d d F  


 (83) 

Here,   is the determinant of the system of equations (80), which in an expanded form is  
  

                  
11 22 33 21 32 13 12 23 31 13 22 31 32 23 11 21 12 33= d d d d d d d d d d d d d d d d d d       (84) 
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Let us write the external force 0F


 in the complex form  

 0 02 1
0 = . .

2 2
i if f

F i e j e c c
  

  
 (85) 

Then all operators in formulae (81)-(84) act from the left on their eigenfunction:  

      1 1 1 2 2 2
, , , , , , , ,0 0 0 01 1 1 2 2 2

* *
= ( , ) = , = ( , ) = ,, , , ,

i i i i i i
W T W T W W T W T WD e e D k e D D e e D k e DT T

     
      

 
 

 * *1 1 1 2 2 2
0 0 1 0 0 2= ( , ) = , = ( , ) = ,

i i i i i i
e e k e e e k e
             

 
 (86) 

where the new notation is introduced  

  2 1 2 1
0 0 0 1 0 0 0 2 1 1 2 11 2

* *
= Pr ( ), = Pr ( ), = , = ,x y

W WD k i k W D k i k W W W W W  
      

  2 2
0 0 0 1 0 0 0 21 2

* *
= ( ), = ( ),T TD k i k W D k i k W      

  1 2 1 2
0 0 0 1 0 0 0 21 2

* *
= ( ), = ( ).e eD L k i k W D L k i k W        

      * *
* 2 * 2

1 21 1 2 21 1 2 2

* * * *
= , = ,W W W WD D A D D D A D

         
   

 

   







2
01,2

*

1,2 1,2
1,2

1,2

*

*
=

*

A
T

e
W n

T

N
D k

L Ra
A D R

L D


    

Here and below, we denote the complex-conjugate quantities by an asterisk. When performing the subsequent 

calculations, some of the components in the tensors  ijd  become zero. Taking this fact into account, velocity fields of 
the zero approximation has the following form:  

 


 

*

20 2
0 03 04*

2
2 22

= . . =
*2

i

W

f A
u e c c u u

A D D

  


 (87) 
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10 1
0 01 02*

2
1 11

= . . =
*2

i

W

f D
v e c c v v

A D D

  


 (88) 

 
   

0 01 21 2
0 01 02 03 04* *

2 2
1 21 21 2

= . . =
* *2 2

i i

W W

f fD D
w e e c c w w w w

A D D A D D

      
 

 (89) 

It is easy to see that the component of the rotation parameter 3D  also drops out. 

 
C.  CALCULATION OF THE REYNOLDS STRESSES 

To close the system of equations (31)-(32) that describe the evolution of the large-scale velocity fields 1W


, it is 

necessary to calculate the following correlators:  

        * * * *31
0 0 01 01 01 01 03 03 03 03= =T w u w u w u w u w u    (90) 

        * * * *32
0 0 01 01 01 01 03 03 03 03= =T w v w v w v w v w v    (91) 

Substituting the solutions for the small-scale velocity fields (87)-(89) obtained in Appendix B, into the equations 
(90)-(91), we can find the following expression for the correlators:  
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 (93) 

Then with the definition of the operators  1,2WD  and 1,2A , we can write down the series of useful relations for the 

calculation of 31T  and 32T : 
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Using these relations, we can obtain the following expressions:  
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Substituting (94) in (92)-(93) we can find expressions for the Reynolds stresses in the general form:  
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 (95) 

 
 



22 42 21 0 032 0 1
24
10 1

( )
= ,

2 ( )

nD k k Ra lf
T

k





  


 
 

where   2
2

1,21,2 1,21,2= WD A D  . Expressions for 
1,2nl  are:  
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. 

If the Prandtl number of the nanofluid is approximately equal to one = 1Pr , then the expressions for the 
components of the Reynolds stresses are simplified:  

 
 

     

22 2 4
20 2 0 031 2

2 2 2 24 4 2 2 4 2 2 4 2
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, (96) 

 
 

     

22 2 4
10 1 0 032 1

2 2 2 24 4 2 2 4 2 2 4 2
1 1 1 10 0 1 0 1 0 11 1

( )
=

2( )(( ) 2( )( ) ( ) ( ) 2 )

n

n n

f D k k Ra l
T

k k D Ra k D Ra r k p D



   

  


         
. (97) 

 
Here the values of the coefficients 

1,2nr  and 
1,2np  are taken with = 1Pr . 
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ВИХРОВЕ ДИНАМО В СТРАТИФІКОВАНІЙ НАНОРІДИНІ, ЩО ПОХИЛО ОБЕРТАЄТЬСЯ 
З ДРІБНОМАСШТАБНОЮ НЕСПІРАЛЬНОЮ СИЛОЮ 

Михайло Й. Коппa, Анатолій В. Турc, Володимир В. Яновськийa,b 
aІнститут монокристалiв, Національна Академія Наук України 

пр. Науки 60, 61001 Харків, Україна 
bХарківський національний університет імені В.Н. Каразина 

майдан Свободи, 4, 61022, Харків, Україна 
cUniversite Toulouse [UPS], CNRS, Institute of Research for Astrophysics and Planetology 

9 avenue du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France 
В роботі отримана великомасштабна нестійкість гідродинамічного  -ефекту в стратифікованій нанорідині, що похило 
обертається, з урахуванням ефектів броунівської дифузії і потоку частинок під дією градієнта температури (термофорезу). 
Нестійкість викликається дією зовнішньої дрібномасштабної неспіральної сили, яка збуджує дрібномасштабні коливання 

https://doi.org/10.1016/0167-2789(87)90026-1
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швидкості з нульовою спіральністю і малим числом Рейнольдса. Нелінійні рівняння для великомасштабних рухів отримані з 
використанням методу багатомасштабних асимптотичних розкладів за малим параметром (числом Рейнольдса). Досліджена 
лінійна великомасштабна нестійкість типу гідродинамічного  -ефекту в залежності від параметрів обертання D , 

температурної стратифікації Ra  і концентрації наночастинок  nR . Отриманий новий ефект генерації великомасштабних 

вихрових структур в нанорідині при  0Ra  , пов'язаний зі збільшенням концентрації наночастинок. Максимальний 
інкремент нестійкості досягається при кутах нахилу / 5   для чисел Прандтля Pr = 5 , а для чисел Прандтля Pr = 1   при 
кутах нахилу / 2  . Встановлено, що зміна частоти параметричного впливу дозволить контролювати і відслідковувати 
процес генерації великомасштабних вихрових структур. Показано, що циркулярно поляризовані вихори Бельтрамі 
виникають в нанорідині в результаті розвитку нової великомасштабної нестійкості. В роботі досліджується режим 
насичення великомасштабної нестійкості в стратифікованій нанорідині, що похило обертається з зовнішньою 
дрібномасштабною неспіральною силою. У стаціонарному режимі була отримана динамічна система рівнянь для 
великомасштабних збурень поля швидкості. Отримані чисельні рішення цієї системи рівнянь, які показують існування 
локалізованих вихрових структур у вигляді нелінійних хвиль Бельтрамі і кінків. Профіль швидкості кінка має тенденцію 
бути постійним при великих значеннях Z.  
КЛЮЧОВІ СЛОВА: стратифікована нанорідина, великомасштабна нестійкість, сила Коріоліса, багатомасштабні 
асимптотичні розкладання,  -эфект, локалізовані вихрові структури 


