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In this work, a large-scale instability of the hydrodynamic « -effect in an obliquely rotating stratified nanofluid taking into account
the effects of Brownian diffusion and particle flux under the influence of a temperature gradient (thermophoresis) is obtained. The
instability is caused by the action of an external small-scale non-spiral force, which excites small-scale velocity oscillations with zero
helicity and a low Reynolds number. Nonlinear equations for large-scale motions are obtained using the method of multiscale
asymptotic expansions by a small parameter (Reynolds number). A linear large-scale instability of hydrodynamic « -effect is

investigated depending on the parameters of rotation D , temperature stratification Ra, and concentration of nanoparticles Ri. A

new effect of the generation of large-scale vortex structures in nanofluid at Ra =0 is associated with an increase in the concentration
of nanoparticles is obtained. The maximum instability increment is reached at inclination angles 6 = 7 /5 for the Prandtl numbers
Pr=35, and for the Prandtl numbers Pr=1 at inclination angles &~z /2 . It has been found that the frequency changing of the
parametric impact will make it possible to control and track the generation of large-scale vortex structures. It is shown that circularly
polarized Beltrami vortices appear in nanofluid as the result of new large-scale instability development. In this paper, the saturation
regime of large-scale instability in an obliquely rotating stratified nanofluid with an external small-scale non-spiral force is
investigated. In the stationary regime was obtained a dynamic system of equations for large-scale perturbations of the velocity field.
Numerical solutions of this system of equations are obtained, which show the existence of localized vortex structures in the form of
nonlinear Beltrami waves and kinks. The velocity profile of kink tends to be constant at large Z values.

KEY WORDS: stratified nanofluid, large-scale instability, Coriolis force, multiscale asymptotic expansions, « -effect, localized
vortex structures

In recent years there has been considerable attention to the problem of transfer processes in nanofluids, which
describe a two-phase system consisting of a carrier medium (base fluid or gas) and nanoparticles with characteristic
sizes from 1 to 100 nm [1]. Typical base fluids are water or some organic fluids, polymer solutions etc., and
nanoparticles are usually particles of metals (Al,Cu) , metal oxides (A/,0;,CuO). It is obvious that the effective use of

nanofluids will become possible only when carrying out the theoretical studies of transfer processes. Special attention
should be paid to the processes of formation and evolution of large-scale structures that affect heat transfer in
nanofluids.

In works [2-4] were investigated conditions for convective structures (convective cells) formation in rotating
layers of nanofluids taking into account the effects of thermophoresis and Brownian motion of particles. In [2] it was
shown that the temperature gradient and rotation have a stabilizing effect, while the volume fraction of nanoparticles
and the ratio of nanoparticles density to the base fluid have a destabilizing effect on the system. In [3] was carried out a
weakly nonlinear analysis of stability in a horizontal rotating nanofluid layer using the minimum order of the Fourier
series expansion. The values of heat transfer Nu and transfer of nanoparticle concentration Nu, oscillate with time

initially strongly but with time reach a stationary value. The parameters of the Rayleigh number concentration R and

the Lewis number L, increase the heat and mass transfer rates. An increase of the rotation parameter (Taylor number)

leads to a decrease of the heat and mass transfer rates. In paper [4] was investigated the effect of variable gravity on the
occurrence of thermal convection in a horizontal layer of rotating nanofluid for a porous medium. It was also shown
there that a decrease in the gravity parameter has a stabilizing effect, while an increase in the gravity parameter has a
destabilizing effect on the stationary convection. In this case, the critical Rayleigh number increases with an increase of
the Taylor number, which indicates the suppression of the onset of convection. The influence of a periodic external
action leads to the formation of oscillate convective structures. Therefore, it becomes possible to control the process of
heat transfer through the cells, i.e., in the heat valve mode. Here it becomes possible to control the switching between
high and low thermal conductivity modes of the cell [5].

Unlike preceding articles [2-5] in this paper we investigated the large-scale vortex structures (LSVS) formation
mechanism in a rotating layer of stratified nanofluid under the influence of an external small-scale force. The generation
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of LSVS in a Newtonian rotating and temperature stratified fluid under the action of a small-scale force with zero
helicity E)rotﬁo =0 was considered in [6]. A necessary condition for the occurrence of large-scale instability

considered in [6] is the oblique rotation of the fluid.
The aim of this work is to study generation and nonlinear evolution of vortices fields in a rotating stratified

nanofluid under the action of the nonhelical force }7“0 Similartly to study [6], we also will use a mathematical

formalism based on the asymptotic method of multiscale expansions in the small parameter of the Reynolds number

r=20 <117,
A

0

PROBLEM STATEMENT AND BASIC EVOLUTION EQUATIONS
We consider an infinite horizontal layer of incompressible nanofluid, which rotates with constant angular velocity

Q= (91,92,93) . The vector of angular velocity of rotation Q is inclined concerning to the plane (X,Y) as shown in
Fig. 1.

o)}
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Figure 1. The angular velocity Q is inclined to the plane (X,Y) where the external force 17"0 is located.

The nanofluid is enclosed between two parallel planes z=0 and z=h, where the temperature and volume
fraction of nanoparticles are kept constant:

=T, o=@, at z=0, @)
T=T,p=¢, at z=h,

here T, > T , ¢, > ¢,. We assume that the both boundaries surfaces are free. The hydrodynamic equations of a viscous
incompressible rotating nanofluid in the Boussinesq approximation has the following form (see for example [2-4]):

Sl _ - e
Poo [5+V~VVJ=—VP+W2V+[WP +(1=)py (1= BT =T, NG +2pyV x QU+ F, 2
or - VT-VT
(po), (5+ V-VT) =k, VT +(pc), [DBV(p-VT+DT J 3)
op = 2 D, _,
4V -Vo=D,Vp+—LV’T 4
P p=D;V'p T “)
VIV =0 (%)

Equations (2)-(5) are supplemented with boundary conditions for the velocity of nanofluid motion. The condition
of impermeability of layer boundaries in the vertical direction and the absence of shear stresses at the boundaries of the
layer give the following boundary conditions for the velocity

V. _

2
4

V.=0,

z

0, at z=0,h (6)
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Here 4 is the viscosity of nanofluid, p,, = @p, +(1-¢)p, is the nanofluid density at the reference temperature 7,,
p, 1s the density of the nanoparticles, p, is the base fluid density at the reference temperature 7,, ¢ is the volumetric
fraction of nanoparticles, g is the thermal expansion coefficient, ¢ = (0,0,1) is a unit vector in the direction of the axis
OZ, g is the gravitational acceleration vector directed along the Z axis: g =(0,0,—g) . (pc),,(pc), are the effective
heat capacities of the base fluid and nanoparticles. D, and D, denote the Brownian diffusion coefficient and

thermophoretic diffusion, respectively. The signs of the coefficients D, and D, are positive and they are respectively

D - k,T D - ﬂ 0.26kf P
P 3mud,” T\ oy )\ 2k vk, )

where d, is the diameter of nanoparticles, &, is the Boltzmann's constant, &,k are the thermal conductivity of base

equal:

nanofluid and nanoparticle, x, is the viscosity of base nanofluid.

The external small-scale force FO is included in the Navier-Stokes equation (2). This force simulates the excitation

source of small-scale and high-frequency pulsations of the velocity field \70 in the medium with a small Reynolds

Vol . = . .
number R =->% <« 1. The main role of the force F| is to maintain a moderate level of small-scale movements in the
0

presence of dissipation. An explicit form of the external force 17"0 is given below. Let us pass in equations (2)-(5) and
boundary conditions (1), (6) to dimensionless variables, which we denoted by the asterisk (*) :

* PR — * * * VV:Vsl/zh * t- g * W2
R s W G iy R S UL ST T
h X h pay
. O . p- . T-T = = I k
Q:£’¢:¢(pd’]": “,E,=Foh X = S
Q, P =P T,-T, X (po),

Omitting the asterisk (*) in the system of dimensionless equations (2)-(5) and boundary conditions (1), (6) we get

PL(Z—VH?.VVJ:—VP+V217—éRn¢—éRm+éRaT+x/E(l7xﬁ)+Fo ™
T t
5_T+17.VT:V2T+£(V¢;~VT)+M(VT-VT) (®)
ot L, L,
8(0 — 1 2 NA 2
——+V-Vo=—V’p+—2V°T 9
ot 4 L, ? L, )
V-V =0 (10)
V.
=l =0V, =—==0 a z=0, (11)
VA

2

oV,
T,=0.9,=1V.=—=0 a z=1,

2
/A

where Pr=

_ (P, =P )0, 9.8l
Py ! uy,
r _P2utp (-0, )gh’

m

is the Prandtl number, R is the concentration Rayleigh number,

T,-T n
is the basic density Rayleigh number, Ra = w
MY, HX

is the thermal Rayleigh
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ah' o} . . . ), .
number, 7 a:(’—z'oo0 is the Taylor number, L, =y, /D, is the Lewis number, N, = (g, —(pd)-(p )y is the
u ' (po),
. . N D.(T,-T) . . e .
modified particle density increment, N, = ————"— is the modified diffusivity ratio.
DT, (9, — 9,

We represented all quantities in equations (7)-(10) as the sum of the ground (stationary) and perturbed states:
V=V.T=T,)+T,p=0,(2)+¢,P=F(2)+P. (12)
After substituting (12) into equations (7)-(10), we find the evolution equations for perturbed quantities ¥',7", ¢’

_(aaTVJ’_V VVJ__VPI+V2Vv_éRnwl+é'RaTl+ Ta(ﬁlXé)J’_Fb

Pr
o yyrs v gy, B(w w1y Nof 4o, dT ar | de di, ), (13)
ot dz L, dz dz dz dz
Ny (VT -VT')+—2NANB ar di,
L dz dz

e e

6_;0_”7. Vo +Vz'%ziv2(p' +ﬂv2]"
ot dz L L

against the background of the ground equilibrium state given by constant gradients of temperature and volume fraction
of nanoparticles:

dP,
= __b_Rm _Rn¢b +Ra7})
dz

d*T, N,(dg, dT,\ N,N,(dT,Y
():_21?+_B ae, ¢y y A BT (14)
dz dz dz L, dz
d*p d’T,
0=—"+N,—L.
dz* 4 d7?

Using the boundary conditions (11), from the equations (14) we find solutions for 7, =1-z and ¢, =z, which have a
linear dependence on z .
Let the external force FO have the following properties:

> Eop = = =Xt
divF, =0, FyrotF, =0, rotF, #0, F, = f,F| —;— (15)
ﬂ'O ZLO
where A, is the characteristic scale, ¢, is the characteristic time, and f, is the characteristic amplitude. The external

force 1’30 is specified in the (X,Y) plane orthogonal to the rotation axis and satisfy all properties (15), i.e.

o =Jo (fcos@ +jcos¢1), ¢ =kyx—ayt, ¢, = kyy -yt (16)

Here w,,k, are the frequency and wavenumber of the external parametric action, respectively. A simple physical form

of an external force (16) can be easily implemented in laboratory experiments. Let us rescale the variables in the
equations for perturbations (13):

As a result, we obtained the following system of equations for perturbations
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v
P— 6—+RV .VV |=-VP+V*V —éR.p+ERal +V x D+F, (17)
T
o RV NT-V. =V T+R—B(V;o VT)+—[d—T—d—¢)+ (18)
ot L, dz dz
+R——= NNy (VT-VT)- 2NN, dT
L, . dz
5(0 74 1 2 NA 2
—+RV -Vo+V,.=—Vp+—=VT 19
Py p+V. L @ L 19)
where the new notation is introduced
20

D=""p, 420, R.=R, -2, Ra=Ra-A.
7

Let us consider the Reynolds number R for small-scale motions to be a small parameter of the asymptotic
expansion and assume D,R.,Ra to be arbitrary parameters that do not affect the expansion scheme. We consider the
external force as being of small scale and high frequency. This force leads to small scale fluctuations in velocity. After
averaging, these rapidly oscillating fluctuations vanish. Nevertheless, due to small nonlinear interactions in some orders
of perturbation theory, nonzero terms can occur after averaging. In the next section, we consider in detail how to find
the solvability conditions for the multi-scale asymptotic expansion, which define the evolution equations for large-scale
perturbations.

EQUATIONS FOR LARGE-SCALE FIELDS
In this section, we consider in more detail the application of the method of multiscale asymptotic expansions to the
problem of nonlinear evolution of large-scale vortex disturbances in an obliquely rotating nanofluid. The method of
asymptotic equations is well presented in works [6-7]. Following these papers we introduce spatial and temporal
derivatives in equations (17)-(19) in the form of asymptotic expansions:
0

5 R, ai_) 0, + RV, (20)
X

whered, and 0, denote derivatives concerning fast variables x, =(%,.,%,) and V,,d, derivatives concerning slow
variable X :()? , T ) Variables x, and X can be called small-scale and large-scale variables. To construct the

nonlinear theory, the variables ¥, T, ¢, P are presented in the form of asymptotic series:
Lo 1 - ~ ~ ~ -
V(X,0)= EW’I (X)+V, + RV, + RV, + RV, +
T(%,t)= —T (X)+T,+RT +R’T, + R’T, +-- 1)

o
PEN =20 (X)+o, +Re +R’p, +Rp, +

P(x) :%33 +%R2 +%R1 +P, +R(P+Pi(X))+R*P,+R’P, +--

By substituting developments (20)-(21) into the initial equations (17)-(19) and then gathering together the terms of the
same order, we obtained the equations of the multi-scale asymptotic development and wrote down the obtained

equations up to order R’ including. The algebraic structure of the asymptotic development of equations (17)-(19) in

various orders of R is given in Appendix A. It is also shown that in the order R’ we got the main secular equation or
equation for the large-scale fields in a stratified nanofluid:
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é(@TW_"] v, (ﬁ)) — V. P+ AW (22)
N, N,N
0,T +V, (ngo) = AT, + 5 (V0 VT, )+ 4= (V, TV, T ) (23)
o, +V, (Vi )= LLM)_] +%AT_1 24
Equations (22)-(24) are supplemented by the secular equations obtained in Appendix A:
~V,P,~¢,Rup., +e¢,Ral , +&,W,D, =0, (25)
Wi=0, VW =0, (26)
iW-klvkw-il = _viP—l’ (27)
Pr
N, 2NN,
W—k]VkT—l = L—B(GZT_] _az(p-l )_ 4t aZT—]’ (28)
WiV, o, =0. (29)

The influence of small-scale oscillations excited by the external force F, on the evolution of large-scale motion W, is
described by the equation (22). It can be seen from this equation that the large-scale temperature 7", and the volume
fraction of nanoparticles ¢, do not influence on the dynamics of the large-scale velocity field Wfl . Therefore, we
restrict ourselves to studying the equation (22). This equation takes on a closed-form after calculating the correlation
function - Reynolds stress Vkm. The calculation of the Reynolds stress will be greatly simplified if we use the
«quasi-two-dimensional» approximation, where the horizontal scales significantly exceed the vertical ones. As a part of
this approach, the large-scale derivatives according to are more preferable, i.e
V, = i > i, i
0Z 0X oY

and the geometry of large-scale fields is following:
W, =(W(2).W(2).0).T, =T,(2),¢., = ¢.,(Z). P, = const (30)

Then the equation (22) is simplified and takes the following form:

O =V, 4V, (vevy | =0, W3 =W, &)

O, =V, 4V, (vivy ) =0, W3 =W, (32)

Equations (31)-(32) describe the evolution of large-scale eddy fields W . In order to obtain the final closed form of

equations (31)-(32) we have to calculate the Reynolds stresses V, (vé‘ v ) . This shows that we need to find solutions for

the small-scale velocity field ¥,. Appendix B contains a detailed technique to calculate the velocity field in a rotating
stratified nanofluid. Further, in Appendix C solutions for small-scale velocity field v, are used to find the Reynolds
stresses. Then equations (31)-(32) take a closed form:

~2 —
f2D k2 (k! + @2 —Ra—1, )
@, VW, =-v, | = 2

— (33)
2(ki +@2)A,
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JEDK (k) +or —Ra~1,)

0, =V, )W, =V, (34)

4 ~2
2(ky + o1 )A,
We used here the following notations:

~2
o2 = (@, _kom,z)zy A|,2 =

L ~2 L ~2
(kg +Pr 2 (01,2) kg +Pr 2 w12 + pory —2Ra-
kg + w12 kg + w12

+D!

12>

4 2

L,~2  —~ k'+Pr wi,

+2Df2 [kg —Pr?wi»—Ra 0—~2 P,
ky + iz

~ ~ N ~ ~
(k' + @i )Lk —Pr aora) + T (LR P @12k —an k2 (1+Pr L))

W = _2kn . B~2 > +
b2 (kg +@12)(L kg + @12)
2N, N2\ ~ ~ N
k§[1+ LA+L2AJ+ 1.2 a)12,2+k02Le‘(1+LAJ
+Ry- — —— +2R.Ra- — ——,
(kg +601,2)(L;2k(;1 +@12) (k(;1 +C()1,2)(L:,2k(;1 +m12)
4 2 14 -1 72 Nyoa oips a2 -1 -1
(ky + w12)(L, ky +Pr a)l,z)+L—k0 (L ky +Pr~ w12+ w2 (Pr L, —1))
pnl,Z =—R- < 5

(k2 + o2 L7k +10)

~2

L'+ Nfl{kng - o
e L e

_ . ky
= Rn .

M2

J Sk + ann).

B =2
ij: + w2

Thus, in this section, we obtained the closed equations (33)-(34), which are called the equations of nonlinear
vortex dynamo in obliquely rotating stratified nanofluid under the parametric action of a small-scale non-spiral force.
The large-scale fields decay due to viscous dissipation if rotation (Q = 0) or external force ( f, = 0 ) disappears. For the

limit of a homogeneous fluid Ra=R, =0 and the absence of nanoparticles, the equation (33)-(34) coincide with the
results of [8]. At first, we will consider the stability of small perturbations of fields (linear theory).

LARGE-SCALE INSTABILITY
Equations (33)-(34) describe the nonlinear dynamics of large scale disturbances of the vortex field W= (Wl,Wz) .

Therefore it is interesting to clarify the question of the stability of small perturbations of the field # . Then for small
values (W1 , Wz) the equations (33)-(34) are linearized and can be reduced to the following system of linear equations:

aTVV2 _V?/Vz +a1VZVV1 =0

here ¢, , are the coefficients of the linear vortex dynamo:

2 Dk A Ra R,

4 2 >
0(1,2) 0(1,2)

0+a)0 -
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R= 2/:0600122412 _ Ry 15 +agbo +21§Oa)00126 ’ (36)
(kg + @) aO(kg +a)§) ao ky + @,

Mg = (ki +Pr? }) +2(DY, — &, Ra)(ky —Pr” @})+&,(D}, — Ra)’ +&,D!, +

a _ ~ da
+—2(ky +Pr” @) 2D}, Rn —,
a4 , a

Ay, = 4k, Pr (ki + Pr2 ) —2[2ky@, Pr (DY, — & Ra) — & Ra(k; —Pr™ o} )] -

asb, —bsa,
——.

b, —b -
L2 72 (k4 1 Pr @) + 2k, Pr Z—‘* 2D Ry =
0

0

_51 (D122 _Ra)2 _§£thz -

a,

Here the coefficients aﬁ,bﬁ,glo,lso,éo,f] ,ef(;,;',as ,bs,a,,b,,a,,b;,a,,b,.a,,b,,a,,b, included in (36) have the form:

N @,
a, = (ki +o))| L' +—2| kL' —— | |,
6 ( 0 O)( e L ( 0 e koz

e

2 2 2
by = 24 (44 +w§)—2k0w0[L; +%[]Z—°—2’—3D

™0

ki +Pr @} . 2k;w,(1-Pr?)
2 251

ky + @} (k) +a})

ao = L2k} + @, bo = 2k, &, =

_ w; (1-Pr?)

2w, (1—Pr - .
— - ko Pr ), a, =-2R.a, +Ria2 +2a,R. Ra,
ky +

(ky +@;)’

& &

b, = 2Rub, + Rob, +2b,RuRa, a, = (k! + & )(L'k! —Pr ) +

+%k02 (Lk; —ajky (1+Pr '+ Pr' L)), b, = 2k, (Pr™ (k) +w))— L'ky + @} Pr)+
2 N’
+2k,@,(1+Pr '+ Pr™ L;l)%, a, =k, [1+%+L—;j+w§, b, =2k,®,,

e e e

a =0} +L'K; (H%} b, =bu.a, = () + LK + @),

e

by = 2k, (ki (1+ L) +267), a5 = (k! + &} )(k! L + ? Pr)+

+%k§ KL+ o} (Pr(1+ L)) -1)),

e

e

b, =2k, {kg (L' +Pr)+ 2] Pr”’ +%k§ (Pri(+L)- 1)}.

We choose perturbations (W1 , Wz) in (35) in the form of plane waves with the wave vector K |OZ ,i.e.

w, = AW1 exp(I't)sinKZ, W, = AW2 exp(I't)cos KZ (37)

The solutions (37) describe a circularly polarized plane wave whose amplitude increases exponentially with time. Such
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waves are called Beltrami waves because the large-scale velocity field (37) satisfies the Beltrami flow under which the
following condition is fulfilled:

W xrotW =0
Substituting (37) into the system of equations (35) we obtained the dispersion equation:
(F+K?) —aa,K* =0 (38)
From here we found:
r=+JoaK-K* (39)

Solutions (39) show the existence of instabilities for large-scale vortical perturbations when ¢, > 0. When o, <0,

damped oscillations arise with frequency @, =./a,a,K instead of the instabilities. The maximum increment of
ValaZ
2

loop between velocity components. It should be noted that in the linear theory, the coefficients ¢, «, do not depend

aa, .
L2 is reached on the wavenumber K =

max

instability I' . =

. Coefficients «,, a, give a positive feedback

on field amplitudes but depend only on dimensionless parameters D, ,, Ra, Pr, R, N 4»L, and the external force
amplitude f,. Let us analyze the dependence of these coefficients on the dimensionless parameters assuming, for
simplicity, that the dimensionless amplitude of the external force f, is equal to f, =10. Fixing the level of

dimensionless force means the selection of a certain level of the stationary background of small-scale and fast
oscillations. As for the coefficients ¢, «,, instead of the Cartesian projections D, and D, it is convenient to use their

projections in the spherical coordinate system (D,@,0) (see Fig. 2). The coordinate surface D = const is the sphere,
0 is the latitude 0 €[0,7] , ¢ is the longitude ¢ €[0,27]. Let us analyze the dependence of the coefficients «,, c,
on the effects of rotation, stratification and concentration of nanoparticles. Then we assumed D, = D, for simplicity
that corresponds to a fixed value of longitude ¢ =7 /4+ zn, where n=0,1,2..k, k is an integer. In this case, the
amplification coefficients of the vortex perturbations are, respectively, equal to:

g . k} A(6)
a,:al=a2:T°\EDsm9 0 [R+AO(6)(R0—1)

It should be noted that at inclination angles (6 =0, & = ) vortex disturbances are not generated since a,, =0. It

is also interesting to find out how the coefficient &, depends on the inclination angle @ of the nanofluid rotation axis.

Z

0

Figure 2. Relation of Cartesian projections of rotation parameter D (or angular rotation velocity ) with their projections in a
spherical coordinate system.

This dependence ¢, (¢) is shown in Fig. 3 by a solid line obtained for fixed values
D= 2,1?21 =2,ky=w,=1,Pr= 5,73;« =0.122, N, =5,L, =5000 . The values of the nanofluid parameters Pr,1~€n,NA,Le
(AL, O;-water) are taken from [2]. As seen from Fig. 3 a maximum value of «,, for nanofluid is inclination angle

0 ~x/5+7n,and a minimum value for 6

max min

~ 7/ 2+ zn . The dashed line in Fig. 3 a corresponds to the dependence
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o, (0) on the case of a pure fluid with the Prandtl number Pr =5. Graphs Fig. 3a shows that the maximum coefficient
a, =(a, )kn _, for a pure fluid is greater than for a nanofluid. This conclusion remains valid for the Prandtl numbers

Pr=1. In this case, the maximum coefficients &'”’ in nano- and pure fluid are at inclination angles @~ 7 /2+7zn

f
(see Fig. 3b).
a) i b)
0('nf - s nf
A e 15 L .
0|
‘ N | 10 !
10 3 . g
/ : 5
0 - — ‘ 0 i
0 T ®m 3T ST ML § 0o T 1T 31 T St 3N R g
8§ 4 8 2 8 4 8 8 4 8§ 2 8 4 8

Figure 3. The solid line shows the dependence of the coefficient ¢, for nanofluid on the inclination angle @ and the dashed line
shows the dependence of the coefficient ¢, for the pure liquid on the inclination angle €. Graphs a) and b) are plotted for the
Prandtl numbers Pr=35 and Pr=1 respectively.

Consequently, the characteristic time 7, and the characteristic scale L, of generated large-scale vortices in

nanofluid exceed the corresponding scales 7,,L, in a pure fluid
T,>T, L,>L.T, ~(a, /4" L,~(a,/2)" T~ /4" L=~,/2)"

Let us consider the influence of the nanofluid rotation effect on the coefficient «,, or the process of generation of
large-scale vortices. For this, we fixed the parameters of the nanofluid Pr,i?n,N »L, and the Rayleigh number Ra=2.
We chose the inclination angle equal to 6, = 7 /5, which corresponds to maximum values of the coefficient «,, (see
Fig. 3a). As see from Fig. 4a for a certain value of the rotation parameter D the coefficient «,, (a,) reaches its
maximum value «””. Then with the increasing of D the coefficient « tends gradually to zero i. e. the suppression

of a - effect occurs. A similar phenomenon was described in [9].

a) b)

uni‘ anf

10

= ~
z 0 3 4 & 8 1 1T &~ 0 01 02 03 04 05 06 07
) a G B § D Ra Ra

Figure 4. a) The solid line shows the dependence of the coefficient ¢, for the nanofluid on the rotation parameter D, and the
dashed line shows the dependence of the coefficient ¢, for the pure liquid on the rotation parameter D ; b) The solid line shows the

dependence of the coefficient ¢, for the nanofluid on the Rayleigh number Ra, and the dashed line shows the dependence of the
coefficient ¢, for the pure fluid on the Rayleigh number Te&; ¢) point 1 corresponds to the value of ¢, (nanofluid) at Ra=0 ,

point 2 corresponds to the value of ¢, (pure fluid) at Ra=0.
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Next, fixing the parameters of nanofluid Pr,kn,N 4»L,, rotation D=2 and inclination angle 8, =x/5, we
determine the dependence of the coefficient ¢, of Rayleigh number Ra . From the graphs Fig. 4b it can be seen that
the maximum value of the coefficient &, (a,) corresponds to small Rayleigh numbers Ra. Large-scale vortices are
efficiently generated in the range of Rayleigh numbers Rae [0,3], then we observed the decay «,, (,) (Fig. 4b) with
an increase in Ra and the generation of the LSVS becomes ineffective. It means that for large Rayleigh numbers Ra ,
large-scale instability in nano- and ordinary fluids is not realized and the ordinary convective instability is arisen. Under
the condition that there is no heating Ra= 0, the gain coefficient in pure fluid ¢, (point 2 in Fig. 4c) is less than in
nanofluid «,, (point I in Fig. 4¢): a,, >, . In Fig. 4a-4b it is also seen that the maximum coefficient @, =(a,,); _,
is larger for pure fluid than for nanofluid.

In Fig. 5a is a graph showing the combined effects of rotation and temperature stratification in the plane (D,I/ZZ) .

Here the instability region «,, >0 is highlighted in gray. Curve 1 corresponds to the instability boundary for nanofluid
(1~€n =0.122) and curve 2 corresponds to the instability boundary for pure fluid (1~2n =0).

Let us analyze the influence of the Rayleigh concentration number R, on the coefficient a,, or the generation of
LSVS for the following fixed parameters D = 2,1,3\(3 =3,k,=w,=1,Pr=5N,=5,L, =5000,0 =7/5. In Fig. 5b

©)

. . . ~©
shows the intersection of graphs (curve 1 and curve 2) at the point C (Rn N

). Curve 1 is plotted for the case when

there is a temperature gradient Ra=3. For R, =0, curve 1 shows the maximum value of «' (point A)
corresponding to a pure stratified fluid.

- a) b)
Ra anf

(]

0 1 2 D 0 1 2 3 4 R

Figure 5. a) The plot for «,, in the plane (D,E;z) , Where the gray color shows the region corresponding to positive values «
(unstable solutions), and the white color region shows negative values « . Curve 1 corresponds to the instability boundary for

nanofluid (1~€n =0.122), and curve 2 corresponds to the instability boundary for pure fluid (1~?n =0) . b) The plot of the dependence

on the «, 9 - effect on the Rayleigh concentration number R..

A further increase in the concentration of nanoparticles leads to a decrease in «,, . Curve 2 is plotted for the case

when there is no temperature gradient Ra=0. It can be seen from the behavior of curve 2 that an increase in the

concentration of nanoparticles at first leads to an increase in « ., and then to a decrease. For R, =0, curve 2 shows the

nf 2
maximum value of @ (point B), corresponding to the coefficient & for a homogeneous fluid [8]. Here we see that in

a pure stratified fluid the generation of LSVS is more efficient than in a homogeneous fluid, which is consistent with the
. . =) . . .

conclusions of the work [6]. Thus, for a certain value of the number R, (concentration of nanoparticles), we obtained

equal rates generation of LSVS (point C in Fig. 5b) in nanofluid as in the presence of a temperature gradient Ra+0 ,

and without it Ra=0. Physically, this process can be explained as follows. An increase in the concentration of
nanoparticles on the upper surface layer leads to the appearance of a flow due to the gravitational segregation of
nanoparticles to the lower surface. In turn, the presence of a temperature gradient arises a heat flux ¢ ~é(7, -17,)/h,
which prevents the deposition of nanoparticles on the lower surface layer. An increase in the concentration of

nanoparticles R, decreases the part of the heat flux and as a consequence, the coefficient ¢, is decreased.
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a) b)
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Figure 6. a) The graph of the dependence on the instability growth rate I' on wavenumbers K for different frequencies @, of the
external force ﬁo at k,=1.b) The graph of the dependence on the instability growth rate I' on wavenumbers K for different

wavenumbers k, of the external force F, at @, =1.

Fig. 6 shows the dependence on the instability increment I' on the wavenumbers K for the hydrodynamic «,, -
effect in nanofluid at constant parameters D = 2,1’3; =2,Pr= 5,1~?,, =0.122,N,=5,L, =5000,0 = 7 /5. As it is shown

in Fig. 6a with an increase in the frequency @, of the external force FO at k, =1 the maximum growth rate I', of

large-scale vortex disturbances is decreased. Fixing the frequency of the external force FO at @, =1 we constructed a
graph of the increment I'(K) (see Fig. 6b) when the small-scale wavenumber k, changes. For numbers k, <1 we

observed an increase in the maximum growth rate I',  of large-scale vortex disturbances (%, = 0.8) relative to the

max

level T,

X

at k, =1, and a decrease the maximum growth rate of large-scale vortex disturbances at &, =0.5. This
behavior is due to the structural dependence of the coefficient ¢, on the small-scale parameters of the external
force (w,.k,) .

Thus, as a result of the large-scale instability development in an obliquely rotating stratified nanofluid, the large-
scale spiral circularly polarized Beltrami-type vortices are generated.

INSTABILITY SATURATION AND NON LINEAR STRUCTURES
The increase of W, and W, leads to the saturation of the instability. As a result of the development and

stabilization of the instability, non-linear structures appear. The study of these structures is of interest. In order to find
these structures let us examine the stationary case of equations (33)-(34) and integrate once by Z . For the sake of
simplicity, we assume that D, =D,, 6 =7 /2 (latitude), ¢ = 7 /4 (longitude), and Prandtl number Pr=1. As a result,

we get a system of nonlinear equations of the following form:

dw, 22 Dk (K +@ —Ra-1,)
z 4 2k + @A,

+C,

1°

(40)

~2 o~
dw, :_fo2\/§ Dkoz(k:+a)1 —Ra—lnl)+

_ c,. (41)
dz 4 2k +am)A, ’

Here C,, C, are arbitrary constants of integration. It should be noted that the dynamic system of equations (40)-(41) is

conservative, and hence is Hamiltonian. It's easy to find it we write down the equations (40)-(41) in the Hamiltonian
form:

w, _ad  dW, _dH
dz dw,” dz  aw,’

where the Hamiltonian has the form:

H = H,(W)+ H,(W,)+ CI, - C, 7, 42)
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The functions H,, are respectively equal to:

ki (ki + @2 —Ra—1, )dW,,

SN2
=2 Dsin6| (43)

2Pr(k! +@2)A,

The integral in the Hamiltonian H,, cannot be calculated exactly in quadratures. We used the values of the nanofluid

parameters Pr = 1,R, =0.122,N 4, =5,L,=5000 (for A0, -water) from the paper [2]. The equations (40)-(41) are
Hamiltonian thus only fixed points of two types: elliptic and hyperbolic can be observed in phase space. This can be
checked if we carry out a qualitative analysis of the system of equations (40)-(41). Linearizing the right-hand sides of
equations (40)-(41) in the neighborhood of fixed points, we establish their type and construct a phase portrait. As a
result of the analysis, we find the appearance of four fixed points, two of hyperbolic and two of elliptic type. Phase
portrait of a dynamical system of equations (40)-(41) for the constants C, =—-0.005, C, =0.005 and parameters

D=Ra=2, ky=w,=1, f, =10 is shown in Fig. 7.

Wi

=~
“CQ‘ 1
| \ & .;“
ol

Figure 7. The phase plane of the dynamical system equations (40)-(41) with C, =-0.05 and C, =0.05. One can see the presence of
closed trajectories around the elliptic points and separatrices that connect the hyperbolic points.

The phase portrait allows us to describe qualitatively the possible stationary solutions. The most interesting
localized solutions correspond to the phase portrait trajectories, which connect the stationary (singular) points on the
phase plane. Fig. 7 presents closed trajectories on the phase plane around the elliptic points and separatrices which
connect the hyperbolic points. Closed trajectories correspond to nonlinear periodic solutions or nonlinear waves. The
separatrices correspond to localized vortex structures of the kinks type (see Fig. 8).

0
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-40
“‘72 -60 _gp-an 0 40 &0
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V\-‘T 60 >
2 My 70 60 50 40 o

Figure 8. On the left a nonlinear helical wave, which corresponds to a closed trajectory on the phase plane; on the right a localized
nonlinear vortex structure (kink), which corresponds to the separatrix on the phase plane.

CONCLUSION
In this work, we have obtained a new type of large-scale instability caused by the temperature gradient and the

specific concentration of nanoparticles gradient under the action of a small-scale force with zero helicity E)rotE, =0 in
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an obliquely rotating nanofluid. This force maintains small-scale fluctuations in the nanofluid and simulates the action
of small-scale turbulence with Reynolds number R < 1. We assumed that the external force is in the plane (X,Y) and

the gravity field is directed g vertically downward along an axis OZ . Applying the method of multiscale asymptotic

expansions we obtained a closed system of equations for large-scale perturbations of the nanofluid velocity W . For

small amplitudes W this system of equations describes the instability of the hydrodynamic « -effect, since positive
feedback appears between the velocity components. We have shown that the instability occurs only when the vector of
the angular velocity of rotation is inclined from the axis OZ . Moreover, for the Prandtl numbers Pr =5, the maximum
instability increment reaches inclination angles &=z /5, and for the Prandtl numbers Pr=1 inclination angles
6@~z /2 . Taking into account the effects of rotation and temperature stratification of the nanofluid together leads to a
significant increase in large-scale vortex disturbances in contrast to the case of a homogeneous medium [8]. In addition,
we have obtained a new effect of generation of LSVS in nanofluids at Ra=0 associated with an increase in the
concentration of nanoparticles (see Fig. 5b, curve 2). With an increase in the frequency of the parametric action of an
external force, the generation of LSVS becomes less efficient. This effect allows you to control and monitor the process
of generating LSVS. The instability becomes nonlinear with increasing amplitude ¥ . In this case, the emergence of
stationary nonlinear vortex structures is assumed. The numerical solutions show that in the non-linear stage, the
instability saturation leads to specific velocity profiles (kinks) for which the velocity tends to be constant for large
values of Z . The phase portrait contains elliptic stationary points therefore, there are nonlinear periodic solutions in the
form of nonlinear Beltrami waves that correspond to closed trajectories. These structures are the result of saturation of
large-scale instability (see section LARGE-SCALE INSTABILITY). Obtained results can find their applications in
many problems of laboratory experiments on rotating stratified nanofluids.

APPENDIX
A. MULTISCALE ASYMPTOTIC DEVELOPMENTS
Let us find the algebraic structure of the asymptotic development in various orders of R , starting from the lowest

one. In order of R there is only one equation:

0P, =0=P,=P,(X) 44

In order R appears the equations:

oP,=0=P,=P,(X) (45)

In order R™', we obtain the more complicated system of equations:

Pi(a,le +Who W' )= ~0,P, =V, Py +0W' e Rup., +eRal , +&,W,D, (46)

T
k _ z _ 122 NB NB _
O +WAQT, =W = T, += 20,0 O, +—* (0.7, 0.0, )+ (47)
2N,N
+ NNy (6,1,0,T,)-—220.T,
k z 1 2 NA 2
0,9 +Wi0, 0, +W :L—akq)fl +_L o,T, (48)
oW =0 (49)

The averaging of equations (46)-(49) over the fast variables gives the following secular equations:

~V,P,—¢Rup  +eRal  +&,W,D, =0 (50)
Wi =0 (51)

In zero order in R’ we have the equations:

1 ) ) . . ~ — . .
E(atv(; +WEo v +vio W ) =-0,P,~V,P, + 0}V, —e,Rup, +¢,Ral, + £, v, D, + F, (52)
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0T, +WADLT, +Vi0,T, =, = 03T, + S 2(0,0.0,T, + 0,00, )+

e

NzNB (6kT716kTo + 6kToakT4 )_

e e

2N,N,

+%(5ZTO ~0.0)+ o,

1 N
5,¢0 + W—klakwo + v(];akwfl +V; = L—ai% +L—A527;)

e e

o0v,=0
These equations give one secular equation:
VP, =0= P, = const
Let us consider the equations of the first approximation R':
1
Pr
+20,V W', — e, Rup, +e,Ral, + &,v/ D,

0T + VV—klakYI + VV—klva—l +V(])€ak7;) +"1kak711 -V = aiﬂ +20,V, T +

N
+L_B(ak¢—lale +0,¢0. VT, +0,0,0,T,+0,00,T +Vk¢—lakT—l)+

e

+NANB

(Gkalale +akT—lva—l +akToakTo + akTiakT—l +VkT—lakT—l )"‘

e

(6.1,+0,T,)

z71

N,
+L—B(82T1 +aZT—1 _az¢1 —azﬂl)—

e e

2N, N,
L

0,0, + W—klak¢l + VV—klvk¢—l +V§8k(p0 +Vlkak(ﬂ71 +y =

(010 +20,9,0, )+ T2 (03T +20,9,7.)

e

1
Le
oV +V W =0

The secular equations follow from this system of equations:

1 ; N 2N ,N
EW—klka—l =-V,P,, W—klva—l =L—B(52T71 _62(/)—1)_ — o,T,,

VV—klvk(p—l =0, Vfol =0

Secular equations (61) satisfy the following field geometry:

W, =(Wi(2).W(2).0).T, =T (Z), ¢, = ¢.(Z), P, = const

In the second order R, we obtain the equations:

1 . . . . . . .
E<6’V; +IEOV, + VSO + WAV ) +VEV I+ i, +via, ) =

(0 + W00 + Vi, + VO, + WAV W ) = =V, P, =0, (B +Pi)+ 00 +

(53)

(54)

(55)

(56)

(57

(5%)

(39)

(60)

(61)

(62)
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=-0,B, ~V P, + 0, +20,V,v, — e Rup, + ¢, Ral}, +£,v|D, (63)

o,T, +W"o,T, +W'V T, +v{0,T, +viV, T, +v0,T, +V;0,T , —v; =

=0;T, +20,V,T, + (64)

N
+L_B(ak¢—lakT2 +0,0.V, T, +0,¢0,0,1, +0,9,V,T | + 0,90, T +

+0,0,0,T ,+V,0.0,T,+V,0,0,T )+

+ NA NB

(0,7,0,T,+0,T\V, T, +0,T,0,T, + 0, LV, T , + 0, 1,0, T +

+aszakT—1 + VkT—lak]z) + vk%akT—l) +

2N, N,

N
+L_B(asz +azTo _az¢2 —52%)—

e e

(0.1, +0,T;)

0,0, +W0,0, + WV 0, +v,0,0, +VyV .0 + /0,0, + V30,0, +V; = (65)

(6i¢2 + Zakvk¢0)+%(ain +26kvaO)

e

1
LZ
oV, +V Vi =0 (66)

After averaging the system of equations (63)-(66) over the fast variables, it can be seen that there are no secular terms in
the order R”. Finally, we come to the most important order R’ . In this order, the equations are following

é(@,vﬁ +O W +WHO VL + V0,V + WAV V+VEV v+ VOV + ViV I+
+V50,v) +Vio W, ) =-0,B, -V, (P1 +1_31)+a;v;' +20,V v + AW, -
e, Rup, +e,Ral, +&,,v]D, (67)
0T, +0,T , +W"'o,T, + W'V T, +vio0,T, + ViV, T, + vV, T, +

+VV, T +Vi0, T, +vi0, T, —v; = 0;T, +20,V, T, + AT , +

N
+L_B(ak¢—lak7; +0,0.V,T1 +0,0,0, T, + 0,0V, T, + 0,00, T, + 0,9V, T | +

+0,0,0, T, +0,0,0,T +V, 9 0,1, +V, 0 V,T +V,0,0,T, +V,00,T )+

N
+ S OT 0,7, +0,T VT, +OT,0,T, + TV, T, +O,TOT 40,1V, T + (68)

+6k7128k]—£) + akT;akTv—l + Vk]—‘—lak]} +VkT—lva—l + vk]—;)ak]—;) +vaiakT—l)+

2N,N,

N
+L—B(8ZT3 +aZTl _6z¢3 _8z¢’1)_ (azT3 +aZTl)

e e
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0,0, +0,¢, + VV—klak¢3 + VV—klvk(ol +Vgak¢z +ngk(po +V1kak(01 +Vlkvk¢—l +V§ak¢o +

0,0 + Vi —Li(ak% +20,V,0,+Ag. l) s —4(8}T,+20,V,T, +AT ) (69)

e e

OV, +Vy =0 (70)

Averaging the system of equations (67)-(70) over the fast variables, we will obtain the basic secular equations that
describe the evolution of large-scale perturbations:

é(@TW_"] v, (E)) — V. P+ AW, (1)

0,7, +V, (ng(,)=Azl+%(vk¢ v, B(V T\V,T,) 72)
1 N

0,9, +V, (V(I)Cwo) = L—A% +L_AAT71 (73)

e e

B. SMALL-SCALE FIELDS IN THE ZERO ORDER IN R
Let us consider Egs. (52)-(55) for the zeroth order in R derived in Appendix A. By introducing the notation for
the operators

N 2N,N,

Dy =Pr'(8,+W40,) =%, Dr=0,+W'0, ~* ~ 20, + 4705
L, L,
=0,+W'o, 1,0,
we can write the system of equations (52)-(55) as
Bwv{) = —0,P,—¢,R.¢, + e, Ral,, +&,vD, +F, (74)
~ N

DrT, =v, —L—Baz(ﬂo (75)

Dop, = +—62T (76)

0, =0 (77)

Small-scale oscillations of temperature and volume fraction of nanoparticles are easily found from the equations (75)-
(76):

B¢+&62 Br—ﬂaz
L z L z NA B 2
T,=— = ' @ =-——"* v, L=D,Dr+—4t 1B —-£5.0 (78)
L L ’

Let us substitute (78) in (74) and using the condition of solenoidality of the fields v, and 17"0, we obtain the pressure
F:

F = ;)luo +2\)2v0 +2\)3W0 (79)
Where we introduce the designations for operators

. D@.-DJ.  ~ _
R Pl _ Dy, 2D]az
P P)

[S)
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o.| Dr - Nag 0| Dy+Neg,
. Do,-Da, - L) - L
Ps; = +R +Ra-

3= az n*

L L

and velocities: v; =u,, v; =V,, v; = W, . Using the formula (79), we can eliminate the pressure from the equation (74),

and, as the result, we obtained a system of equations for finding the zero-order velocity field:

~ ~ ~ ~x
dnuo +d12v0 +d13W0 =Fy
danuy +dnvy +duw, = F

dsiy +dnvy +dsw, =0

The components of the tensor d ; are

X D2axaz _D36xay 8 — DSa?c - laxaz
2

;ln:Dw+ S s 12 P) —D3,
D85 D3 axaz[ﬁf—mazj axaz(ﬁw%azj
di =D, + 22 4R, ~—<—%+Ra- —7,
o’L ’L
~ D,00.-D,0> ~ ~ D,0,—D0,0
dﬂ:l%+_ii;%_;LL,tbzzDW+_iJ;LT_LLi,
0 0
N N
0,0.| Dr——240° 0,0,| Dy +—£0
5 R ( L ] = ( L j D&, -D.d,8,
d23:Rn’ 62,\ +Ra- az'\ + - 82 — - 1°
L L
~ D,0’-D,0.0, ~  D0.0, —D0
31:%_ ., d32=%+Dl,

. Do.0,-D,d.0,

333:Dw+ 62 +

+R, =

o’L o°L L L

As it is known, the solution of the system of equations (80) is found by Cramer's rule:

u, :i{(azzgss —332323)F0x +(313;'32 —21122133)1‘}"}
vy :i{(ana}l —21216?33)1‘;;;C +(6?116?33 —313;'31)1[;3}

L~ » =~ = N .
w, = Z{(dmd}z _d22d31)E)X +(d12d31 —d11d32)FOy}
Here, A is the determinant of the system of equations (80), which in an expanded form is

A:allaﬂaﬁ +32la32213 +212¢?23(}31 —213222331 —(}32323211 —321312233

aﬁ{f)r—?aﬁ) 6§{B¢+ZZ‘962J {BT—JZ/W] {B¢+]ZB@
— 2+ Ra- © ~ _Ru- 2 _Ra- ‘

(80)

81

(82)

(83)

(84
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Let us write the external force F, in the complex form

Jo iz
2

Jo in

13;] =i +f?e +c.c. (85)

Then all operators in formulae (81)-(84) act from the left on their eigenfunction:
N i i N - i ~* N i 0y N P i ~*
Dwrye® =" Dyr, (ky,—wy)=e “ Dw,T,¢, Dwrype 2 =" Dy 1, (ky,—wy)=e 72 Dw,,T,,0,,

At = ei(PlA(lgo, —w)) = e A;, Ae? = A(EO, —0,) = e A, (86)

where the new notation is introduced

P Uk
Dy, = k2 —iPr ' (w,—kW,), Dw, =k —=iPr" (w, —kJW,), W, =W, W,=W,,

1

~k Uk
Dr = k(f —i(w, kW), Dr, = k(f —i(w, — kW),

1
% %

Dy = L'k —i(w, = kW), Dy, = L'k —i(@, -k, V).
%

K SRk ~ Ak s
A} = Dy, [DWI A +ij, A, = D, (Dwz A +D§j,

N P ~
A2 =DW12 — R —= -~
» o~
LI,Z D
N2

K N
Dr +—4k>
LT A

Here and below, we denote the complex-conjugate quantities by an asterisk. When performing the subsequent

calculations, some of the components in the tensors d 7 become zero. Taking this fact into account, velocity fields of
the zero approximation has the following form:

7 4> i
_Jo 9y _
Uy = 7 o K L L @7
A2 Dw, + D22
Di :
R/ S R S, (88)
A1 Dw, + D}
fo_ D o, Jo D :
__Jo | i, Jo ) iy _
w, __?Te +?Te +C.C.= Wy, + Wy + Wy + W, (89)
A1DWl +D12 A> DW2 +D22

It is easy to see that the component of the rotation parameter D, also drops out.

C. CALCULATION OF THE REYNOLDS STRESSES
To close the system of equations (31)-(32) that describe the evolution of the large-scale velocity fields W, , it is
necessary to calculate the following correlators:

* * * *

T31 = WOuO = WOI (uOI) +(W01) uOl +w03 (u03) +(W03) u03 (90)

T = % = Wor (Vm )* +(W01 )* Vor + Wos (V03 )* +(W03 )* Vo o1

Substituting the solutions for the small-scale velocity fields (87)-(89) obtained in Appendix B, into the equations
(90)-(91), we can find the following expression for the correlators:
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D, (Az +A2)

31_:1;
= (92)

.Dw, + D2

w_ J2 D(Ai+4) ©3)

~ o~ 2
4 [aDy, + 07

Then with the definition of the operators 13WL2 and ;11,2, we can write down the series of useful relations for the

calculation of 7°' and 7%:

~ 2 ~ Ak ~2 ~ 2 ~ kK ~2
_ _ 1.4 -2 _ _ 1.4
[Dvo| =Dy D, = ks +Pr @i, [Dr, [ = Dr, Dy, = ki + e,
~ 2 ~ Ak a4 2 ~
Do | = Doy, Do, = 12K + 012, @2 =@, =k JH
~2 —~2
A2 A A 2 —~ k! -Pr' wi» Ra
‘AI,Z =AixAip = kg +Pr? wis—2Ra- -2 = + — +rn12 ,
kg + w2 kg + w2 ’

(k* + o2 )Lk —Pr 1) + —kz (LK —Pr' @nak? — anak2(1+Pr ' L)

n :—QRn’ B ~2 +
2 (k(;1 + a)1,2 )(L;zk: +m2)
2N, : ~ ~

kg N +a)122 0)12,2 -|-]€02L;1 1+&

~2 l% lé = A l%
+Rn . — — + 2Rn Ra- — - s
4 2 2,4 2 4 2 274 2
(ko + 1,2 )(Le ko +a)1,2) (ko + 1,2 )(Le ko +a)1,2)

kg +Pr” o, 2

DW12A12+DW12A12_2(k4 Pr a)lz) 2Ra
k0+a)1,2

(k +CO12)(L k4+Pr’1a)12)+L—k (L, k4+PI’ a)12+a)12(Pr Ll—l))

—2kn' ~§ o)
(kg + w2 )(L;zkg +wi2)

Using these relations, we can obtain the following expressions:

~ ~ Ralk? ~
Aip+A12=2 k(f — a~02 —R,- : s
kg +wip ij + W12
~ A , 12
DWL2 A +D]’2 = %94)

2

) ~2
52 52 Ra —~ k4 Pr' o,
=(kg+pr2a,],2) ki +Pr @r, +——— —2Ra |
k: + w2 kO + w12 ’

ky +P
+2D}, | ky —Pr? &> —Ra- $+ P, |+Dpy,
ky + 601,2 b2

(k2 + o) (LK +Pr! w12)+L—k4(le4+Pr @12+ (Pr L ~1))

P, =—Ru- — —
12 (k2 + @2 L2k +ans)
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Substituting (94) in (92)-(93) we can find expressions for the Reynolds stresses in the general form:

~2 —
f2 Dokg (kg + @2 —Ra—1, )

31 —_J0
T = 5 — , (95)
(ki + w2)A,
2,24 | 72 5T
- Z_f_OZDIkO (ky +@2~Ra—1,)
— ,
2 (ki + 1 )A,

~ ~ 2
where A,, =|Dw, , Ai» +D?,| . Expressions for [ are:
1,2 1.2 1.2 n

~2
1,2
k2
~ e 0 ~2
4
", :Rn' 4 pory (kO +a)l,2).
’ Lky + o

e

N
L +L—A kL' -

If the Prandtl number of the nanofluid is approximately equal to one Pr =1, then the expressions for the
components of the Reynolds stresses are simplified:

~2 o~
- Jo Dok (kg + @2 —Ra =1, )
2k + @2 )((ki +@2)* +2(D; ~Ra)(ki —@2) +(D; ~Ray’ +1, (ki +@:)+2p, D})

(96)

2 2004, 02 oo
Jo Diky (ky + o —Ra—1, )

- ©7)

I NI 2 PN 2 poN2 4, 2 2y
2(ky + o )((ky +@1)" +2(D = Ra)(ky — o) +(Dy = Ra)” +r, (ky +@1)+2p, D7)
Here the values of the coefficients , ~and p, = are taken with Pr=1.
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BHUXPOBE JUHAMO B CTPATU®IKOBAHIIA HAHOPIIUHI, 11O IIOXWJI0 OBEPTAEThCSI
3 APIBHOMACIITABHOIO HECIIIPAJIBHOIO CHJIOKO
Muxaiino W. Konm®, Anarodiii B. Typ¢, Bonogumup B. SInoBcbkmii™?
“ucmumym monoxkpucmanie, Hayionanvna Axademis Hayx Yxpainu
np. Hayxu 60, 61001 Xapxkis, Yxpaina
b Xapriscoxuii nayionarvnuii ynisepcumem iveni B.H. Kapasuna
matioan Ceoboou, 4, 61022, Xapxie, Yrpaina
“Universite Toulouse [UPS], CNRS, Institute of Research for Astrophysics and Planetology
9 avenue du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
B poboti oTpumana BennkoMacmrabHa HECTIHKICTH TIAPOAMHAMIYHOTO « -edekTy B cTparudikoBaHiil HaHOPIIWHI, IO ITOXHIO
obepraeThes, 3 ypaxyBaHHIM edekTiB OpoyHiBchKoi Iudy3il i MOTOKY YacTHHOK IIiJ| Ai€l0 TpajieHTa TeMneparypu (tepmodopesy).
HecrilikicTh BUKJIIMKAETHCS AI€I0 30BHIMIHBOI ApiOHOMACIITaOHOT HEeCHipaidbHOI CHiH, fKa 30yKye npiOHOMAacmTaOHI KOJMBaHHS
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LIBUAKOCTI 3 HYJIbOBOIO CIIPANIbHICTIO 1 MasTuM uuciioM PeiiHonbaca. HeniHilHi piBHSHHS U1 BeHKOMacTabHUX PyXiB OTpUMaHi 3
BHKOPHCTAHHSM METOIy 0aratoMacirabHUX aCHMITOTHYHUX PO3KIA/IB 32 MAIMM IapaMeTpoM (ducioM Peiinomnsaca). Jocmimkena
nmiHiHAa BeJMKOMacITabHa HECTIMKICTh THIy TiAPOAMHAMIYHOTO « -eeKTy B 3aJeXKHOCTI BiA mapamerpiB obepranHs D,

TemrepatypHoi crparudikauii Ra i koHueHTpauii HaHOYacTHHOK R,.. OTpumaHuii HOBHI edekT reHeparii BEJMKOMACIITaOHUX

BUXPOBHUX CTPYKTyp B HaHOpimuHi npu Ra =0, nop's3anuii 3i 30UIbLICHHSAM KOHIEHTpaLil HAHOYACTUHOK. MaKCHMalbHUH
IHKPEMEHT HECTIMKOCTI OCSTa€eThes IPU KyTax Haxuiny 6~ /5 s uncen [pannrias Pr=35, a aust uncen Hpauarmis Pr=1 npu
KyTax Haxuwity @ = 7 /2 . BcTaHOBICHO, 10 3MiHA YaCTOTH MAPaMETPUYHOTO BIUIMBY JO3BOJIMTH KOHTPOIIOBATH i Bi/ICIiAKOBYBAaTH
Ipolec TreHepalii BeNMKOMAcIITaOHMX BHXPOBHX CTPYKTYp. Iloka3aHo, L0 LHMPKYJISIPHO MOJIAPU30BaHi BUXOpH benbTpami
BUHMKAIOTh B HAHODIAMHI B pe3ysibTaTi PO3BHTKY HOBOI BEIHKOMAcCIITaOHOI HecTiiikocTi. B poGoTi mOCHiKyeThes pexum
HACHYCHHS BEJIMKOMAacmITaOHOI HECTIHKOCTI B cTpaTH(iKOBaHIH HAHOPIOWHI, IO TOXHJIO OOEPTAETHCA 3 30BHIMIHBOIO
IpiOHOMAcIITAaOHOIO HECHIPANbHOIO CHJIOK. Y CTallioHApHOMY peXuMi Oylla OTpMMaHa JHHAMIYHA CHCTEMa pIBHSAHBb Ui
BEJIMKOMACIITaOHUX 30ypeHs 1o mBHAKOCTI. OTpHMaHi 4YHCeNbHI pIilIeHHS i€l CHCTEeMH PIBHSHb, SIKi ITOKAa3yIOTh iCHYBaHHS
JIOKQJII30BAaHUX BUXPOBHX CTPYKTYp y BUIIIANI HeNiHIHHMX XBWIb benbrpami i kinkiB. [Ipodink mBHAKOCTI KiHKa Mae TEHIEHIIIO
OyTH IIOCTIHHUM TIPU BEJMKUX 3HAYCHHSX Z.

KJIOYOBI CJIOBA: crpatudikoBaHa HaHOpPiJHHA, BeIHMKOMAclITabHa HecTikkicTs, cumna Kopiomica, GaratomaciiraOHi
ACHMITOTHYHI PO3KIagaHHs, & -3(eKT, JOKai30BaHi BUXPOBI CTPYKTYpH



