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This article continues the study of concrete algebra-like structures in our polyadic approach, where the arities of all
operations are initially taken as arbitrary, but the relations between them, the arity shapes, are to be found from some
natural conditions (“arity freedom principle”). In this way, generalized associative algebras, coassociative coalgebras,
bialgebras and Hopf algebras are defined and investigated. They have many unusual features in comparison with the
binary case. For instance, both the algebra and its underlying field can be zeroless and nonunital, the existence of the unit
and counit is not obligatory, and the dimension of the algebra is not arbitrary, but “quantized”. The polyadic convolution
product and bialgebra can be defined, and when the algebra and coalgebra have unequal arities, the polyadic version of
the antipode, the querantipode, has different properties. As a possible application to quantum group theory, we introduce
the polyadic version of braidings, almost co-commutativity, quasitriangularity and the equations for the R-matrix (which
can be treated as a polyadic analog of the Yang-Baxter equation). We propose another concept of deformation which is
governed not by the twist map, but by the medial map, where only the latter is unique in the polyadic case. We present
the corresponding braidings, almost co-mediality and M -matrix, for which the compatibility equations are found.
KEY WORDS: polyadic field, polyadic algebra, bialgebra, Hopf algebra, antipode, braid equation, braiding, R-matrix,
Yang-Baxter equation, mediality, co-medaility, M-matrix, quasitriangularity

INTRODUCTION
Since Hopf algebras were introduced in connection with algebraic topology [1, 2], their role has increased

significantly (see, e.g., [3]), with numerous applications in diverse areas, especially in relation to quantum
groups [4–8]. There have been many generalizations of Hopf algebras (for a brief review, see, e.g., [9]).

From another perspective, the concepts of polyadic vector space, polyadic algebras and polyadic tensor
product over general polyadic fields were introduced in [10]. They differ from the standard definitions of n-ary
algebras [11–13] in considering an arbitrary arity shape for all operations, and not the algebra multiplication
alone. This means that the arities of addition in the algebra, the multiplication and addition in the underlying
field can all be different from binary and the number of places in the multiaction (polyadic module) can be
more than one [14]. The connection between arities is determined by their arity shapes [10] (“arity freedom
principle”). Note that our approach is somewhat different from the operad approach (see, e.g., [15, 16]).

Here we propose a similar and consequent polyadic generalization of Hopf algebras. First, we define polyadic
coalgebras and study their homomorphisms and tensor products. In the construction of the polyadic convolution
product and bialgebras we propose considering different arities for the algebra and coalgebra, which is a crucial
difference from the binary case. Instead of the antipode, we introduce its polyadic version, the querantipode,
by analogy with the querelement in n-ary groups [17]. We then consider polyadic analogs of braidings, almost
co-commutativity and the R-matrix, together with the quasitriangularity equations. This description is not
unique, as with the polyadic analog of the twist map, while the medial map is unique for all arities. Therefore,
a new (unique) concept of deformation is proposed: almost co-mediality with the corresponding M -matrix. The
medial analogs of braidings and quasitriangularity are introduced, and the equations forM -matrix are obtained.

POLYADIC FIELDS AND VECTOR SPACES
Let k = k(mk,nk) =

〈
K | ν(mk)

k , µ
(nk)
k

〉
be a polyadic or (mk, nk)-ary field with nk-ary multiplication µ(nk)

k :

Knk → K andmk-ary addition ν(mk)
k : Kmk → K which are (polyadically) associative and distributive, such that〈

K | µ(nk)
〉
and

〈
K | ν(mk)

〉
are both commutative polyadic groups [18,19]. This means that µ(nk)

k = µ
(nk)
k ◦ τnk

and ν
(mk)
k = ν

(mk)
k ◦ τmk , where τnk ∈ Snk , τmk ∈ Smk , and Snk , Smk are the symmetry permutation groups.

A polyadic field k(mk,nk) is derived, if µ(nk)
k and ν

(mk)
k are iterations of the corresponding binary operations:

ordinary multiplication and addition. The polyadic fields considered in [19] were derived. The simplest example
of a nonderived (2, 3)-ary field is k(2,3) = {iR}, and of a nonderived (3, 3)-ary field is k(3,3) = {ip/q}, where
p, q ∈ Zodd (i2 = −1, and the operations are in C). Polyadic analogs of prime Galois fields including nonderived
ones were presented in [20].
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Recall that a polyadic zero z in any
〈
X | ν(m)

〉
(with ν(m) being an addition-like operation) is defined (if

it exists) by
ν(m) [x̂, z] = z, ∀x̂ ∈ Xm−1, (1)

where z can be on any place, and x is any polyad of length m− 1 (as a sequence of elements) in X. A polyadic
unit in any

〈
X | µ(n)

〉
(with µ being a multiplication-like operation) is an e ∈ X (if it exists) such that

µ(n)
[
en−1, x

]
= x, ∀x ∈ X, (2)

where x can be on any place, and the repeated entries in a polyad are denoted by a power
n︷ ︸︸ ︷

x, . . . , x ≡ xn. It
follows from (2), that for n ≥ 3 the polyad e can play the role of a unit, and is called a neutral sequence [21]

µ(n) [ê, x] = x, ∀x ∈ X, ê ∈ Xn−1. (3)

This is a crucial difference from the binary case, as the neutral sequence ê can (possibly) be nonunique.
The nonderived polyadic fields obey unusual properties: they can have several (polyadic) units or no units

at all (nonunital, as in k(2,3) and k(3,3) above), no (polyadic) zeros (zeroless, as k(3,3) above), or they can
consist of units only (for some examples, see [20,22]). This may lead, in general, to new features of the algebraic
structures using the polyadic fields as the underlying fields (e.g. scalars for vector spaces, etc.) [10].

Moreover, polyadic invertibility is not connected with units, but is governed by the special element,
analogous to an inverse, the so called querelement x̄, which for any

〈
X | µ(n)

〉
is defined by [17]

µ(n)
[
xn−1, x̄

]
= x, ∀x ∈ X, (4)

where x̄ can be on any place (instead of the binary inverse “xx−1 = e”). An element x ∈ X for which (4) has
a solution under x̄ is called querable or “polyadically invertible”. If all elements in X are querable, and the
operation µ(n) is polyadically associative, then

〈
X | µ(n)

〉
is a n-ary group. Polyadic associativity in

〈
X | µ(n)

〉
can be defined as a kind of invariance relationship [14]

µ(n)
[
x̂, µ(n) [ŷ] , ẑ

]
= invariant, (5)

where x̂, ŷ, ẑ are polyads of the needed size in X, and µ(n) [ŷ] can be on any place, and we therefore will not
use additional brackets. Using polyadic associativity (5) we introduce `-iterated multiplication by

(
µ(n)

)◦`
[x̂] =

`︷ ︸︸ ︷
µ(n)[µ(n)[. . . µ(n)[x̂]]], x̂ ∈ X`(n−1)+1, (6)

where ` is “number of multiplications”. Therefore, the admissible length of any n-ary word is not arbitrary, as
in the binary n = 2 case, but fixed (“quantized”) to ` (n− 1) + 1.

Example 1. Consider the nonunital zeroless polyadic field k(3,3) = {ip/q}, i2 = −1, p, q ∈ Zodd (from the example
above). Both the ternary addition ν(3) [x, y, t] = x+ y + t and the ternary multiplication µ(3) [x, y, t] = xyt are
nonderived, ternary associative and distributive. For each x = ip/q (p, q ∈ Zodd) the additive querelement
(denoted by a wave, a ternary analog of an inverse element with respect to addition) is x̃ = −ip/p′, and the
multiplicative querelement is x̄ = −iq/p (see (4)). Therefore, both

〈
{ip/q} | µ(3)

〉
and

〈
{ip/q} | ν(3)

〉
are ternary

groups (as it should be for a (3, 3)-field), but they contain no neutral elements (unit or zero).

The polyadic analogs of vector spaces and tensor products were introduced in [10]. Briefly, consider a set
V of “polyadic vectors” with the addition-like mv-ary operation ν(mv)

V , such that
〈
V | ν(mv)

v

〉
is a commutative

mv-ary group. The key differences from the binary case are: 1) The zero vector zv does not necessarily exist
(see the above example for k(3,3) field); 2) The role of a negative vector is played by the additive querelement
ṽ in

〈
V | ν(mv)

V

〉
(which does not imply the existence of zv). A polyadic analog of the binary multiplication by

a scalar (λv) is the multiaction ρ(rρ) introduced in [14]

ρ
(rv)
V : Krv × V → V. (7)

If the unit ek exists in k(mk,nk), then the multiaction can be normalized (analog of “1v = v”) by

ρ
(rv)
V

(
e×rvk | v

)
= v, v ∈ V. (8)
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Under the composition ◦nρ (given by the arity changing formula [14]), the set of multiactions form a nρ-ary

semigroup S(nρ)
ρ =

〈{
ρ

(rv)
V

}
| ◦nρ

〉
. Its arity is less or equal than nk and depends on one integer parameter (the

number of intact elements in the composition), which is less than (rv − 1) (for details see [10]).
A polyadic vector space over the polyadic field k(mk,nk) is

V = V(mv ;mk,nk;rρ) =
〈
V,K | ν(mv)

V ; ν
(mk)
k , µ

(nk)
k ; ρ

(rv)
V

〉
, (9)

where
〈
V | ν(mv)

V

〉
is a commutative mv-ary group,

〈
K | µ(nk)

k , ν
(mk)
k

〉
is a polyadic field,

〈{
ρ

(rv)
V

}
| ◦nρ

〉
is a

nρ-ary semigroup, the multiaction ρ(rρ) is distributive with respect to the polyadic additions ν(mv)
V , ν(mk)

k and
compatible with µ

(nk)
k (see (2.15), (2.16), and (2.9) in [10]). If instead of the underlying field, we consider a

ring, then (9) define a polyadic module together with (7). The dimension dv of a polyadic vector space is the
number of elements in its polyadic basis, and we denote it Vdv = V(mv ;mk,nk;rv)

dv
. The polyadic direct sum and

polyadic tensor product of polyadic vector spaces were constructed in [10] (see (3.25) and (3.39) there). They
have an unusual peculiarity (which is not possible in the binary case): the polyadic vector spaces of different
arities can be added and multiplied. The polyadic tensor product is “k-linear” in the usual sense, only instead
of “multiplication by scalar” one uses the multiaction ρ(rv)

V (see [10] for details). Because of associativity, we will
use the binary-like notation for polyadic tensor products (implying ⊗ = ⊗k) and powers of them (for instance,

n︷ ︸︸ ︷
x⊗ x⊗ . . .⊗ x = x⊗n) to be clearer in computations and as customary in diagrams.

POLYADIC ASSOCIATIVE ALGEBRAS
Here we introduce operations on elements of a polyadic vector space, which leads to the notion of a polyadic

algebra.

“Elementwise”description
Here we formulate the polyadic algebras in terms of sets and operations written in a manifest form.

The arities will be initially taken as arbitrary, but then relations between them will follow from compatibility
conditions (as in [10]).

Definition 2. A polyadic (associative) algebra (or k-algebra) is a tuple consisting of 2 sets and 5 operations

A = A(ma,na;mk,nk;ra) =
〈
A,K | ν(ma)

A , µ
(na)
A ; ν

(mk)
k , µ

(nk)
k ; ρ

(ra)
A

〉
, (10)

where:

1. k(mk,nk) =
〈
K | ν(mk)

k , µ
(nk)
k

〉
is a polyadic field with the mk-ary field (scalar) addition ν

(mk)
k : Kmk → K

and nk-ary field (scalar) multiplication µ
(nk)
k : Kmk → K;

2.
Avect = A(ma;mk,nk;ra) =

〈
A,K | ν(ma)

A ; ν
(mk)
k , µ

(nk)
k ; ρ

(ra)
A

〉
(11)

is a polyadic vector space with the ma-ary vector addition ν
(ma)
A : Ana → A and the ra-place multiaction

ρ
(ra)
A : Kra ×A→ A;

3. The map µ(na)
A : Ana → A is a k-linear map (“vector multiplication”) satisfying total associativity

µ
(na)
A

[
â, µ

(na)
A

[
b̂
]
, ĉ
]

= invariant, (12)

where the second product µ(na)
A can be on any place in brackets and â, b̂, ĉ are polyads;

4. The multiacton ρ(ra)
A is compatible with vector and field operations

(
ν

(ma)
A , µ

(na)
A ; ν

(mk)
k , µ

(nk)
k

)
.

Definition 3. We call the tuple (ma, na;mk, nk; ra) an arity shape of the polyadic algebra A.

The compatibility of the multiaction ρ(ra)
A (“linearity”) consists of [10,14]:
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1) Distributivity with respect to the ma-ary vector addition ν(ma)
A (“λ (a+ b) = λa+ λb”)

ρ
(ra)
A

{
λ1, . . . . . . , λra | ν

(ma)
A [a1, . . . , ama ]

}
= ν

(ma)
A

[
ρ

(ra)
A {λ1, . . . . . . , λra | a1} , . . . , ρ(ra)

A {λ1, . . . . . . , λra | ama}
]
. (13)

2) Compatibility with na-ary “vector multiplication” µ(na)
A (“(λa) · (µb) = (λµ) (a · b)”)

µ
(na)
A

[
ρ

(ra)
A {λ1, . . . . . . , λra | a1} , . . . , ρ(ra)

A

{
λra(na−1), . . . . . . , λrana | ana

}]

= ρ
(ra)
A

{ `︷ ︸︸ ︷
µ

(nk)
k [λ1, . . . . . . , λmk ] , . . . , µ

(nk)
k

[
λmk(`−1), . . . . . . , λmk`

]
,

λmk`+1, . . . . . . , λrana | µ
(na)
A [a1, . . . , ana ]

}
, (14)

` (nk − 1) = ra (na − 1) , (15)

where ` is an integer, and ` ≤ ra ≤ ` (nk − 1), 2 ≤ na ≤ nk.
3) Distributivity with respect to the mk-ary field addition ν(mk)

k (“(λ+ µ) a = λa+ µa”)

ρ(ra)


`′︷ ︸︸ ︷

ν
(mk)
k [λ1, . . . . . . , λmk ] , . . . , ν

(mk)
k

[
λmk(`′−1), . . . . . . , λmk`′

]
, λmk`′+1, . . . . . . , λrama | a


= ν

(ma)
A

[
ρ(ra) {λ1, . . . . . . , λra | a} , . . . , ρ(ra)

{
λra(ma−1), . . . . . . , λrama | a

}]
, (16)

`′ (mk − 1) = ra (ma − 1) , (17)

where `′ is an integer, and `′ ≤ ra ≤ `′ (mk − 1), 2 ≤ ma ≤ mk.

4) Compatibility nk-ary field multiplication µ(nk)
k (“λ (µa) = (λµ) a”)

ρ
(ra)
A

nρ︷ ︸︸ ︷{
λ1, . . . . . . , λra | . . . ρ

(ra)
A

{
λra(nρ−1), . . . . . . , λranρ | a

}
. . .
}

= ρ
(ra)
A


`′′︷ ︸︸ ︷

µ
(nk)
k [λ1, . . . . . . , λnk ] , . . . , µ

(nk)
k

[
λnk(`′′−1), . . . . . . , λnk`′′

]
, λnk`′′+1, . . . . . . , λranρ | a

 , (18)

`′′ (nk − 1) = ra (nρ − 1) , (19)

where `′′ is an integer, and `′′ ≤ ra ≤ `′′ (nk − 1), 2 ≤ nρ ≤ nk.
Remark 4. In the binary case, we have ma = na = mk = nk = nρ = 2, ra = ` = `′ = `′′ = 1. The n-ary
algebras [11,12] have only one distinct arity na = n.

Definition 5. We call the triple (`, `′, `′′) a `-arity shape of the polyadic algebra A.

Proposition 6. In the limiting `-arity shapes the arity shape of A is determined by three integers(m,n, r), such
that:

1. For the maximal ` = `′ = `′′ = ra, the arity shape of the algebra and underlying field coincide

ma = mk = m, (20)
na = nk = nρ = n, (21)
ra = r. (22)
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2. For the minimal `-arities ` = `′ = `′′ = 1 it should be ra| (mk − 1) and ra| (nk − 1), and

ma = 1 +
m− 1

r
, (23)

na = nρ = 1 +
n− 1

r
, (24)

mk = m, (25)
nk = n, (26)
ra = r. (27)

Proof. This follows directly from the compatibility conditions (14)–(18).

Proposition 7. If the multiaction ρ
(ra)
A is an ordinary action K × A → A, then all `-arities are minimal

` = `′ = `′′ = 1, and the arity shape of A is determined by two integers (m,n), such that the arities of the
algebra and underlying field are equal, and the arity nρ of the action semigroup Sρ is equal to the arity of
multiplication in the underlying field

ma = mk = m, (28)
na = nk = nρ = n. (29)

As it was shown in [20], there exist zeroless and nonunital polyadic fields and rings. Therefore, the main
difference with the binary algebras is the possible absence of a zero and/or unit in the polyadic field k(mk,nk)

and/or in the polyadic ring
Aring = A(ma,na) =

〈
A | ν(ma)

A , µ
(na)
A

〉
, (30)

and so the additional axioms are needed iff such elements exist. This was the reason we have started from
Definition 2, where no existence of zeroes and units in k(mk,nk) and Aring is implied.

If they exist, denote possible units and zeroes by ek ∈ k(mk,nk), zk ∈ k(mk,nk) and eA ∈ A(ma,na), zA ∈
A(ma,na). In this way we have 4 choices for each k(mk,nk) and A(ma,na), and these 16 possible kinds of polyadic
algebras are presented in Table 1. The most exotic case is at the bottom right, where both k(mk,nk) and
A(ma,na) are zeroless nonunital, which cannot exist in either binary algebras or n-ary algebras [11].

Table 1: Kinds of polyadic algebras depending on zeroes and units.

hhhhhhhhhhk
(
mk,nk

) A(ma,na) zA
eA

zA
no eA

no zA
eA

no zA
no eA

zk
ek

unital A
unital k

nonunital A
unital k

unital zeroless A
unital k

nonunital zeroless A
unital k

zk
no ek

unital A
nonunital k

nonunital A
nonunital k

unital zeroless A
nonunital k

nonunital zeroless A
nonunital k

no zk
ek

unital A
unital zeroless k

nonunital A
unital zeroless k

unital zeroless A
unital zeroless k

nonunital zeroless A
unital zeroless k

no zk
no ek

unital A
nonunital zeroless k

nonunital A
nonunital zeroless k

unital zeroless A
nonunital zeroless k

nonunital zeroless A
nonunital zeroless k

The standard case is that in the upper left corner, when both k(mk,nk) and A(ma,na) have a zero and unit.
Example 8. Consider the (“k-linear”) associative polyadic algebra A(3,3;3,3;2) over the zeroless nonunital (3, 3)-
field k(3,3) (from Example 1). The elements of A are pairs a = (λ, λ′) ∈ k(3,3) × k(3,3), and for them the ternary
addition and ternary multiplication are defined by

µ
(3)
A [(λ1, λ

′
1) (λ2, λ

′
2) (λ3, λ

′
3)] = (λ1λ

′
2λ3, λ

′
1λ2λ

′
3) , (31)

ν
(3)
A [(λ1, λ

′
1) (λ2, λ

′
2) (λ3, λ

′
3)] = (λ1 + λ2 + λ3, λ

′
1 + λ′2 + λ′3) , λi, λ

′
i ∈ k(3,3) (32)

where operations on the r.h.s. are in C. If we introduce an element 0 /∈ k(3,3) with the property 0 ·λ = λ · 0 = 0,
then (31)–(32) can be presented as the ordinary multiplication and addition of three anti-diagonal 2× 2 formal

matrices
(

0 λ
λ′ 0

)
. There is no unit or zero in the ternary ring

〈
A | ν(3)

A , µ
(3)
A

〉
, but both

〈
A | µ(3)

A

〉
and〈

A | ν(3)
A

〉
are ternary groups, because each a = (ip/q, ip′/q′) ∈ A has the unique additive querelement ã =

(−ip/q,−ip′/q′) and the unique multiplicative querelement ā = (−iq′/p′,−iq/p). The 2-place action (“2-scalar
product”) is defined by ρ(2) (λ1, λ2 | (λ, λ′)) = (λ1λ2λ, λ1λ2λ

′). The arity shape (see Definition 5) of this zeroless
nonunital polyadic algebra A(3,3;3,3;2) is (2, 2, 2), and the compatibilities (13)–(19) hold.
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Polyadic analog of the functions on group
In the search for a polyadic version of the algebra of k-valued functions (which is isomorphic and dual

to the corresponding group algebra) we can not only have more complicated arity shapes than in the binary
case, but also the exotic possibility that the arities of the field and group are different as can be possible for
multiplace functions.

Let us consider a ng-ary group G = G(ng) =
〈
G | µ(ng)

g

〉
, which does not necessarily contain the identity

eg, and where each element is querable (see (4)). Now we introduce the set Af of multiplace (s-place) functions
fi (g1, . . . , gs) (of finite support) which take value in the polyadic field k(mk,nk) such that fi : Gs → K. To
endow Af with the structure of a polyadic associative algebra (10), we should consistently define the mk-ary
addition ν

(mk)
f : A

(mk)
f → Af , nk-ary multiplication (“convolution”) µ(nk)

f : A
(nk)
f → Af and the multiaction

ρ
(rf )
f : Krf ×Af → Af (“scalar multiplication”). Thus we write for the algebra of k-valued functions

Fk (G) =
〈
Af | ν(mk)

f , µ
(nk)
f ; ν

(mk)
k , µ

(nk)
k ; ρ

(rf )
f

〉
. (33)

The simplest operation here is the addition of the k-valued functions which, obviously, coincides with the
field addition ν(mk)

f = ν
(mk)
k .

Construction 9. Because all arguments of the multiacton ρ
(rf )
f are in the field, the only possibility for the

r.h.s. is its multiplication (similar to the regular representation)

ρ
(rf )
f

(
λ1, . . . , λrf | f

)
= µ

(nk)
k

[
λ1, . . . , λrf , f

]
, λi ∈ K, f ∈ Af , (34)

and in addition we have the arity shape relation

nk = rf + 1, (35)

which is satisfied “automatically” in the binary case.

The polyadic analog of k-valued function convolution (“(f1 ∗ f2) (g) = Σh1h2=gf1 (h1) f2 (h2)”), which is
denoted by µ(nk)

f here, while the sum in the field is ν`ν(mk−1)+1
k , where `ν is the “number of additions”, can be

constructed according to the arity rules from [10,14].

Definition 10. The polyadic convolution of s-place k-valued functions is defined as the admissible polyadic
sum of `ν (mk − 1) + 1 products

µ
(nk)
f [f1 (g1, . . . , gs) , . . . , fnk (g1, . . . , gs)] =(

ν
(mk)
k

)◦`ν


µ
(ng)
g [h1,...,hng ]=g1,

µ
(ng)
g [hng+1,...,h2ng ]=g2,

...
µ

(ng)
g

[
h(s−`id−1)ng ,...,h(s−`id)ng

]
=gs−`id ,

h(s−`id+1)ng=gs−`id+1,

...
hsng=gs

[
µ

(nk)
k

[
f1 (h1, . . . , hs) , . . . , fnk

(
hs(nk−1), . . . , hsnk

)]]
, (36)

where `id is the number of intact elements in the determining equations (“h1h2 = g”) under the field sum νk.
The arity shape is determined by

snk = (s− `id)ng + `id, (37)

which gives the connection between the field and the group arities.

Example 11. If ng = 3, nk = 2, mk = 3, s = 2, `id = 1, then we obtain the arity changing polyadic convolution

µ
(2)
f [f1 (g1, g2) , f2 (g1, g2)] =(

ν
(3)
k

)◦`ν
{
µ(3)
g [h1,h2,h3]=g1,

µ(4)
g =g2

[
µ

(2)
k [f1 (h1, h2) , f2 (h3, h4)]

]
, (38)
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where the `ν ternary additions are taken on the support. Now the multiaction (34) is one-place

ρ
(1)
f (λ | f) = µ

(2)
k [λ, f ] , λ ∈ K, f ∈ Af , (39)

as it follows from (35).
Remark 12. The general polyadic convolution (36) is inspired by the main heteromorphism equation (5.14) and
the arity changing formula (5.15) of [14]. The graphical dependence of the field arity nk on the number of places
s is similar to that on Figure 1, and the “quantization” rules (following from the solutions of (37) in integers)
are in Table 1 there.

Proposition 13. The multiplication (36) is associative.

Proof. This follows from the associativity quiver technique of [14] applied to the polyadic convolution.

Corollary 14. The k-valued multiplace functions {fi} form a polyadic associative algebra Fk (G).

“Diagrammatic” description
Here we formulate the polyadic algebra axioms in the more customary “diagrammatic” form using the

polyadic tensor products and mappings between them (denoted by bold corresponding letters). Informally, the
k-linearity is already “automatically encoded” by the polyadic tensor algebra over k, and therefore the axioms
already contain the algebra multiplication (but not the scalar multiplication).

Let us denote the k-linear algebra multiplication map by µ(n) (µ(n) ≡ µ(na)
A from (10)) defined as

µ(n) ◦ (a1 ⊗ . . .⊗ an) = µ(n) [a1, . . . , an] , a1, . . . , an ∈ A. (40)

Definition 15 (Algebra associativity axiom). A polyadic (associative n-ary) algebra (or k-algebra) is a vector
space Avect over the polyadic field k (11) with the k-linear algebra multiplication map

A(n) =
〈
Avect | µ(n)

〉
, µ(n) : A⊗n → A, (41)

which is totally associative

µ(n) ◦
(

id
⊗(n−1−i)
A ⊗µ(n) ⊗ id⊗iA

)
= µ(n) ◦

(
id
⊗(n−1−j)
A ⊗µ(n) ⊗ id⊗jA

)
,

∀i, j = 0, . . . n− 1, i 6= j, idA : A→ A, (42)

such that the diagram

A⊗(2n−1) id
⊗(n−1−i)
A ⊗ µ(n)⊗ id⊗iA- A⊗n

A⊗n

id
⊗(n−1−j)
A ⊗ µ(n)⊗ id⊗jA

?
µ(n)

- A

µ(n)

?
(43)

commutes.

Definition 16. A polyadic algebra A(n) is called totally commutative, if

µ(n) = µ(n) ◦ τn, (44)

where τn ∈ Sn, and Sn is the symmetry permutation group on n elements.

Remark 17. Initially, there are no other axioms in the definition of a polyadic algebra, because polyadic fields
and vector spaces do not necessarily contain zeroes and units (see Table 1).

A special kind of polyadic algebra can appear, when the multiplication is “iterated” from lower arity ones,
which is one of 3 kinds of arity changing for polyadic systems [14].

Definition 18. A polyadic multiplication is called derived, if the map µ(n)
der is `µ-iterated from the maps µ(n0)

0

of lower arity n0 < n

µ
(n)
der =

`µ︷ ︸︸ ︷
µ

(n0)
0 ◦

(
µ

(n0)
0 ◦ . . .

(
µ

(n0)
0 ⊗ id⊗(n0−1)

)
⊗ . . .⊗ id⊗(n0−1)

)
, (45)

where
n = `µ (n0 − 1) + 1, `µ ≥ 2, (46)

and `µ is the “number of iterations”.
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Example 19. In the ternary case n = 3 and n0 = 2, we have µ(3)
der = µ

(2)
0 ◦

(
µ

(2)
0 ⊗ id

)
, which in the “elementwise”

description is [a1, a2, a3]der = a1 · (a2 · a3), where µ(3)
der = [ , , ]der and µ(2)

0 = (·).
Introduce a k-linear multiaction map ρ(r) corresponding to the multiaction ρ(r) ≡ ρ

(ra)
A (7) (by analogy

with (40)) as
ρ(r) ◦ (λ1 ⊗ . . .⊗ λr ⊗ a) = ρ(r) (λ1, . . . , λr | a) , λ1, . . . , λr ∈ K, a ∈ A. (47)

Let k and A(n) both be unital, then we can construct a k-linear polyadic unit map η by “polyadizing”
“µ ◦ (η ⊗ id) = id” and the scalar product “λa = ρ (λ | a) = η (λ) a” with “η (ek) = ea”, using the normalization
(8), and taking into account the standard identification k⊗r ⊗A ∼= A [23].

Definition 20 (Algebra unit axiom). The unital polyadic algebra A(n) (41) contains in addition a k-linear
polyadic (right) unit map η(r,n) : K⊗r → A⊗(n−1) satisfying

µ(n) ◦
(
η(r,n) ⊗ idA

)
= ρ(r), (48)

such that the diagram

K⊗r ⊗A η(r,n)⊗idA- A⊗n

A

ρ(r)

? µ(n)

�

(49)

commutes.

The normalization of the multiaction (8) gives the corresponding normalization of the map η(r,n) (instead
of “η (ek) = ea”)

η(r,n) ◦

( r︷ ︸︸ ︷
ek ⊗ . . .⊗ ek

)
=

n−1︷ ︸︸ ︷
ea ⊗ . . .⊗ ea. (50)

Assertion 21. In the “elementwise” description the polyadic unit η(r,n) of A(n) is a (n− 1)-valued function of
r arguments.

Proposition 22. The polyadic unit map η(r,n) is (polyadically) multiplicative in the following sense

r︷ ︸︸ ︷
µ(n) ◦ . . . ◦ µ(n) ◦


r(n−1)+1︷ ︸︸ ︷

η(r,n) ⊗ . . .⊗ η(r,n)

 = η(r,n) ◦
(
µ

(nk)
k

)◦`
. (51)

Proof. This follows from the compatibility of the multiaction with the “vector multiplication” (14) and the
relation between corresponding arities (15), such that the number of arguments (“scalars” λi) in r.h.s. becomes
` (nk − 1) + 1 = r (n− 1) + 1, where ` is an integer.

Introduce a “derived” version of the polyadic unit by analogy with the neutral sequence (3).

Definition 23. The k-linear derived polyadic unit (neutral unit sequence) of n-ary algebra A(n) is the set
η̂(r) =

{
η

(r)
i

}
of n− 1 maps η(r)

i : K⊗r → A, i = 1, . . . , n− 1, satisfying

µ(n) ◦
(
η

(r)
1 ⊗ . . .⊗ η(r)

n−1 ⊗ idA

)
= ρ(r), (52)

where idA can be on any place. If η(r)
1 = . . . = η

(r)
n−1 = η

(r)
0 , we call η(r)

0 the strong derived polyadic unit.
Formally (comparing (48) and (52)), we can write

η
(r,n)
der = η

(r)
1 ⊗ . . .⊗ η(r)

n−1. (53)

The normalization of the maps η(r)
i is given by

η
(r)
i ◦

( r︷ ︸︸ ︷
ek ⊗ . . .⊗ ek

)
= ea, i = 1, . . . , n− 1, ea ∈ A, ek ∈ K, (54)

and in the “elementwise” description η(r)
i is a function of r arguments, satisfying

η
(r)
i (λ1, . . . , λr) = ρ(r) {λ1, . . . , λr | ea} , λi ∈ K, (55)

where ρ(r) is the multiaction (7).
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Definition 24. A polyadic associative algebra A(n)
der =

〈
Avect | µ(n)

der,η
(r,n)
der

〉
is called derived from A(n0)

0 =〈
Avect | µ(n0)

0 ,η
(r,n0)
0

〉
, if (45) holds and further

η
(r,n)
der =

`µ︷ ︸︸ ︷
η

(r,n0)
0 ⊗ . . .⊗ η(r,n0)

0 (56)

is true, where η(r,n0)
0 =

n0−1︷ ︸︸ ︷
η

(r)
0 ⊗ . . .⊗ η(r)

0 (formally, because idA in (52) can be on any place).

The particular case n = 3 and r = 1 was considered in [24,25] (with examples).
Invertibility in a polyadic algebra is not connected with the unit or zero (as in n-ary groups [17]), but

is determined by the querelement (4). Introduce the corresponding mappings for the subsets of the additively
querable elements A(add)

quer ⊆ A and the multiplicatively querable elements A(mult)
quer ⊆ A.

Definition 25. In the polyadic algebra A(m,n), the additive quermap qadd : A
(add)
quer → A

(add)
quer is defined by

ν(m) ◦
(

id
⊗(m−1)
A ⊗qadd

)
◦D(m)

a = idA, (57)

and the multiplicative quermap qmult : A
(mult)
quer → A

(mult)
quer is defined by

µ(n) ◦
(

id
⊗(n−1)
A ⊗qmult

)
◦D(n)

a = idA, (58)

where D(n)
a : A→ A⊗n is the diagonal map given by a→

n︷ ︸︸ ︷
a⊗ . . .⊗ a, while qadd and qmult can be on any place.

They send an element to the additive querelement a qadd7→ ã, a ∈ A
(add)
quer ⊆ A and multiplicative querelement

a
qmult7→ ā, a ∈ A(mult)

quer ⊆ A (see (4)), such that the diagrams

A
D(m)
a - A⊗m

A⊗m

ν(m)
6

id
⊗(m−1)
A ⊗qadd�

A
D(n)
a - A⊗n

A⊗n

µ(n)
6

id
⊗(n−1)
A ⊗qmult�

(59)

commute.

Example 26. For the polyadic algebra A(3,3;3,3;2) from Example 8 all elements are additively and multiplicatively
querable, and so the sets of querable elements coincide A(add)

quer = A
(mult)
quer = A. The additive quermap qadd and

multiplicative quermap qmult act as follows (the operations are in C)(
i
p

q
, i
p′

q′

)
qadd7→

(
−ip
q
,−ip

′

q′

)
, (60)(

i
p

q
, i
p′

q′

)
qmult7→

(
−i q

′

p′
,−i q

p

)
, i2 = −1, p, q ∈ Zodd. (61)

Example 27. The polyadic field k(mk,nk) is a polyadic algebra over itself. We identify A = K, µ(n)
A = µ

(nk)
k , and

the multiplication is defined by the multiaction as

µ(n) ◦ (λ1 ⊗ . . .⊗ λr ⊗ λ) = ρ(r) (λ1, . . . , λr | λ) . (62)

Therefore, we have the additional arity conditions

n = r + 1 = nk, (63)

which are trivially satisfied in the binary case. Now the polyadic unit map η(r,n) (50) is the identity in each
tensor component.

Medial map and polyadic permutations
Recall that the binary medial map for the tensor product of algebras (as vector spaces)

τmedial : (A1 ⊗A2)⊗ (A1 ⊗A2)→ (A1 ⊗A1)⊗ (A2 ⊗A2) (64)
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is defined by (evaluation)(
a

(1)
1 ⊗ a

(2)
1

)
⊗
(
a

(1)
2 ⊗ a

(2)
2

)
τmedial7→

(
a

(1)
1 ⊗ a

(1)
2

)
⊗
(
a

(2)
1 ⊗ a

(2)
2

)
. (65)

It is obvious that
τmedial = idA⊗τop ⊗ idA, (66)

where τop : A1 ⊗ A2 → A1 ⊗ A2 is the permutation of 2 elements (twist/flip) of the tensor product, such that
a(1) ⊗ a(2) τop7→ a(2) ⊗ a(1), a(1) ∈ A1, a(2) ∈ A2, τop ∈ S2. This may be presented (65) in the matrix form

⊗
(a)2×2

τmedial7→
⊗(

aT
)

2×2
,

⊗
(a)2×2 =

⊗(
a

(1)
1 a

(2)
1

a
(1)
2 a

(2)
2

)
, (67)

where T is the ordinary matrix transposition.
Let us apply (64) to arbitrary tensor products. By analogy, if we have a tensor product of mn elements (of

any nature) grouped by n elements (e.g. m elements from n different vector spaces), as in (65), (67), we can
write the tensor product in the (m× n)-matrix form (cf. (3.18)–(3.19) in [14])

⊗
(a)m×n =

⊗


a
(1)
1 a

(2)
1 . . . a

(n)
1

a
(1)
2 a

(2)
2 . . . a

(n)
2

...
...

...
...

a
(1)
m a

(2)
m . . . a

(n)
m

 (68)

Definition 28. The polyadic medial map τ (n,m)
medial : (A⊗n)

⊗m → (A⊗m)
⊗n is defined as the transposition of the

tensor product matrix (68) by the evaluation (cf. the binary case (65))

⊗
(a)m×n

τ
(n,m)
medial7→

⊗(
aT
)
n×m . (69)

We can extend the mediality concept [26, 27] to polyadic algebras using the medial map. If we have an
algebra with n-ary multiplication (40), then the mediality relation follows from (68) with m = n and contains
(n+ 1) multiplications acting on n2 elements.

Definition 29. A k-linear polyadic algebra A(n) (41) is called medial, if its n-ary multiplication map satisfies
the relation

µ(n) ◦
((
µ(n)

)⊗n)
= µ(n) ◦

((
µ(n)

)⊗n)
◦ τ (n,n)

medial, (70)

where τ (n,n)
medial is given by (69), or in the manifest elementwise form (evaluation)

µ(n)
[
µ(n)

[
a

(1)
1 , a

(2)
1 , . . . , a

(n)
1

]
, µ(n)

[
a

(1)
2 , a

(2)
2 , . . . , a

(n)
2

]
, . . . , µ(n)

[
a(1)
n , a(2)

n , . . . , a(n)
n

]]
= µ(n)

[
µ(n)

[
a

(1)
1 , a

(1)
2 , . . . , a(1)

n

]
, µ(n)

[
a

(2)
1 , a

(2)
2 , . . . , a(2)

n

]
, . . . , µ(n)

[
a

(n)
1 , a

(n)
2 , . . . , a(n)

n

]]
. (71)

Let us “polyadize” the binary twist map τop from (66), which can be suitable for operations with polyadic
tensor products. Informally, we can interpret (66), as “omitting the fixed points” of the binary medial map
τmedial, and denote this procedure by “τop = τmedial \ id”.

Definition 30. A (medially allowed) `τ -place polyadic twist map τ (`τ )
op is defined by

“ τ (`τ )
op = τ

(n,m)
medial \ id ” , (72)

where `τ = mn− kfixed, and kfixed is the number of fixed points of the medial map τ (n,m)
medial.

Assertion 31. If m 6= n, then `τ = mn− 2. If m = n, then the polyadic twist map τ (`τ )
op is the reflection

τ (`τ )
op ◦ τ (`τ )

op = idA (73)

and `τ = n (n− 1).
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Table 2: Number of places `τ in the polyadic twist map τ (`τ )
op .

H
HHHHm

n 2 3 4 5 6 7

2 2 4 6 8 10 12
3 4 6 10 13 16 19
4 6 10 12 18 22 26
5 8 13 18 20 28 33
6 10 16 22 28 30 40
7 12 19 26 33 40 42

Proof. This follows from the matrix form (68) and (69).
Therefore the number of places `τ is “quantized” and for lowest m,n is presented in Table 2.
This generalizes the binary twist in a more unique way, which gives polyadic commutativity.

Remark 32. The polyadic twist map τ (`τ )
op is one element of the symmetry permutation group S`τ which is fixed

by the medial map τ (n,m)
medial and the special condition (72), and it therefore respects polyadic tensor product

operations.
Example 33. In the matrix representation we have

τ (4)
op |n=3,m=2 =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 , τ (6)
op |n=3,m=3 =


0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

 , (74)

τ (6)
op |n=4,m=2 =


0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

 . (75)

The introduction of the polyadic twist gives us the possibility to generalize (in a way consistent with the
medial map) the notion of the opposite algebra.

Definition 34. For a polyadic algebra A(n) =
〈
A | µ(n)

〉
, an opposite polyadic algebra

A(n)
op =

〈
A | µ(n) ◦ τ (n)

op

〉
(76)

exists if the number of places for the polyadic twist map (which coincides in (76) with the arity of algebra
multiplication `τ = n) is allowed (see Table 2).

Definition 35. A polyadic algebra A(n) is called medially commutative, if

µ(n)
op ≡ µ(n) ◦ τ (n)

op = µ(n), (77)

where τ (n)
op is the medially allowed polyadic twist map.

Tensor product of polyadic algebras
Let us consider a polyadic tensor product

⊗n
i=1 A

(n)
i of n polyadic associative n-ary algebras A(n)

i =〈
Ai | µ(n)

i

〉
, i = 1, . . . , n, such that (see (40))

µ
(n)
i ◦

(
a

(i)
1 ⊗ . . .⊗ a(i)

n

)
= µ

(n)
Ai

[
a

(i)
1 , . . . , a(i)

n

]
, a

(i)
1 , . . . , a(i)

n ∈ Ai, µ
(n)
Ai

: A
(n)
i → Ai. (78)

To endow
⊗n

i=1 A
(n)
i with the structure of an algebra, we will use the medial map τ (n,m)

medial (69).
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Proposition 36. The tensor product of n associative n-ary algebras A(n)
i has the structure of the polyadic

algebra A(n)
⊗ =

〈⊗n
i=1 A

(n)
i | µ⊗

〉
, which is associative (cf. (42))

µ⊗ ◦
(

id
⊗(n−1−i)
A⊗

⊗µ⊗ ⊗ id⊗iA⊗

)
= µ⊗ ◦

(
id
⊗(n−1−j)
A⊗

⊗µ⊗ ⊗ id⊗jA⊗

)
,

∀i, j = 0, . . . n− 1, i 6= j, idA⊗ : A⊗n1 ⊗ . . .⊗A⊗nn → A, (79)

if
µ⊗ =

(
µ

(n)
1 ⊗ . . .⊗ µ(n)

n

)
◦ τ (n,n)

medial. (80)

Proof. We act by the multiplication map µ⊗ on the element’s tensor product matrix (68) and obtain

µ⊗ ◦
((
a

(1)
1 ⊗ a

(2)
1 ⊗ . . .⊗ a

(n)
1

)
⊗ . . .⊗

(
a(1)
n ⊗ a(2)

n ⊗ . . .⊗ a(n)
n

))
=
(
µ

(n)
1 ⊗ . . .⊗ µ(n)

n

)
◦ τ (n,n)

medial ◦
((
a

(1)
1 ⊗ a

(2)
1 ⊗ . . .⊗ a

(n)
1

)
⊗ . . .⊗

(
a(1)
n ⊗ a(2)

n ⊗ . . .⊗ a(n)
n

))
=
(
µ

(n)
1 ⊗ . . .⊗ µ(n)

n

)
◦
((
a

(1)
1 ⊗ a

(1)
2 ⊗ . . .⊗ a(1)

n

)
⊗ . . .⊗

(
a

(n)
1 ⊗ a(n)

2 ⊗ . . .⊗ a(n)
n

))
= µ

(n)
1

[
a

(1)
1 , a

(1)
2 , . . . , a(1)

n

]
⊗ . . .⊗ µ(n)

n

[
a

(n)
1 , a

(n)
2 , . . . , a(n)

n

]
, (81)

which proves that µ⊗ is indeed a polyadic algebra multiplication. To prove the associativity (79) we repeat the
same derivation (81) twice and show that the result is independent of i, j.

If all A(n)
i have their polyadic unit map η(r,n)

i defined by (48) and acting as (50), then we have

Proposition 37. The polyadic unit map of A(n)
⊗ is η⊗ : K⊗nr → A

⊗(n−1)
1 ⊗ . . .⊗A⊗(n−1)

n acting as

η⊗ ◦

( nr︷ ︸︸ ︷
ek ⊗ . . .⊗ ek

)
=

 n−1︷ ︸︸ ︷
ea1
⊗ . . .⊗ ea1

⊗ . . .⊗
 n−1︷ ︸︸ ︷
ean ⊗ . . .⊗ ean

 . (82)

Assertion 38. The polyadic unit of A(n)
⊗ is a

(
n2 − n

)
-valued function of nr arguments.

Note that concepts of tensor product and derived polyadic algebras are different.

Heteromorphisms of polyadic associative algebras
The standard homomorphism between binary associative algebras is defined as a linear map ϕ which

“commutes” with the algebra multiplications (“ϕ ◦ µ1 = µ2 ◦ (ϕ⊗ ϕ)”). In the polyadic case there exists the
possibility to change arity of the algebras, and for that, one needs to use the heteromorphisms (or multiplace
maps) introduced in [14]. Let us consider two polyadic k-algebras A(n1)

1 =
〈
A1 | µ(n1)

1

〉
and A(n2)

2 =
〈
A2 | µ(n2)

2

〉
(over the same polyadic field k).

Definition 39. A heteromorphism between two polyadic k-algebras A(n1)
1 and A(n2)

2 (of different arities n1 and
n2) is a s-place k-linear map Φ

(n1,n2)
s : A⊗s1 → A2, such that

Φ(n1,n2)
s ◦


s−`id︷ ︸︸ ︷

µ
(n1)
1 ⊗ . . .⊗ µ(n1)

1 ⊗
`id︷ ︸︸ ︷

idA1
⊗ . . .⊗ idA1

 = µ
(n2)
2 ◦


n2︷ ︸︸ ︷

Φ(n1,n2)
s ⊗ . . .⊗Φ(n1,n2)

s

 , (83)

and the diagram

A⊗sn2
1

(Φ(n1,n2)
s )

⊗n2

- A⊗n2
2

A⊗s1

(
µ

(n1)
1

)⊗(s−`id)
⊗(idA1)

⊗`id

?
Φ(n1,n2)
s - A2

µ
(n2)
2

?
(84)

commutes. The arities satisfy
sn2 = n1 (s− `id) + `id, (85)

where 0 ≤ `id ≤ s− 1 is an integer (the number of “intact elements” of A1), and therefore 2 ≤ n2 ≤ n1.
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Assertion 40. If `id = 0 (there are no “intact elements”), then the (s-place) heteromorphism does not change
the arity of the polyadic algebra.

Definition 41. A homomorphism between two polyadic k-algebras A(n)
1 and A(n)

2 (of the same arity or equiary)
is a 1-place k-linear map Φ(n) = Φ

(n,n)
s=1 : A1 → A2, such that

Φ(n) ◦ µ(n)
1 = µ

(n)
2 ◦


n︷ ︸︸ ︷

Φ(n) ⊗ . . .⊗Φ(n)

 , (86)

and the diagram

A⊗n1

(Φ(n))
⊗n

- A⊗n2

A1

µ
(n)
1

?
Φ(n)

- A2

µ
(n)
2

?
(87)

commutes.

The above definitions do not include the behavior of the polyadic unit under heteromorphism, because a
polyadic associative algebra need not contain a unit. However, if both units exist, this will lead to strong arity
restrictions.

Proposition 42. If in k-algebras A(n1)
1 and A(n2)

2 (of arities n1 and n2) there exist both polyadic units (48)
η

(r,n1)
1 : K⊗r → A

⊗(n1−1)
1 and η(r,n2)

2 : K⊗r → A
⊗(n2−1)
2 , then

1. The heteromorphism (83) connects them as
s︷ ︸︸ ︷

η
(r,n2)
2 ⊗ . . .⊗ η(r,n2)

2 =


n1−1︷ ︸︸ ︷

Φ(n1,n2)
s ⊗ . . .⊗Φ(n1,n2)

s

 ◦


s︷ ︸︸ ︷
η

(r,n1)
1 ⊗ . . .⊗ η(r,n1)

1

 , (88)

and the diagram

Krs

(
η

(r,n1)
1

)⊗s
- A

⊗s(n1−1)
1

A
⊗s(n2−1)
2

(
η

(r,n2)
2

)⊗s
?

(Φ(n1,n2)
s )

⊗(n1−1)�
(89)

commutes.

2. The number of “intact elements” is fixed by its maximum value

`id = s− 1, (90)

such that in the l.h.s. of (83) there is only one multiplication µ(n1)
1 .

3. The number of places s in the heteromorphism Φ
(n1,n2)
s is fixed by the arities of the polyadic algebras

s (n2 − 1) = n1 − 1. (91)

Proof. Using (85) we obtain s (n2 − 1) = (s− `id) (n1 − 1), then the (n1 − 1) power of the heteromorphism
Φ

(n1,n2)
s maps A⊗s(n1−1)

1 → A
⊗(n1−1)
2 , and we have s− `id = 1, which, together with (85), gives (90), and (91).

Structure constants
Let A(n) be a finite-dimensional polyadic algebra (10) having the basis ei ∈ A, i = 1, . . . , N , where N is its

dimension as a polyadic vector space

Avect =
〈
A,K | ν(m); ν

(mk)
k , µ

(nk)
k ; ρ(r)

〉
(92)

where we denote ν(m) = ν
(ma)
A (see (9) and (11), here N = dv). In the binary case “a =

∑
i λ

(i)ei”, any element
a ∈ A is determined by the number Nλ of scalars λ ∈ K, which coincides with the algebra dimension Nλ = N ,
because r = 1. In the polyadic case, it can be that r > 1, and moreover with m ≥ 2 the admissible number of
“words” (in the expansion of a by ei) is “quantized” , such that 1,m, 2m − 1, 3m − 2, . . . `N (m− 1) + 1, where
`N ∈ N0 is the “number of additions”. So we have
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Definition 43. In N -dimensional n-ary algebra A(n) (with m-ary addition and r-place “scalar” multiplication)
the expansion of any element a ∈ A by the basis {ei | i = 1, . . . , N} is

a =
(
ν(m)

)◦`N [
ρ(r)

{
λ

(1)
1 , . . . , λ(1)

r | e1

}
, . . . , ρ(r)

{
λ

(N)
1 , . . . , λ(N)

r | eN
}]

, (93)

and is determined by Nλ ∈ N “scalars”, where

Nλ = rN, (94)
N = `N (m− 1) + 1, `N ∈ N0, N ∈ N, m ≥ 2. (95)

In the binary case m = 2, the dimension N of an algebra is not restricted and is a natural number, because,
N = `N + 1.

Assertion 44. The dimension of n-ary algebra A(n) having m-ary addition is not arbitrary, but “quantized”
and can only have the following values for m ≥ 3

m = 3, N = 1, 3, 5, . . . , 2`N + 1, (96)
m = 4, N = 1, 4, 7, . . . , 3`N + 1, (97)
m = 5, N = 1, 5, 9, . . . , 4`N + 1, (98)
. . .

Proof. It follows from (95) and demanding that the “number of additions” `N is natural or zero.
In a similar way, by considering a product of the basis elements, which can also be expanded in the basis

“eiej =
∑
k χ

(k)
(i,j)ek” , we can define a polyadic analog of the structure constants χ(k)

(i,j) ∈ K.

Definition 45. The polyadic structure constants χ(j)
r,(i1,...in) ∈ K, i1, . . . in, j = 1, . . . , n of the N -dimensional

n-ary algebra A(n) (with m-ary addition ν(m) and r-place multiaction ρ(r)) are defined by the expansion of the
n-ary product of the basis elements {ei | i = 1, . . . , N} as

µ(n) [ei1 , . . . , ein ]

=
(
ν(m)

)◦`N [
ρ(r)

{
χ

(1)
1,(i1,...in), . . . , χ

(1)
r,(i1,...in) | e1

}
, . . . , ρ(r)

{
χ

(N)
1,(i1,...in), . . . , χ

(N)
r,(i1,...in) | eN

}]
, (99)

where

Nχ = rNn+1, N,Nχ ∈ N (100)
N = `N (m− 1) + 1, `N ∈ N0, m ≥ 2. (101)

As in the binary case, we have

Corollary 46. The algebra multiplication µ(n) of A(n) is fully determined by the rNn+1 polyadic structure
constants χ(j)

r,(i1,...in) ∈ K.

Contrary to the binary case m = 2, when Nχ can be any natural number, we now have

Assertion 47. The number of the polyadic structure constants Nχ of the finite-dimensional n-ary algebra A(n)

with m-ary addition and r-place multiaction is not arbitrary, but “quantized” according to

Nχ = r (`N (m− 1) + 1)
n+1

, r ∈ N, `N ∈ N0, m, n ≥ 2. (102)

Proof. This follows from (100) and “quantization” of the algebra dimension N , see Assertion 44.

POLYADIC COALGEBRAS

Motivation
The standard motivation for introducing the comultiplication is from representation theory [28, 29]. The

first examples come from so-called addition formulas for special functions (“anciently” started from sin/cos),
which actually arise from representations of groups [5, 30].

In brief (and informally), let π be a finite-dimensional representation of a group G in a vector space V over
a field k, such that

π (gh) = π (g)π (h) , π : G→ EndV, g, h ∈ G. (103)
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In some basis of V the matrix elements πij (g) satisfy πij (gh) =
∑
k πik (g)πkj (h) (from (103)) and span a

finite dimensional vector space Cπ of functions with a basis eπm as fπ =
∑
m αmeπm , fπ ∈ Cπ. Now (103) gives

fπ (gh) =
∑
m,n βmneπm (g) eπn (h), fπ ∈ Cπ. If we omit the evaluation, it can be written in the vector space

Cπ using an additional linear map ∆π : Cπ → Cπ ⊗ Cπ, in the following way

∆π (fπ) =
∑
m,n

βmneπm ⊗ eπn ∈ Cπ ⊗ Cπ. (104)

Thus, to any finite-dimensional representation π one can define the map ∆π of vector spaces Cπ to functions
on a group, called a comultiplication.

It is important that all the above operations are binary, and the defining formula for comultiplication (104)
is fully determined by the definition of a representation (103).

The polyadic analog of a representation was introduced and studied in [14]. In the case of multiplace
representations, arities of the initial group and its representation can be different. Indeed, let G(n) =

〈
G | µ(n)

G

〉
,

µ
(n)
G : G×n → G, be a n-ary group and G(n′)

End V =

〈
{EndV} | µ(n′)

E

〉
, µ(n′)

E : (EndV)
×n′ → EndV, is a n′-ary

group of endomorphisms of a polyadic vector space V (9). In [14] G(n′)
End V was considered as a derived one, while

here we do not restrict it in this way.

Definition 48. A polyadic (multiplace) representation of G(n) in V is a s-place mapping

Π
(n,n′)
s : G×s → EndV, (105)

satisfying the associativity preserving heteromorphism equation [14]

Π
(n,n′)
s


s−`′id︷ ︸︸ ︷

µ
(n)
G [g1, . . . gn] , . . . , µ

(n)
G

[
gn(s−`′id−1), . . . , gn(s−`′id)

]
, . . . ,

`′id︷ ︸︸ ︷
gn(s−`′id)+1, . . . , gn(s−`′id)+`′id


= µ

(n′)
E

[
Π

(n,n′)
s (g1, . . . gs) , . . . ,Π

(n,n′)
s

(
gs(n′−1), . . . gsn′

)]
, (106)

such that the diagram

G×sn
′

(
Π

(n,n′)
s

)×n′
- (EndV )

×n′

G×n
′

(
µ

(n)
G

)×(s−`′id)
×(idG)×`

′
id

?
Π

(n,n′)
s - EndV

µ
(n′)
E

?
(107)

commutes, and the arity changing formula

sn′ = n (s− `′id) + `′id, (108)

where `′id is the number of “intact elements” in l.h.s. of (106), 0 ≤ `′id ≤ s− 1, 2 ≤ n′ ≤ n.

Remark 49. Particular examples of 2-place representations of ternary groups (s = 2, which change arity from
n = 3 to n′ = 2), together with their matrix representations, were presented in [14,31].

Polyadic comultiplication
Our motivations say that in constructing a polyadic analog of the comultiplication, one should not only

“reverse arrows”, but also pay thorough attention to arities.

Assertion 50. The arity of polyadic comultiplication coincides with the arity of the representation and can
differ from the arity of the polyadic algebra.

Proof. It follows from (103), (104) and (105).
Let us consider a polyadic vector space over the polyadic field k(mk,nk) as (see (11))

Cvect =
〈
C,K | ν(mc)

C ; ν
(mk)
k , µ

(nk)
k ; ρ

(rc)
C

〉
, (109)

where ν(mc)
C : C×mc → C is mc-ary addition and ρ(rc)

C : K×rc × C → C is rc-place action (see (7)).
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Definition 51. A polyadic (n′-ary) comultiplication is a k-linear map ∆(n′) : C → C⊗n
′
.

Definition 52. A polyadic (coassociative) coalgebra (or k-coalgebra) is the polyadic vector space Cvect equipped
with the polyadic comultiplication

C = C(n′) =
〈
Cvect |∆(n′)

〉
, (110)

which is (totally) coassociative(
id
⊗(n′−1−i)
C ⊗∆(n′) ⊗ id⊗iC

)
◦∆(n′) =

(
id
⊗(n−1−j)
C ⊗∆(n′) ⊗ id⊗jC

)
◦∆(n′),

∀i, j = 0, . . . n− 1, i 6= j, idC : C → C, (111)

and such that the diagram

C⊗(2n′−1) � id
⊗(n′−1−i)
C ⊗ ∆(n′)⊗ id⊗iC C⊗n

′

C⊗n
′

id
⊗(n′−1−j)
C ⊗ ∆(n′)⊗ id⊗jC

6

� ∆(n′)

C

∆(n′)
6

(112)

commutes (cf.(43)).

Definition 53. A polyadic coalgebra C(n′) is called totally co-commutative, if

∆(n′) = τn′ ◦∆(n′), (113)

where τn′ ∈ Sn′ , and Sn′ is the permutation symmetry group on n′ elements.

Definition 54. A polyadic coalgebra C(n′) is called medially co-commutative, if

∆
(n′)
cop ≡ τ

(n′)
op ◦∆(n′) = ∆(n′), (114)

where τ (n′)
op is the medially allowed polyadic twist map (72).

There are no other axioms in the definition of a polyadic coalgebra, following the same reasoning as for
a polyadic algebra: the possible absence of zeroes and units (see Table 1). Obviously, in a polyadic coalgebra
C(n′), there is no “unit element”, because there is no multiplication, and a polyadic analog of counit can be
only defined, when the underlying field k(mk,nk) is unital (which is not always the case [20]).

By analogy with (6), introduce the `′-coiterated n′-ary comultiplication by

(
∆(n′)

)◦`′
=

`′︷ ︸︸ ︷(
id
⊗(n′−1)
C ⊗ . . .

(
id
⊗(n′−1)
C ∆(n′)

)
. . . ◦∆(n′)

)
◦∆(n′), `′ ∈ N. (115)

Therefore, the admissible length of any co-word is fixed (“quantized”) as `′ (n′ − 1) + 1, but not arbitrary, as in
the binary case.

Let us introduce a co-analog of the derived n-ary multiplication (45) by

Definition 55. A polyadic comultiplication ∆
(n′)
der is called derived, if it is `d-coiterated from the comultipli-

cation ∆
(n′0)
0 of lower arity n′0 < n′

∆
(n′)
der =

`d︷ ︸︸ ︷(
id
⊗(n′0−1)
C ⊗ . . .

(
id
⊗(n′0−1)
C ∆

(n′0)
0

)
. . . ◦∆

(n′0)
0

)
◦∆

(n′0)
0 , (116)

or

∆
(n′)
der =

(
∆

(n′0)
0

)◦`′
, (117)

where
n′ = `d (n′0 − 1) + 1, (118)

and `d ≥ 2 is the “number of coiterations”.
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The standard coiterations of ∆ are binary and restricted by n′0 = 2 ( [1]).

Example 56. The matrix coalgebra generated by the basis eij , i, j = 1, . . . , N of MatN (C) with the binary
coproduct ∆

(2)
0 (eij) =

∑
k eik ⊗ ekj (see, e.g., [2]) can be extended to the derived ternary coalgebra by

∆
(3)
der (eij) =

∑
k,l eik ⊗ ekl ⊗ elj , such that (116) becomes ∆

(3)
der =

(
idC ⊗∆

(2)
0

)
∆

(2)
0 =

(
∆

(2)
0 ⊗ idC

)
∆

(2)
0 .

Example 57. Let us consider the ternary coalgebra
〈
C |∆(3)

〉
generated by two elements {a, b} ∈ C with the

von Neumann regular looking comultiplication

∆(3) (a) = a⊗ b⊗ a, ∆(3) (b) = b⊗ a⊗ b. (119)

It is easy to check that ∆(3) is coassociative and nonderived.

Definition 58. A polyadic coalgebra C(n′) (110) is called co-medial, if its n′-ary multiplication map satisfies
the relation ((

∆(n′)
)⊗n′)

◦∆(n′) = τ
(n′,n′)
medial ◦

((
∆(n′)

)⊗n′)
◦∆(n′), (120)

where τ (n′,n′)
medial is the polyadic medial map given by (68)–(69).

Introduce a k-linear r′-place action map ρ̄(r′) : K⊗r
′ ⊗ C → C corresponding to ρ(rc)

C by (see (47))

ρ̄(r′) ◦ (λ1 ⊗ . . .⊗ λr′ ⊗ c) = ρ
(r′)
C (λ1, . . . , λr′ | c) , λ1, . . . , λr′ ∈ K, c ∈ C. (121)

Let k(mk,nk) be unital with unit ek.

Definition 59. A k-linear r′-place coaction map σ(r′) : C → K⊗r
′ ⊗ C is defined by

c 7→
r′︷ ︸︸ ︷

ek ⊗ . . .⊗ ek ⊗ c. (122)

Assertion 60. The coaction map σ(r′) is a “right inverse” for the multiaction map ρ̄(r′)

ρ̄(r′) ◦ σ(r′) = idC . (123)

Proof. This follows from the normalization (8), (122).

Remark 61. The maps (121) and (122) establish the isomorphism

r′︷ ︸︸ ︷
k⊗ . . .⊗ k⊗C ∼= C, which is well-known in

the binary case (see, e.g. [23]).

We can provide the definition of counit only in the case where the underlying field k has a unit.

Definition 62 (Counit axiom). The polyadic coalgebra C(n) (41) over the unital polyadic field k(mk,nk) contains
a k-linear polyadic (right) counit map ε(n

′,r′) : C⊗(n′−1) → K⊗r
′
satisfying(

ε(n
′,r′) ⊗ idC

)
◦∆(n′) = σ(r′), (124)

such that the diagram

K⊗r
′
⊗ C �ε

(n′,r′)⊗idC
C⊗n

′

C

σ(r′)
6

∆(n′)

-

(125)

commutes (cf.(49)).

Remark 63. We cannot write the “elementwise” normalization action for the counit analogous to (50) (and state
the Assertion 21), because a unit element in a (polyadic) coalgebra is not defined.

By analogy with the derived polyadic unit (see (52)), consider a “derived” version of the polyadic counit.
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Definition 64. The k-linear derived polyadic counit (neutral counit sequence) of the polyadic coalgebra C(n′)

is the set ε̂(r) =

{
ε
(r′)
i

}
of n′ − 1 maps ε(

r′)
i : C → K⊗r

′
, i = 1, . . . , n′ − 1, satisfying

(
ε
(r′)
1 ⊗ . . .⊗ ε(r

′)
n′−1 ⊗ idC

)
◦∆(n′) = σ(r′), (126)

where idC can be on any place. If ε(
r′)

1 = . . . = ε
(r′)
n′−1 = ε

(r′)
0 , we call it the strong derived polyadic counit. In

general, we can define formally, cf. (53),

ε
(n′,r′)
der = ε

(r′)
1 ⊗ . . .⊗ ε(r

′)
n′−1. (127)

Definition 65. A polyadic coassociative coalgebra C(n′)
der =

〈
Cvect |∆

(n′)
der , ε

(n′,r′)
der

〉
is called derived from

C(n′)
0 =

〈
Cvect |∆

(n′0)
0 , ε

(n′0,r
′)

0

〉
, if (116) and

ε
(n′,r′)
der =

`d︷ ︸︸ ︷
ε
(n′0,r

′)
0 ⊗ . . .⊗ ε(n

′
0,r
′)

0 (128)

hold, where ε(
n′0,r

′)
0 =

n′0−1︷ ︸︸ ︷
ε
(r′)
0 ⊗ . . .⊗ ε(r

′)
0 (formally, because idC in (126) can be on any place).

In [24,25] the particular case for n′ = 3 and r′ = 1 was considered.

Homomorphisms of polyadic coalgebras
In the binary case, a morphism of coalgebras is a linear map ψ : C1 → C2 which “commutes” with

comultiplications (“(ψ ⊗ ψ) ◦ ∆1 = ∆2 ◦ ϕ”). It seems that for the polyadic coalgebras, one could formally
change the direction of all arrows in (84). However, we observed that arity changing is possible for multivalued
morphisms only. Therefore, here we confine ourselves to homomorphisms (1-place heteromorphisms [14]).

Let us consider two polyadic (equiary) k-coalgebras C(n′)
1 =

〈
C1 |∆

(n′)
1

〉
and C(n′)

2 =

〈
C2 |∆

(n′)
2

〉
over

the same polyadic field k(mk,nk).

Definition 66. A (coalgebra) homomorphism between polyadic (equiary) coalgebras C(n′)
1 and C(n′)

2 is a k-
linear map Ψ(n′) : C1 → C2, such that

n′︷ ︸︸ ︷
Ψ(n′) ⊗ . . .⊗Ψ(n′)

 ◦∆
(n′)
1 = ∆

(n′)
2 ◦Ψ(n′), (129)

and the diagram

C⊗n
′

2
�

(
Ψ(n′)

)⊗n′
C⊗n

′

1

C2

∆
(n′)
2

6

� Ψ(n′)

C1

∆
(n′)
1

6 (130)

commutes (cf. (84)).

Only when the underlying field k is unital, we can also define a morphism for counits.

Definition 67. The counit homomorphism for ε(
n′,r′)

1,2 : C
⊗(n′−1)
1,2 → K⊗r

′
is given by

ε
(n′,r′)
2 = ε

(n′,r′)
1 ◦


n′−1︷ ︸︸ ︷

Ψ(n′) ⊗ . . .⊗Ψ(n′)

 , (131)
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and the diagram

Kr′ � ε
(n′,r′)
2 C

⊗(n′−1)
2

C
⊗(n′−1)
1

ε
(n′,r′)
1

6
(132)

commutes (cf. (89)).

Tensor product of polyadic coalgebras

Let us consider n′ polyadic equiary coalgebras C(n′)
i =

〈
Ci |∆

(n′)
i

〉
, i = 1, . . . , n′.

Proposition 68. The tensor product of the coalgebras has a structure of the polyadic coassociative coalgebra

C(n′)
⊗ =

〈
C⊗ |∆

(n′)
⊗

〉
, C⊗ =

⊗n′

i=1 Ci, if

∆
(n′)
⊗ = τ

(n′,n′)
medial ◦

(
∆

(n′)
i ⊗ . . .⊗∆

(n′)
i

)
, (133)

where τ (n′,n′)
medial is defined in (69) and ∆

(n′)
⊗ : C⊗ →

n′︷ ︸︸ ︷
C⊗ ⊗ . . .⊗ C⊗.

The proof is in full analogy with that of Proposition 36. If all of the coalgebras C(n′)
i have counits,

we denote them ε
(n′,r′)
i : C

⊗(n′−1)
i → K⊗r

′
, i = 1, . . . , n′, and the counit map of C(n′)

⊗ will be denoted by

ε
(n′,r′)
⊗ : C

⊗(n′−1)
⊗ → K⊗r

′
. We have (in analogy to “εC1⊗C2

(c1 ⊗ c2) = εC1
(c1) εC2

(c2)”)

Proposition 69. The tensor product coalgebra C(n′)
⊗ has a counit which is defined by

ε
(n′,r′)
⊗ ◦

(
c1 ⊗ . . .⊗ cn′(n′−1)

)
= µnkk ◦

(
ε
(n′,r′)
1 ◦

(
c1 ⊗ . . .⊗ c(n′−1)

)
⊗ . . .⊗ ε(n

′,r′)
n′ ◦

(
c(n′−1)(n′−1) ⊗ . . .⊗ cn′(n′−1)

))
, (134)

ci ∈ Ci, i = 1, . . . , n′ (n′ − 1) ,

and the arity of the comultiplication coincides with the arity of the underlying field

n′ = nk. (135)

Polyadic coalgebras in the Sweedler notation
The k-linear coalgebra comultiplication map ∆(n′) defined in Definition 51 is useful for a “diagrammatic”

description of polyadic coalgebras, and it corresponds to the algebra multiplication map µ(n), which both
manipulate with sets. However, for concrete computations (with elements) we need an analog of the polyadic
algebra multiplication µ(n) ≡ µ

(na)
A from (12). The connection of µ(n) and µ(n) is given by (40), which can

be treated as a “bridge” between the “diagrammatic” and “elementwise” descriptions. The co-analog of (40)
was not considered, because the comultiplication has only one argument. To be consistent, we introduce the
“elementwise” comultiplication ∆(n′) as the coanalog of µ(n) by the evaluation

∆(n′) ◦ (c) = ∆(n′) (c) , c ∈ C. (136)

In general, one does not distinguish ∆(n′) and ∆(n′) and may use one symbol in both descriptions.
In real “elementwise” coalgebra computations with many variables and comultiplications acting on them,

the indices and various letters reproduce themselves in such a way that it is impossible to observe the structure
of the expressions. Therefore, instead of different letters in the binary decomposition (“∆ (c) =

∑
i ai ⊗ bi” and

(104)) it was proposed [32] to use the same letter (“∆ (c) =
∑
i c[1],i ⊗ c[2],i”), and then go from the real sum∑

i to the formal sum
∑

[c] as (“∆ (c) =
∑

[c] c[1]⊗ c[2]” remembering the place of the components c[1], c[2] only),
because the real indices pullulate in complicated formulas enormously. In simple cases, the sum sign was also
omitted (“∆ (c) = c[1]⊗c[2]”), which recalls the Einstein index summation rule in physics. This trick abbreviated
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tedious coalgebra computations and was called the (sumless) Sweedler (sigma) notation (sometimes it is called
the Heyneman-Sweedler notation [33]).

Now we can write ∆(n′) as a n′-ary decomposition in the manifest “elementwise” form

∆(n′) (c) =
(
ν(m)

)◦`∆ [
c[1],1 ⊗ c[2],1 ⊗ . . .⊗ c[n′],1, . . . , c[1],N∆

⊗ c[2],N∆
⊗ . . .⊗ c[n′],N∆

]
, c[j],i ∈ C, (137)

where `∆ ∈ N0 is a “number of additions”, and N∆ ∈ N is the “number of summands”. In the binary case,
the number of summands in the decomposition is not “algebraically” restricted, because N∆ = `∆ + 1. In the
polyadic case, we have

Assertion 70. The admissible “number of summands” N∆ in the polyadic comultiplication is

N∆ = `∆ (m− 1) + 1, `∆ ∈ N0, m ≥ 2. (138)

Therefore, the “quantization” of N∆ coincides with that of the N -dimensional polyadic algebra (see
Assertion 44).

Introduce the polyadic Sweedler notation by exchanging in (137) the real m-ary addition ν(m) by the formal
addition ν[c] and writing

∆(n′) (c) = ν[c]

[
c[1] ⊗ c[2] ⊗ . . .⊗ c[n′]

]
⇒ c[1] ⊗ c[2] ⊗ . . .⊗ c[n′]. (139)

Remember here that we can formally add only N∆ summands, because of the “quantization” (138) rule.
The polyadic Sweedler notation power can be seen in the following

Example 71. We apply (139) to the coassociativity (111) with n′ = 3, to obtain(
id⊗ id⊗∆(3)

)
◦∆(3) (c) =

(
id⊗∆(3) ⊗ id

)
◦∆(3) (c) =

(
∆(3) ⊗ id⊗ id

)
◦∆(3) (c)⇒ (140)

= ν[c]

[
c[1] ⊗ c[2] ⊗ ν[c2]

[(
c[3]

)
[1]
⊗
(
c[3]

)
[2]
⊗
(
c[3]

)
[3]

]]
= ν[c]

[
c[1] ⊗ ν[c2]

[(
c[2]

)
[1]
⊗
(
c[2]

)
[2]
⊗
(
c[2]

)
[3]

]
⊗ c[3]

]
= ν[c]

[
ν[c2]

[(
c[1]

)
[1]
⊗
(
c[1]

)
[2]
⊗
(
c[1]

)
[3]

]
⊗ c[2] ⊗ c[3]

]
. (141)

After dropping the brackets and applying the Sweedler trick for the second time, we get the same formal
expression in all three cases (

ν[c]

)◦2 [
c[1] ⊗ c[2] ⊗ c[3] ⊗ c[4] ⊗ c[5]

]
. (142)

Unfortunately, in the polyadic case the Sweedler notation looses too much information to be useful.

Assertion 72. The polyadic Sweedler notation can be applied to only the derived polyadic coalgebras.

Nevertheless, if in an expression there are no coiterations, one can formally use it (e.g., in the polyadic
analog (124) of the counting axiom “

∑
ε
(
c[1]

)
c[2] = c”).

Polyadic group-like and primitive elements
Let us consider some special kinds of elements in a polyadic coalgebra C(n′). We should take into account

that in the polyadic case, as in (137), there can only be the admissible “number of summands” N∆ (138).

Definition 73. An element g of C(n′) is called polyadic semigroup-like, if

∆(n′) (g) =

n′︷ ︸︸ ︷
g ⊗ . . .⊗ g, , g ∈ C. (143)

When C(n′) has the counit ε(n
′,r′) (124), then g is called polyadic group-like, if (“ε (g) = 1”)

ε(n
′,r′) ◦

 n′−1︷ ︸︸ ︷
g ⊗ . . .⊗ g

 =

r′︷ ︸︸ ︷
ek ⊗ . . .⊗ ek, (144)

where ek is the unit of the underlying polyadic field k.
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Definition 74. An element x of C(n′) is called polyadic skew kp-primitive, if (“∆ (x) = g1 ⊗ x+ x⊗ g2”)

∆(n′) (x) =
(
ν(m)

)◦`∆ 
 kp︷ ︸︸ ︷
g1 ⊗ . . .⊗ gkp ⊗

n′−kp︷ ︸︸ ︷
x⊗ . . .⊗ x

 , . . . ,

 n′−kp︷ ︸︸ ︷
x⊗ . . .⊗ x⊗

kp︷ ︸︸ ︷
g(N∆−1)kp+1 ⊗ . . .⊗ gN∆kp


 , (145)

where 1 ≤ kp ≤ n′ − 1, N∆ = `∆ (m− 1) + 1 is the total “number of summands”, here `∆ ∈ N is the “number
of m-ary additions”, and gi ∈ C, i = 1, . . . , N∆kp are polyadic (semi-)group-like (143). In (145) the n′ − kp
elements x move from the right to the left by one.

Assertion 75. If kp = n′ − 1, then ∆(n′) (x) is “ linear” in x, and n′ = `∆ (m− 1) + 1.

In this case, we call x a polyadic primitive element.
Example 76. Let n′ = 3 and kp = 2, then m = 3, and we have only one ternary addition `∆ = 1

∆(3) (x) = ν(3) [g1 ⊗ g2 ⊗ x, g3 ⊗ x⊗ g4, x⊗ g5 ⊗ g6] , (146)

∆(3) (gi) = gi ⊗ gi ⊗ gi, i = 1, . . . , 6. (147)

The ternary coassociativity gives g1 = g2 = g3 and g4 = g5 = g6. Therefore, the general form of the ternary
primitive element is

∆(3) (x) = ν(3) [g1 ⊗ g1 ⊗ x, g1 ⊗ x⊗ g2, x⊗ g2 ⊗ g2] . (148)

Note that coassociativity leads to the derived comultiplication (116), because

∆(3) (x) =
(

id⊗∆(2)
)

∆(2) (x) =
(

∆(2) ⊗ id
)

∆(2) (x) , (149)

∆(2) (x) = g1 ⊗ x+ x⊗ g2. (150)

The same situation occurs with the “linear” comultiplication of any arity n′, i.e. when kp = n′ − 1.
The most important difference with the binary case is the “intermediate” possibility kp < n′− 1, when the

r.h.s. is “nonlinear” in x.
Example 77. In the case where n′ = 3 and kp = 1, we have m = 3, and `∆ = 1

∆(3) (x) = ν(3) [g1 ⊗ x⊗ x, x⊗ g2 ⊗ x, x⊗ x⊗ g3] , (151)

∆(3) (gi) = gi ⊗ gi ⊗ gi, i = 1, . . . , 3. (152)

Now ternary coassociativity cannot be achieved with any values of gi. This is true for any arity n′ and any
“nonlinear” comultiplication.

Therefore, we arrive at the general structure

Assertion 78. In a polyadic coassociative coalgebra C(n′) polyadic primitive elements exist, if and only if the
n′-ary comultiplication ∆(n′) is derived (116) from the binary comultiplication ∆(2).

Polyadic analog of duality
The connection between binary associative algebras and coassociative coalgebras (formally named as

“reversing arrows”) is given in terms of the dual vector space (dual module) concept. Informally, for a bi-
nary coalgebra C(2) = 〈C | ∆, ε〉 considered as a vector space over a binary field k (a k-vector space), its dual is
C∗2 = Hom k(C, k) with the natural pairing C∗ × C → k given by f (c), f ∈ C∗, c ∈ C. The canonical injection
θ : C∗ ⊗ C∗ → (C ⊗ C)

∗ is defined by

θ (f1 ⊗ f2) ◦ (c1 ⊗ c2) = f1 (c1) f2 (c2) , c1,2 ∈ C, f1,2 ∈ C∗, (153)

which is an isomorphism in the finite-dimensional case. The transpose of ∆ : C → C ⊗ C is a k-linear map
∆∗ : (C ⊗ C)

∗ → C∗ acting as ∆∗ (ξ) (c) = ξ ◦ (∆ (c)), where ξ ∈ (C ⊗ C)
∗, c ∈ C. The multiplication µ∗ on

the set C∗ is the map C∗ ⊗ C∗ → C∗, and therefore we have to use the canonical injection θ as follows

µ∗ : C∗ ⊗ C∗ θ→ (C ⊗ C)
∗ ∆∗→ C∗, (154)

µ∗ = ∆∗ ◦ θ. (155)
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The associativity of µ∗ follows from the coassociativity of ∆. Since k∗ ' k, the dual of the counit is the
unit η∗ : k ε∗→ C∗. Therefore, C(2)∗ = 〈C∗ | µ∗, η∗〉 is a binary associative algebra which is called the dual algebra
of the binary coalgebra C(2) = 〈C | ∆, ε〉 (see, e.g. [3]).

In the polyadic case, arities of the comultiplication, its dual multiplication and the underlying field can
be different, but connected by (153). Let us consider a polyadic coassociative coalgebra C(n′) with n′-ary
comultiplication ∆(n′) (136) over k(mk,nk). In search of the most general polyadic analog of the injection (153),
we arrive at the possibility of multiplace morphisms.

Definition 79. For the polyadic coalgebra C(n′) considered as a polyadic vector space over k(mk,nk), a polyadic

dual is C∗ = Homk (C⊗s,K) with s-place pairing C∗ ×
s︷ ︸︸ ︷

C × . . .× C → K giving by f (s) (c1, . . . , cs), f ∈ C∗,
ci ∈ C, s ∈ N.

While constructing a polyadic analog of (153), recall that for any n′-ary operation the admissible length
of a co-word is `′ (n′ − 1) + 1, where `′ is the number of the iterated operation (115).

Definition 80. A polyadic canonical injection map θ(n∗,n′,s) of C(n′) is defined by

θ(n∗,n′,s) ◦
(
f

(s)
1 ⊗ . . .⊗ f (s)

n∗

)
◦
(
c1 ⊗ . . .⊗ c`′(n′−1)+1

)
=(

µ
(nk)
k

)◦`k [
f

(s)
1 (c1, . . . , cs) , . . . , f

(s)
`k(nk−1)+1

(
c(n∗−1)s+1, . . . , cn∗s

)]
, (156)

where

n∗s = `′ (n′ − 1) + 1, `′ ∈ N, n′ ≥ 2, (157)
n∗ = `k (nk − 1) + 1, `k ∈ N, nk ≥ 2. (158)

It is obvious that θ(2,2,1) = θ from (153). Then, the polyadic transpose map of the n′-ary comultiplication

∆(n′) : C →
n′︷ ︸︸ ︷

C ⊗ . . .⊗ C is a k-linear map ∆
(n′′)
∗ :

 n′′︷ ︸︸ ︷
C ⊗ . . .⊗ C


∗

→ C∗ such that

∆
(n′′)
∗ ◦

(
ξ(n

′′)
)

(c) = ξ(n
′′) ◦

((
∆(n′)

)◦`′
(c)

)
,

ξ(n
′′) ∈

 n′′︷ ︸︸ ︷
C ⊗ . . .⊗ C


∗

, n′′ = `′ (n′ − 1) + 1, c ∈ C (159)

where `′ is the “number of comultiplications” (see (6) for multiplications and (115)).

Definition 81. A n∗-ary multiplication map µ(n∗)
∗ which is (one way) dual to the n′-ary comultiplication map

∆(n′) is given by the composition of the polyadic canonical injection θ(n∗,n′,s) (156) and the polyadic transpose

∆
(n′′)
∗ (159) by

µ
(n∗)
∗ = ∆

(n′′)
∗ ◦ θ(n∗,n′,s). (160)

Indeed, using (156) and (159) we obtain (in Sweedler notation)

µ
(n∗)
∗ ◦

(
f

(s)
1 ⊗ . . .⊗ f (s)

n∗

)
◦ (c) = ∆

(n′′)
∗ ◦ θ(n∗,n′,s) ◦

(
f

(s)
1 ⊗ . . .⊗ f (s)

n∗

)
◦ (c)

= θ(n∗,n′,s) ◦
(
f

(s)
1 ⊗ . . .⊗ f (s)

n∗

)
◦
((

∆(n′)
)◦`′

(c)

)
=
(
µ

(nk)
k

)◦`k [
f

(s)
1

(
c[1], . . . , c[s]

)
, . . . , f

(s)
`k(nk−1)+1

(
c[(n∗−1)s+1], . . . , c[n∗s]

)]
, (161)

and (157)–(158) are valid, from which we arrive at

Assertion 82. In the polyadic case the arity n∗ of the multiplication µ(n∗)
∗ can be different from the arity n′

of the initial coalgebra C(n′).
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Remark 83. If n∗ 6= n′ and s ≥ 2, the word “duality” can only be used conditionally.

Polyadic convolution product
If A(2) = 〈A | µ, η〉 is a binary algebra and C(2) = 〈C | ∆, ε〉 is a binary coalgebra over a binary field k, then

a more general set of k-linear maps Hom k(C,A) can be considered, while its particular case where A(2) = k
corresponds to the above duality. The multiplication on Hom k(C,A) is the convolution product (?) which can
be uniquely constructed in the natural way: by applying first comultiplication ∆ and then multiplication µ ≡ (·)
to an element of C, as C ∆−→ C ⊗C f⊗g−→ A⊗A µ−→ A or f ? g = µ ◦ (f ⊗ g) ◦∆, where f, g ∈ Hom k(C,A). The
associativity of the convolution product follows from the associativity of µ and coassociativity of ∆, and the
role of the identity (neutral element) in Hom k(C,A) is played by the composition of the unit map η : k → A
and the counit map ε : C → k, such that e? = η ◦ ε ∈ Hom k(C,A), because e? ? f = f ? e? = f . Indeed, from
the obvious relation idA ◦f ◦ idC = f and the unit and counit axioms it follows that

µ ◦ (η ⊗ idA) ◦ (idK ⊗f) ◦ (ε⊗ idC) ◦∆ = µ ◦ (η ◦ idK ◦ε)⊗ (idA ◦f ◦ idC) ◦∆ = e? ? f = f, (162)

or in Sweedler notation ε
(
c[1]

)
· f
(
c[2]

)
= f

(
c[1]

)
· ε
(
c[2]

)
= f (c).

The polyadic analog of duality and (161) offer an idea of how to generalize the binary convolution product
to the most exotic case, when the algebra and coalgebra have different arities n 6= n′.

Let A(n) and C(n′) be, respectively, a polyadic associative algebra and a coassociative coalgebra over the
same polyadic field k(mk,nk). If they are both unital and counital respectively, then we can consider a polyadic
analog of the composition η ◦ ε. The crucial difference from the binary case is that now η(r,n) and ε(n

′,r′) are
multiplace multivalued maps (48) and (124). Their composition is

e
(n′,n)
? = η(r,n) ◦ γ(r′,r) ◦ ε(n

′,r′) ∈ Homk

(
C⊗(n′−1), A⊗(n−1)

)
, (163)

where the multiplace multivalued map γ(r′,r) ∈ Homk

(
K⊗r

′
,K⊗r

)
is, obviously, ('), and the diagram

C⊗(n′−1) ε(n
′,r′)
- K⊗r

′,

A⊗(n−1)

e
(n,n′)
?

?
�η

(r,n)

K⊗r

γ(r′,r)(')
?

(164)

commutes.
The formula (163) leads us to propose

Conjecture 84. A polyadic analog of the convolution should be considered for multiplace multivalued k-linear
maps in Homk

(
C⊗(n′−1), A⊗(n−1)

)
.

In this way, we arrive at the following

Construction 85. Introduce the k-linear maps f(i) : C⊗(n′−1) → A⊗(n−1), i = 1, . . . , n?, where n? ≥ 2. To
create a closed n?-ary operation for them, we use the `-iterated multiplication map

(
µ(n)

)◦`
: A⊗`(n−1)+1 → A

and `′-iterated comultiplication map
(
∆(n′)

)◦`′
: C → C⊗`

′(n′−1)+1. Then we compose the above k-linear maps
in the same way as is done above for the binary case

C⊗(n′−1)

((
∆(n′)

)◦`′)⊗(n′−1)

- C⊗(n′−1)(`′(n′−1)+1) τ
(n?,n′−1)
medial - C⊗(n′−1)(`′(n′−1)+1)

f(1)⊗...⊗f(n?)

- A⊗(n−1)(`′(n′−1)+1) τ
(n−1,n?)
medial- A⊗(n−1)(`(n−1)+1)

(
(µ(n))

◦`)⊗(n−1)

- A⊗(n−1). (165)

where τ (n?,n′−1)
medial and τ (n−1,n?)

medial are the medial maps (69) acting on the Sweedler components of c and f(i),
respectively. To make the sequence of maps (165) consistent, the arity n? is connected with the iteration
numbers `, `′ by n? = ` (n− 1) + 1 = `′ (n′ − 1) + 1, `, `′ ∈ N.

Definition 86. Let A(n) and C(n′) be a n-ary associative algebra and n′-ary coassociative coalgebra over a
polyadic field k (the existence of the unit and counit here is mandatory), then the set Homk

(
C⊗(n′−1), A⊗(n−1)

)
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is closed under the n?-ary convolution product map µ(n?)
? defined by

µ
(n?)
? ◦

(
f(1) ⊗ . . .⊗ f(n?)

)
= (166)((

µ(n)
)◦`)⊗(n−1)

◦ τ (n−1,n?)
medial ◦

(
f(1) ⊗ . . .⊗ f(n?)

)
◦ τ (n?,n′−1)

medial ◦
((

∆(n′)
)◦`′)⊗(n′−1)

,

and its arity is given by the following n?-consistency condition

n? − 1 = ` (n− 1) = `′ (n′ − 1) . (167)

Definition 87. The set of k-linear maps f(i) ∈ Homk

(
C⊗(n′−1), A⊗(n−1)

)
endowed with the convolution

product (166) is called a polyadic convolution algebra

C(n′,n)
? =

〈
Homk

(
C⊗(n′−1), A⊗(n−1)

)
| µ(n?)

?

〉
. (168)

Example 88. An important case is given by the binary algebra A(2) and coalgebra C(2) (n = n′ = 2), when the
number of iterations are equal ` = `′, and the arity n? becomes

n? = `+ 1 = `′ + 1, `, `′ ∈ N, (169)

while the n?-ary convolution product in Homk (C,A) takes the form

µ
(n?)
? ◦

(
f(1) ⊗ . . .⊗ f(n?)

)
= µ◦(n?−1) ◦

(
f(1) ⊗ . . .⊗ f(n?)

)
◦∆◦(n?−1), f(i) ∈ Homk (C,A) , (170)

where µ = µ(2) and ∆ = ∆(2) are the binary multiplication and comultiplication maps respectively.

Definition 89. The polyadic convolution algebra C(2,2)
? determined by the binary algebra and binary coalgebra

(170) is called derived.

Corollary 90. The arity n? of the derived polyadic convolution algebra is unrestricted and can take any integer
value n? ≥ 2.

Remark 91. If the polyadic tensor product and the underlying polyadic field k are derived (see discussion [10]),
while all maps coincide f(i) = f, the convolution product (170) is called the Sweedler power of f [34] or the
Adams operator [35]. In the binary case they denoted it by (f)n? , but for the n?-ary product this is the first
polyadic power of f (see (6)).

Obviously, some interesting algebraic objects are nonderived, and here they are determined by n+ n′ ≥ 5,
and also the arities of the algebra and coalgebra can be different n 6= n′, which is a more exotic and exciting
possibility. Generally, the arity n? of the convolution product (166) is not arbitrary and is “quantized” by solving
(167) in integers. The values n? for minimal arities n, n′ are presented in Table 3.

The most unusual possibility is the existence of nondiagonal entries, which correspond to unequal arities of
multiplication and comultiplication n 6= n′. The table is symmetric, which means that the arity n? is invariant
under the exchange (n, `)←→ (n′, `′) following from (167).
Example 92 (Homk (C,A)). In the simplest derived case (170), when both algebra A(2) = 〈A | µ〉 and coalgebra
C(2) = 〈C |∆〉 are binary with n = 2, ` = 2, n′ = 2, `′ = 2, it is possible to obtain the ternary convolution
product µ(3)

? of the maps f(i) : C → A, i = 1, 2, 3, using Sweedler notation for ∆◦2 ≡ (idC ⊗∆) ◦ ∆ as
∆◦2 (c) = c[1] ⊗ c[2] ⊗ c[3], µ◦2 ≡ µ ◦ (idA⊗µ) : A⊗3 → A, and the elementwise description using the evaluation

µ
(3)
?,der ◦

(
f(1) ⊗ f(2) ⊗ f(3)

)
◦ (c) = µ◦2

[
f(1)
(
c[1]

)
, f(2)

(
c[2]

)
, f(3)

(
c[3]

)]
. (171)

Example 93 (Homk
(
C,A⊗2

)
, Homk

(
C⊗2, A

)
). Nonbinary, nonderived and nonsymmetric cases:

1. The ternary algebra A(3) =
〈
A | µ(3)

〉
and the binary coalgebra C(2) = 〈C |∆〉, such that n = 3, ` = 1, n′ =

2, `′ = 2 giving a ternary convolution product of the maps f(i) : C → A⊗2, i = 1, 2, 3. In the elementwise
description f(i) ◦ (c) = f(i)[1] (c) ⊗ f(i)[2] (c), c ∈ C. Using (166), we obtain the manifest form of the nonderived
ternary convolution product by evaluation

µ
(3)
? ◦

(
f(1) ⊗ f(2) ⊗ f(3)

)
◦ (c)

= µ(3)
[
f(1)
[1]

(
c[1]

)
, f(2)

[1]

(
c[2]

)
, f(3)

[1]

(
c[3]

)]
⊗ µ(3)

[
f(1)
[2]

(
c[1]

)
, f(2)

[2]

(
c[2]

)
, f(3)

[2]

(
c[3]

)]
, (172)

where ∆◦2 (c) = c[1] ⊗ c[2] ⊗ c[3].
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Table 3: Arity values n? of the polyadic convolution product (166), allowed by (167). The framed box corresponds
to the binary convolution product.

HHH
HHn′
n

µ n = 2 n = 3 n = 4 n = 5

∆
HHH

HHH
`′

`
` = 1 ` = 2 ` = 3 ` = 1 ` = 2 ` = 3 ` = 1 ` = 2 ` = 3 ` = 1 ` = 2 ` = 3

`′ = 1 2
n′ = 2 `′ = 2 3 3

`′ = 3 4 4
`′ = 1 3 3

n′ = 3 `′ = 2 5 5
`′ = 3 7 7
`′ = 1 4 4

n′ = 4 `′ = 2 7 7
`′ = 3 10
`′ = 1 5 5

n′ = 5 `′ = 2 9
`′ = 3 13

2. The algebra is binary A(2) = 〈A | µ〉, and the coalgebra is ternary C(3) =
〈
C |∆(3)

〉
, which corresponds to

n = 2, ` = 2, n′ = 3, `′ = 1, the maps f(i) : C⊗2 → A, i = 1, 2, 3 in the elementwise description are two place,
f(i) ◦ (c1 ⊗ c2) = f(i) (c1, c2), c1,2 ∈ C, and

(
∆(3)

)⊗2 (
c(1) ⊗ c(2)

)
=
(
c
(1)
[1] ⊗ c

(1)
[2] ⊗ c

(1)
[3]

)
⊗
(
c
(2)
[1] ⊗ c

(2)
[2] ⊗ c

(2)
[3]

)
.

The ternary convolution product is

µ
(3)
? ◦

(
f(1) ⊗ f(2) ⊗ f(3)

)
◦
(
c(1) ⊗ c(2)

)
= µ◦2

[
f(1)
(
c
(1)
[1] , c

(2)
[1]

)
, f(2)

(
c
(1)
[2] , c

(2)
[2]

)
, f(3)

(
c
(1)
[3] , c

(2)
[3]

)]
. (173)

Example 94 (Homk
(
C⊗2, A⊗2

)
). The last (fourth) possibility for the ternary convolution product (see Table

3) is nonderived and symmetric n = 3, ` = 1, n′ = 3, `′ = 1, with both a ternary algebra A(3) =
〈
A | µ(3)

〉
and coalgebra C(3) =

〈
C |∆(3)

〉
. In the elementwise description the maps f(i) : C⊗2 → A⊗2, i = 1, 2, 3 are

f(i) ◦ (c1 ⊗ c2) = f(i)[1] (c1, c2)⊗ f(i)[2] (c1, c2), c1,2 ∈ C. Then

µ
(3)
? ◦

(
f(1) ⊗ f(2) ⊗ f(3)

)
◦
(
c(1) ⊗ c(2)

)
= µ(3)

[
f(1)
[1]

(
c
(1)
[1] , c

(2)
[1]

)
, f(2)

[1]

(
c
(1)
[2] , c

(2)
[2]

)
, f(3)

[1]

(
c
(1)
[3] , c

(2)
[3]

)]
⊗ µ(3)

[
f(1)
[2]

(
c
(1)
[1] , c

(2)
[1]

)
, f(2)

[2]

(
c
(1)
[2] , c

(2)
[2]

)
, f(3)

[2]

(
c
(1)
[3] , c

(2)
[3]

)]
. (174)

The above examples present clearly the possible forms of the n?-ary convolution product, which can be
convenient for lowest arity computations.

The general polyadic convolution product (166) in Sweedler notation can be presented as

µ
(n?)
? ◦

(
f(1) ⊗ f(2) ⊗ . . . ⊗ f(n?)

)
= g, f(i),g ∈ Homk

(
C⊗(n′−1), A⊗(n−1)

)
,

g[j] ◦
(
c(1) ⊗ . . .⊗ c(n

′−1)
)

=
(
µ(n)

)◦`
f(1)

[j]


n′−1︷ ︸︸ ︷

c
(1)
[1] , . . . , c

(n′−1)
[1]

 , f(2)
[j]


n′−1︷ ︸︸ ︷

c
(1)
[2] , . . . , c

(n′−1)
[2]

 , . . . , f(n?)
[j]


n′−1︷ ︸︸ ︷

c
(1)
[n?], . . . , c

(n′−1)
[n?]


 ,

f(i)[j] ∈ Homk

(
C⊗(n′−1), A

)
, i ∈ 1, . . . , n?, j ∈ 1, . . . , n− 1, c ∈ C, (175)

where g[j] are the Sweedler components of g.
Recall that the associativity of the binary convolution product (?) is transparent in the Sweedler notation.

Indeed, if (f ? g) ◦ (c) = f
(
c[1]

)
· g
(
c[2]

)
, f, g, h ∈ Hom k(C,A), c ∈ C, (·) ≡ µ

(2)
A , then ((f ? g) ? h) ◦ (c) =(

f
(
c[1]

)
· g
(
c[2]

))
· h
(
c[3]

)
= f

(
c[1]

)
·
(
g
(
c[2]

)
· h
(
c[3]

))
= (f ? (g ? h)) ◦ (c).
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Lemma 95. The polyadic convolution algebra C(n′,n)
? ( 168) is associative.

Proof. To prove the claimed associativity of polyadic convolution µ(n?)
? we express (5) in Sweedler notation.

Starting from

h = µ
(n?)
? ◦

(
g⊗ f(n?+1) ⊗ f(n?+2) ⊗ . . . ⊗ f(2n?−1)

)
, h ∈ Homk

(
C⊗(n′−1), A⊗(n−1)

)
, (176)

where g is given by (175), it follows that h should not depend of place of g in (176). Applying h to c ∈ C twice,
we obtain for its Sweedler components h[j], j ∈ 1, . . . , n− 1,

h[j] ◦
(
c(1) ⊗ . . .⊗ c(n

′−1)
)

=
(
µ(n)

)◦`
(µ(n)

)◦`
f(1)

[j]


n′−1︷ ︸︸ ︷

c
(1)
[1] , . . . , c

(n′−1)
[1]

 , f(2)
[j]


n′−1︷ ︸︸ ︷

c
(1)
[2] , . . . , c

(n′−1)
[2]

 ,

. . . , f(n?)
[j]


n′−1︷ ︸︸ ︷

c
(1)
[2n?−1], . . . , c

(n′−1)
[2n?−1]


 , f(n?+1)

[j]


n′−1︷ ︸︸ ︷

c
(1)
[1] , . . . , c

(n′−1)
[1]

 , f(n?+2)
[j]


n′−1︷ ︸︸ ︷

c
(1)
[2] , . . . , c

(n′−1)
[2]

 ,

. . . , f(2n?−1)
[j]


n′−1︷ ︸︸ ︷

c
(1)
[2n?−1], . . . , c

(n′−1)
[2n?−1]


 , (177)

and here coassociativity and (167) gives
(

∆(n′)
)◦2l′

(c) = c[1] ⊗ c[2] ⊗ . . .⊗ c[2n?−1]. Since n-ary algebra multi-

plication µ(n) is associative, the internal
(
µ(n)

)◦`
in (177) can be on any place, and g in (176) can be on any

place as well. This means that the polyadic convolution product µ(n?)
? is associative.

Observe the polyadic version of the identity used in (162): for any f ∈ Homk

(
C⊗(n′−1), A⊗(n−1)

)
id
⊗(n−1)
A ◦ f ◦ id

⊗(n′−1)
C = f. (178)

Proposition 96. If the polyadic associative algebra A(n) is unital with η(r,n) : Kr → A⊗(n−1), and the polyadic
coassociative coalgebra C(n′) is counital with ε(n

′,r′) : C⊗(n′−1) → Kr′ , both over the same polyadic field k,
then the polyadic convolution algebra C(n′,n)

? ( 168) is unital, and its unit is given by e(n′,n)
? (167).

Proof. In analogy with (162) we compose

f =

((
µ(n)

)◦`)⊗(n−1)

◦ τ (n−1,n?)
medial ◦

((
η(r,n)

)⊗(n?−1)

⊗ id
⊗(n−1)
A

)
◦
((
γ(r′,r)

)⊗(n?−1)

⊗ id
⊗(n−1)
A

)

◦
((

id⊗r
′

K

)⊗(n?−1)

⊗ f
)
◦
((
ε(n

′,r′)
)⊗(n?−1)

⊗ id
⊗(n′−1)
C

)
◦ τ (n?,n′−1)

medial ◦
((

∆(n′)
)◦`′)⊗(n′−1)

=

((
µ(n)

)◦`)⊗(n−1)

◦ τ (n−1,n?)
medial ◦

(
η(r,n) ◦ γ(r′,r) ◦ ε(n

′,r′)
)⊗(n?−1)

◦
(

id
⊗(n−1)
A ◦ f ◦ id

⊗(n′−1)
C

)
◦ τ (n?,n′−1)

medial ◦
((

∆(n′)
)◦`′)⊗(n′−1)

= µ
(n?)
? ◦

((
e
(n′,n)
?

)⊗(n?−1)

⊗ f

)
, (179)

which coincides with the polyadic unit definition (2). We use the identity (178) and the axioms for a polyadic
unit (48) and counit (124). The same derivation can be made for any place of µ(n?)

? .

As in the general theory of n-ary groups [17], the invertibility of maps in C(n′,n)
? should be defined not by

using the unit, but by using the querelement (4).

Definition 97. For a fixed f ∈ C(n′,n)
? its coquerelement q? (f) ∈ C(n′,n)

? is the querelement in the n?-ary
convolution product

µ
(n?)
? ◦

(
f⊗(n?−1) ⊗ q? (f)

)
= f, (180)
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where q? (f) can be on any place and n? ≥ 3. The maps in a polyadic convolution algebra which have a
coquerelement are called coquerable.

Define the positive convolution power `? of an element f ∈ C(n′,n)
? not recursively as in [36], but through

the `?-iterated multiplication (6)

f〈`?〉 =
(
µ

(n?)
?

)◦`?
◦
(
f⊗(`?(n?−1)+1)

)
, (181)

and an element in the negative convolution power f〈−`?〉 satisfies the equation(
µ

(n?)
?

)◦`?
◦
(
f〈`?−1〉 ⊗ f⊗(n?−2) ⊗ f〈−`?〉

)
=
(
µ

(n?)
?

)◦`?
◦
(
f⊗`?(n?−1) ⊗ f〈−`?〉

)
= f. (182)

It follows from (181) that the polyadic analogs of the exponent laws hold

µ
(n?)
? ◦

(
f〈`

(1)
? 〉 ⊗ f〈`

(2)
? 〉 ⊗ . . .⊗ f〈`

(n?)
? 〉

)
= f〈`

(1)
? +`(2)

? ...+`(n?)
? +1〉, (183)

(
f〈`

(1)
? 〉
)〈`(2)

? 〉
= f〈`

(1)
? `(2)

? (n?−1)+`(1)
? +`(2)

? 〉. (184)

Comparing (180) and (182), we have
q? (f) = f〈−1〉. (185)

An arbitrary polyadic power `Q of the coquerelement q◦`Q? (f) is defined by (180) recursively and can be expressed
through the negative polyadic power of f (see, e.g. [37] for n-ary groups). In terms of the Heine numbers [38]
(or q-deformed numbers [39])

[[l]]q =
ql − 1

q − 1
, l ∈ N0, q ∈ Z, (186)

we obtain [14]

q
◦`Q
? (f) = f〈−[[`Q]]2−n?〉. (187)

POLYADIC BIALGEBRAS
The next step is to combine algebras and coalgebras into a common algebraic structure in some “natural”

way. Informally, a bialgebra is defined as a vector space which is “simultaneously” an algebra and a coalgebra
with some compatibility conditions (e.g., [1, 2]).

In search of a polyadic analog of bialgebras, we observe two structural differences with the binary case:
1) since the unit and counit do not necessarily exist, we obtain 4 different kinds of bialgebras (similar to the
unit and zero in Table 1); 2) where the most exotic is the possibility of unequal arities of multiplication and
comultiplication n 6= n′. Initially, we take them as arbitrary and then try to find restrictions arising from some
“natural” relations.

Let Bvect be a polyadic vector space over the polyadic field k(mk,nk) as (see (11) and (109))

Bvect =
〈
B,K | ν(m); ν

(mk)
k , µ

(nk)
k ; ρ(r)

〉
, (188)

where ν(m) : B×m → B is m-ary addition and ρ(r) : K×r ×B → B is r-place action (see (7)).

Definition 98. A polyadic bialgebra B(n′,n) is Bvect equipped with a k-linear n-ary multiplication map µ(n) :

B⊗n → B and a k-linear n′-ary comultiplication map ∆(n′) : B → B⊗n
′
such that:

1. (а) B(n)
A =

〈
Bvect | µ(n)

〉
is a n-ary algebra;

(б) The map µ(n) is a coalgebra (homo)morphism (129).

2. (а) B(n′)
C =

〈
Bvect |∆(n′)

〉
is a n′-ary coalgebra;

(б) The map ∆(n′) is an algebra (homo)morphism (86).
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The equivalence of the compatibility conditions 1b) and 2b) can be expressed in the form (polyadic analog
of “∆ ◦ µ = (µ⊗ µ) (id⊗τ ⊗ id) (∆⊗∆)”)

∆(n′) ◦ µ(n) =


n′︷ ︸︸ ︷

µ(n) ⊗ . . .⊗ µ(n)

 ◦ τ (n,n′)
medial ◦


n︷ ︸︸ ︷

∆(n′) ⊗ . . .⊗∆(n′)

 , (189)

where τ (n,n′)
medial is the medial map (69) acting on B, while the diagram

B⊗n

(
∆(n′)

)⊗n
-
(
B⊗n

′
)⊗n τ

(n,n′)
medial-

(
B⊗n

)⊗n′

B

µ(n)

?
∆(n′)

- B⊗n
′

(µ(n))
⊗n′

?
(190)

commutes.
In an elementwise description it is the commutation of n-ary multiplication and n′-ary comultiplication

∆(n′)
(
µ(n) [b1, . . . , bn]

)
= µ(n)

[
∆(n′) (b1) , . . . ,∆(n′) (bn)

]
, (191)

which in the Sweedler notation becomes

µ(n) [b1, . . . , bn][1] ⊗ µ
(n) [b1, . . . , bn][2] ⊗ . . .⊗ µ

(n) [b1, . . . , bn][n′]

= µ(n)
[
b
(1)
[1] , . . . , b

(n)
[1]

]
⊗ µ(n)

[
b
(1)
[2] , . . . , b

(n)
[2]

]
⊗ . . .⊗ µ(n)

[
b
(1)
[n′], . . . , b

(n)
[n′]

]
. (192)

Consider the example of a nonderived bialgebra B(n,n) which follows from the von Neumann higher n-
regularity relations [40–43].

Example 99 (von Neumann n-regular bialgebra). Let B(n,n) =
〈
B | µ(n),∆(n)

〉
be a polyadic bialgebra generated

by the elements bi ∈ B, i = 1, . . . , n− 1 subject to the nonderived n-ary multiplication

µ(n) (b1, b2, b3 . . . , bn−2, bn−1, b1) = b1, (193)

µ(n) (b2, b3, b4 . . . bn−1, b1, b2) = b2, (194)
...

µ(n) (bn−1, b1, b2 . . . bn−3, bn−2, bn−1) = bn−1, (195)

and the nonderived n-ary comultiplication (cf. 119)

∆(n) (b1) = b1 ⊗ b2 ⊗ b3 . . . , bn−2 ⊗ bn−1 ⊗ b1, (196)

∆(n) (b2) = b2 ⊗ b3 ⊗ b4 . . . , bn−1 ⊗ b1 ⊗ b2, (197)
...

∆(n) (bn−1) = bn−1 ⊗ b1 ⊗ b2 ⊗ . . .⊗ bn−3 ⊗ bn−2 ⊗ bn−1. (198)

It is straightforward to check that the compatibility condition (191) holds. Many possibilities exist for choosing
other operations—algebra addition, field addition and multiplication, action—so to demonstrate the compatibility
we have confined ourselves to only the algebra multiplication and comultiplication.

If the n-ary algebra B(n)
A has unit and/or n′-ary coalgebra B(n′)

C has counit ε(n
′,r′), we should add the

following additional axioms.

Definition 100 (Unit axiom). If B(n)
A =

〈
Bvect | µ(n)

〉
is unital, then the unit η(r,n) is a (homo)morphism of

the coalgebra B(n′)
C =

〈
Bvect |∆(n′)

〉
(see (129))


n−1︷ ︸︸ ︷

∆(n′) ⊗ . . .⊗∆(n′)

 ◦ η(r,n) =


n′︷ ︸︸ ︷

η(r,n) ⊗ . . .⊗ η(r,n)

 (199)
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such that the diagram

K⊗r
η(r,n)

- B⊗(n−1)

K⊗rn
′

'
?

(η(r,n))
n′

- B⊗(n−1)n′

(
∆(n′)

)⊗(n−1)

?
(200)

commutes.

Definition 101 (Counit axiom). If B(n′)
C =

〈
Bvect |∆(n′)

〉
is counital, then the counit ε(n

′,r′) is a (homo)morphism

of the algebra B(n)
A =

〈
Bvect | µ(n)

〉
(see (86))

ε(n
′,r′) ◦


n′−1︷ ︸︸ ︷

µ(n) ⊗ . . .⊗ µ(n)

 =


n︷ ︸︸ ︷

ε(n
′,r′) ⊗ . . .⊗ ε(n

′,r′)

 (201)

such that the diagram

K⊗r �
ε(n
′,r′)

B⊗(n′−1)

K⊗rn

'
6

� B⊗(n′−1)n

(µ(n))
⊗(n′−1)

6
(202)

commutes.

If both the polyadic unit and polyadic counit exist, then we include their compatibility condition(
ε(n

′,r′)
)⊗(n−1)

◦
(
η(r,n)

)⊗(n′−1)
' idK , (203)

such that the diagram

B⊗(n′−1)(n−1)

K⊗r(n
′−1) ' -

(η(r,n))
⊗(n′−1) -

K⊗r(n−1)

(
ε(n
′,r′)

)⊗(n−1)

- (204)

commutes.

Assertion 102. There are four kinds of polyadic bialgebras depending on whether the unit η(r,n) and counit
ε(n

′,r′) exist:
1) nonunital-noncounital; 2) unital-noncounital; 3) nonunital-counital; 4) unital-counital.

Definition 103. A polyadic bialgebra B(n′,n) is called totally co-commutative, if

µ(n) = µ(n) ◦ τn, (205)

∆(n′) = τn′ ◦∆(n′), (206)

where τn ∈ Sn, τn′ ∈ Sn′ , and Sn, Sn′ are the symmetry permutation groups on n and n′ elements respectively.

Definition 104. A polyadic bialgebra B(n′,n) is called medially co-commutative, if

µ(n)
op ≡ µ(n) ◦ τ (n)

op = µ(n), (207)

∆
(n′)
cop ≡ τ

(n′)
op ◦∆(n′) = ∆(n′), (208)

where τ (n)
op and τ (n′)

op are the medially allowed polyadic twist maps (72).
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POLYADIC HOPF ALGEBRAS
Here we introduce the most general approach to “polyadization” of the Hopf algebra concept [1–3]. Informally,

the transition from bialgebra to Hopf algebra is, in some sense, “dualizing” the passage from semigroup (contai-
ning noninvertible elements) to group (in which all elements are invertible). Schematically, if multiplication
µ = (·) in a semigroup G is binary, the invertibility of all elements demands two extra and necessary set-ups:
1) An additional element (identity e ∈ G or the corresponding map from a one point set to group ε); 2) An
additional map (inverse ι : G → G), such that g · ι (g) = e in diagrammatic form is µ ◦ (idG×ι) ◦ D2 = ε
(D2 : G → G × G is the diagonal map). When “dualizing”, in a (binary) bialgebra B (with multiplication µ
and comultiplication ∆) again two set-ups should be considered in order to get a (binary) Hopf algebra: 1)
An analog of identity e? = ηε (where η : k → B is unit and ε : B → k is counit); 2) An analog of inverse
S : B → B called the antipode, such that µ ◦ (idB ⊗S) ◦∆ = e? or in terms of the (binary) convolution product
idB ? S = e?. By multiplying both sides by S from the left and by idB from the right, we obtain weaker (von
Neumann regularity) conditions S ? idB ? S = S, idB ? S ? idB = idB , which do not contain an identity e? and
lead to the concept of weak Hopf algebras [44–46].

The crucial peculiarity of the polyadic generalization is the possible absence of an identity or 1) in both
cases. The role and necessity of the polyadic identity (2) is not so important: there polyadic groups without
identity exist (see, e.g. [47], and the discussion after (3)). Invertibility is determined by the querelement (4) in
n-ary group or the quermap (57) in polyadic algebra. So there are two ways forward: “dualize” the quermap (57)
directly (as in the binary case) or use the most general version of the polyadic convolution product (166) and
apply possible restrictions, if any. We will choose the second method, because the first one is a particular case of
it. Thus, if the standard (binary) antipode is the convolution inverse (coinverse) to the identity in a bialgebra,
then its polyadic counterpart should be a coquerelement (180) of some polyadic analog for the identity map in
the polyadic bialgebra. We consider two possibilities to define a polyadic analog of identity: 1) Singular case.
The comultiplication is binary n′ = 2; 2) Symmetric case. The arities of multiplication and comultiplication
need not be binary, but should coincide n = n′.

In the singular case a polyadic multivalued map in Endk
(
B,B⊗(n−1)

)
is a reminder of how an identity can

be defined: its components are to be functions of one variable. That is, with more than one argument it is not
possible to determine its value when these are unequal.

Definition 105. We take for a singular polyadic identity Id0 the diagonal map Id0 = D ∈ Endk
(
B,B⊗(n−1)

)
,

such that b 7→ b⊗(n−1), for any b ∈ B.

We call the polyadic convolution product (166) with the binary comultiplication n′ = 2 reduced and denote
it by µ̄(n?)

? which in Sweedler notation can be obtained from (175)

µ̄
(n?)
? ◦

(
f(1) ⊗ f(2) ⊗ . . . ⊗ f(n?)

)
= g, f(i),g ∈ Endk

(
B,B⊗(n−1)

)
,

g[j] ◦ (b) =
(
µ(n)

)◦` [
f(1)
[j]

(
b[1]

)
, f(2)

[j]

(
b[2]

)
, . . . , f(n?)

[j]

(
b[n?]

)]
,

f(i)[j] ∈ Endk (B,B) , i ∈ 1, . . . , n?, j ∈ 1, . . . , n− 1, b ∈ B, (209)

The consistency condition (167) becomes reduced

n? = ` (n− 1) + 1 = `′ + 1. (210)

Definition 106. The set of the multivalued maps f(i) ∈ Endk
(
B,B⊗(n−1)

)
(together with the polyadic identity

Id0) endowed with the reduced convolution product µ̄(n?)
? is called a reduced n?-ary convolution algebra

C(2,n)
? =

〈
Endk

(
B,B⊗(n−1)

)
| µ̄(n?)

?

〉
. (211)

Remark 107. The reduced convolution algebra C(2,n)
? having n 6= 2 is not derived (Definition 89).

Having the distinguished element Id0 ∈ C(2,n)
? as an analog of idB and the querelement (180) for any

f ∈ C(2,n)
? (the polyadic version of inverse in the convolution algebra), we are now in a position to “polyadize”

the concept of the (binary) antipode.

Definition 108. A multivalued map Q0 : B → B⊗(n−1) in the polyadic bialgebra B(2,n) is called a singular
querantipode, if it is the coquerelement of the polyadic identity Q0 = q? (Id0) in the reduced n?-ary convolution
algebra

µ̄
(n?)
? ◦

(
Id⊗(n?−1)

0 ⊗Q0

)
= Id0, (212)
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where Q0 can be on any place, such that the diagram

B
∆◦(n?−1)

- B⊗n?

B⊗(n−1)

Id0
?

�

(
(µ(n))

◦`)⊗(n−1) (
B⊗n?

)⊗(n−1) �τ
(n−1,n?)
medial

(
B⊗(n−1)

)⊗n?Id⊗(n?−1)
0 ⊗Q0? (213)

commutes.

In Sweedler notation(
µ(n)

)◦` [
b[1], b[2], . . . , b[n?−1],Q0 [j]

(
b[n?]

)]
= b, j ∈ 1, . . . , n− 1, i ∈ 1, . . . , n?, (214)

where
∆◦(n?−1) (b) = b[1] ⊗ b[2] ⊗ . . .⊗ b[n?], Q0 ◦ (b) = Q0 [1] (b)⊗ . . .⊗Q0 [n−1] (b) , b, b[i] ∈ B

.

Definition 109. A polyadic bialgebra B(2,n) equipped with the reduced n?-ary convolution product µ̄(n?)
?

and the singular querantipode Q0 (212) is called a singular polyadic Hopf algebra and is denoted by H(n)

sing =〈
B(n,n) | µ̄(n?)

? ,Q0

〉
.

Due to their exotic properties we will not consider singular polyadic Hopf algebras H(n)

sing in detail.

In the symmetric case a polyadic identity-like map in Endk
(
B⊗(n−1), B⊗(n−1)

)
can be defined in a more

natural way.

Definition 110. A symmetric polyadic identity Id : B⊗(n−1) → B⊗(n−1) is a polyadic tensor product of
ordinary identities in B(n,n)

Id =

n−1︷ ︸︸ ︷
idB ⊗ . . .⊗ idB , idB : B → B. (215)

Indeed, for any map f ∈ Endk
(
B⊗(n−1), B⊗(n−1)

)
, obviously Id ◦ f = f ◦ Id = f.

The numbers of iterations are now equal ` = `′, and the consistency condition (167) becomes

n? − 1 = ` (n− 1) . (216)

Definition 111. The set of the multiplace multivalued maps f(i) ∈ Endk
(
B⊗(n−1), B⊗(n−1)

)
(together with

the polyadic identity Id) endowed with the symmetric convolution product µ̂(n?)
? = µ

(n?)
? |n=n′ (166) is called a

symmetric n?-ary convolution algebra

C(n,n)
? =

〈
Endk

(
B⊗(n−1), B⊗(n−1)

)
| µ̂(n?)

?

〉
. (217)

For a polyadic analog of antipode in the symmetric case we have

Definition 112. A multiplace multivalued map Qid : B⊗(n−1) → B⊗(n−1) in the polyadic bialgebra B(n,n) is
called a symmetric querantipode, if it is the coquerelement (see (180)) of the polyadic identity Qid = q? (Id) in
the symmetric n?-ary convolution algebra

µ̂
(n?)
? ◦

(
Id⊗(n?−1) ⊗Qid

)
= Id, (218)

where Qid can be on any place, such that the diagram

B⊗(n−1)

(
(∆(n))

◦`)⊗(n−1)

-
(
B⊗n?

)⊗(n−1) τ
(n?,n−1)
medial-

(
B⊗(n−1)

)⊗n?

B⊗(n−1)

Id
?

�

(
(µ(n))

◦`)⊗(n−1) (
B⊗n?

)⊗(n−1) �τ
(n−1,n?)
medial

(
B⊗(n−1)

)⊗n?Id⊗(n?−1)⊗Qid? (219)

commutes.
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In Sweedler notation we obtain (see (166) and (175))(
µ(n)

)◦` [
b
(j)
[1] , b

(j)
[2] , b

(j)
[n?−1],Q[j]

(
b
(1)
[n?], b

(2)
[n?], . . . , b

(n−1)
[n?]

)]
= b(j), j ∈ 1, . . . , n− 1, i ∈ 1, . . . , n?, (220)

where
(
∆(n)

)◦` (
b(j)
)

= b
(j)
[1] ⊗ b

(j)
[2] ⊗ . . . ⊗ b

(j)
[n?], b

(j)
[i] ∈ B, ` ∈ N, Q[j] ∈ Endk

(
B⊗(n−1), B

)
are components of

Qid, and the convolution product arity is n? = ` (n− 1) + 1 (216).

Definition 113. A polyadic bialgebra B(n,n) equipped with the symmetric n?-ary convolution product µ̂(n?)
?

and the symmetric querantipode Qid (218) is called a symmetric polyadic Hopf algebra and is denoted by
H(n)
sym =

〈
B(n,n) | µ̂(n?)

? ,Qid

〉
.

Example 114. In the case where n = n′ = 3 and ` = 1 we have ∆(3)
(
b(j)
)

= b
(j)
[1] ⊗ b

(j)
[2] ⊗ b

(j)
[3] , j = 1, 2, 3,

µ(3)
[
b
(1)
[1] , b

(1)
[2] ,Q[1]

(
b
(1)
[3] , b

(2)
[3]

)]
= b(1), µ(3)

[
b
(2)
[1] , b

(2)
[2] ,Q[2]

(
b
(1)
[3] , b

(2)
[3]

)]
= b(2),

µ(3)
[
b
(1)
[1] ,Q[1]

(
b
(1)
[2] , b

(2)
[2]

)
, b

(1)
[3]

]
= b(1), µ(3)

[
b
(2)
[1] ,Q[2]

(
b
(1)
[2] , b

(2)
[2]

)
, b

(2)
[3]

]
= b(2),

µ(3)
[
Q[1]

(
b
(1)
[1] , b

(2)
[1]

)
, b

(1)
[2] , b

(1)
[3]

]
= b(1), µ(3)

[
Q[2]

(
b
(1)
[1] , b

(2)
[1]

)
, b

(2)
[2] , b

(2)
[3]

]
= b(2), (221)

which can be compared with the binary case (b[1]S
(
b[2]

)
= S

(
b[1]

)
b[2] = η (ε (b))) and (4), (180).

Recall that the main property of the antipode S of a binary bialgebra B is its “anticommutation” with the
multiplication µ and comultiplication ∆ (e.g., [1])

S ◦ µ = µ ◦ τop ◦ (S ⊗ S) , S ◦ η = η, (222)
∆ ◦ S = τop ◦ (S ⊗ S) ◦∆, ε ◦ S = ε, (223)

where τop is the binary twist (see (66)). The first relation means that S is an algebra anti-endomorphism,
because in the elementwise description S (a · b) = S (b) · S (a), a, b ∈ B, (·) ≡ µ.

We propose the polyadic analogs of (222)-(223) without proofs, which are too cumbersome, but their
derivations almost coincide with those for the binary case.

Proposition 115. The querantipodeQid : B⊗(n−1) → B⊗(n−1) of the polyadic bialgebra B(n,n) =
〈
B | µ(n),∆(n)

〉
satisfies the polyadic version of “antimultiplicativity” (“antialgebra map”)

Qid ◦
((
µ(n)

)◦`)⊗(n−1)

=

((
µ(n)

)◦`)⊗(n−1)

◦ τ (`τ )
op ◦Q⊗n?id ◦ τ (n?,n−1)

medial , (224)

and “anticomultiplicativity” (“anticoalgebra map”)((
∆(n)

)◦`)⊗(n−1)

◦Qid = τ (`τ )
op ◦Q⊗n?id ◦ τ (n−1,n?)

medial ◦
((

∆(n)
)◦`)⊗(n−1)

, (225)

where τ (n,m)
medial is the medial map (69), τ (`τ )

op is the polyadic twist (72) and `τ = (n− 1)n? should be allowed (see
Table 2).

Proposition 116. If the polyadic unit η(r,n) (48) and counit ε(n,r) (124) in B(n,n) exist, then

Qid ◦ η(r,n) = η(r,n), (226)

ε(n,r) ◦Qid = ε(n,r). (227)

Example 117. If n = 3, ` = 1, n? = 3, `τ = 6 (and (75)), then using Sweedler notation, for (224) we have

Q[1]

(
µ(3) [a1, a2, a3] , µ(3) [b1, b2, b3]

)
= µ(3)

[
Q[2] (a2, b2) ,Q[1] (a1, b1) ,Q[1] (a3, b3)

]
, (228)

Q[2]

(
µ(3) [a1, a2, a3] , µ(3) [b1, b2, b3]

)
= µ(3)

[
Q[2] (a1, b1) ,Q[2] (a3, b3) ,Q[1] (a2, b2)

]
, (229)

where Qid ◦ (a, b) = Q[1] (a, b)⊗Q[2] (a, b) ∈ Endk (B ⊗B,B ⊗B), a, b, ai, bi ∈ B, (cf. (222)).
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The key property of the binary antipode S is its involutivity S◦2 = idB for either commutative (µ = µ◦τop)
or co-commutative (∆ = τop ◦∆) Hopf algebras, which follows from (222) or (223) applied to S ? S◦2 giving ηε
(= S ? idB).

Proposition 118. If in a symmetric Hopf algebra H(n)
sym either multiplication or comultiplication is invariant

under polyadic twist map τ (`τ )
op (72), then the querantipode Qid (218) satisfies

µ̂
(n?)
?

 (n?−1)︷ ︸︸ ︷
Qid, . . . ,Qid,Qid ◦Qid

 = Qid, (230)

where Q◦2id can be on any place, or the convolution querelement (180) of the querantipode Qid is

q? (Qid) = Q◦2id . (231)

Proof. The proposition follows from applying either (224) or (225) to the l.h.s. of (230), to use (180).

TOWARDS POLYADIC QUANTUM GROUPS
Bialgebras with a special relaxation of co-commutativity, almost co-commutativity, are the ground objects

in the construction of quantum groups identified with the non-commutative and non-co-commutative quasitri-
angular Hopf algebras [4, 48].

Quantum Yang-Baxter equation
Here we recall the binary case (informally) in a notation that will allow us to provide the “polyadization”

in a clearer way.
Let us consider a (binary) bialgebra B(2,2) = 〈B | µ,∆〉, where µ = µ(2) is the binary multiplication,

∆ = ∆(2) (see Definition 98), and the opposite comultiplication is given by ∆cop ≡ τop ◦∆, where τop is the
binary twist (66). To relax the co-commutativity condition (∆cop = ∆), the following construction inspired by
conjugation in groups was proposed [4,48]. A bialgebra B(2,2) is almost co-commutative, if there exists R ∈ B⊗B
such that (in the elementwise notation)

µ [∆cop (b) ,R] = µ [R,∆ (b)] , ∀b ∈ B. (232)

A fixed element R of a bialgebra satisfying (232) is called a universal R-matrix. For a co-commutative
bialgebra we have R = eB ⊗ eB , where eB ∈ B is the unit (element) of the algebra 〈B | µ〉.

If we demand that 〈B | ∆cop〉 is the opposite coalgebra of 〈B | ∆〉, and therefore ∆cop be coassociative,
then R cannot be arbitrary, but has to satisfy some additional conditions, which we will call the almost co-
commutativity equations for the R-matrix. Indeed, using (232) we can write

µ [(∆cop ⊗ idB) ◦∆cop (b) , µ [(R ⊗ eB) , (∆⊗ idB) (R)]]

= µ [µ [(R ⊗ eB) , (∆⊗ idB) (R)] , (∆⊗ idB) ◦∆ (b)] , (233)

µ [(idB ⊗∆cop) ◦∆cop (b) , µ [(eB ⊗ R) , (idB ⊗∆) (R)]]

= µ [µ [(eB ⊗ R) , (idB ⊗∆) (R)] , (idB ⊗∆) ◦∆ (b)] , (234)

Therefore, the coassociativity of ∆cop leads to the first almost co-commutativity equation

µ [(R ⊗ eB) , (∆⊗ idB) (R)] = µ [(eB ⊗ R) , (idB ⊗∆) (R)] . (235)

On the other hand, directly from (232), we have relations which can be treated as the next two almost co-
commutativity equations (unconnected to the coassociativity of ∆cop)

µ [(R ⊗ eB) , (∆⊗ idB) (R)] = µ [(∆cop ⊗ idB) (R) , (R ⊗ eB)]

= µ [(τop ⊗ idB) ◦ (∆⊗ idB) (R) , (R ⊗ eB)] , (236)

µ [(eB ⊗ R) , (idB ⊗∆) (R)] = µ [(idB ⊗∆cop) (R) , (eB ⊗ R)]

= µ [(idB ⊗τop) ◦ (idB ⊗∆) (R) , (eB ⊗ R)] . (237)

The equations (235)–(237) for the components of

R =
∑
α

r(1)
α ⊗ r(2)

α ∈ B ⊗B (238)
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are on B ⊗B ⊗B. In components the almost co-commutativity (232) can be expressed as follows∑
[b]

∑
α

µ
[
b[2], r

(1)
α

]
⊗ µ

[
b[1], r

(2)
α

]
=
∑
[b]′

∑
α′

µ
[
r
(1)
α′ , b[1]′

]
⊗ µ

[
r
(2)
α′ , b[2]′

]
. (239)

Now introduce the “extended” form of the R-matrix Rij ∈ B ⊗B ⊗B, i, j = 1, 2, 3, by

R12 =
∑
α

r(1)
α ⊗ r(2)

α ⊗ eB ≡ R ⊗ eB , (240)

R13 =
∑
α

r(1)
α ⊗ eB ⊗ r(2)

α = (idB ⊗τop) ◦ (R ⊗ eB) , (241)

R23 =
∑
α

eB ⊗ r(1)
α ⊗ r(2)

α ≡ eB ⊗ R. (242)

Obviously, one can try to solve (235)–(237) with respect to the r(1)
α , r(2)

α directly, but then we are confronted
with a difficulty arising from the Sweedler components, because now (see (137)–(139))

(∆⊗ idB) (R) =
∑
[
r
(1)
α

]
∑
α

r
(1)
α,[1] ⊗ r

(1)
α,[2] ⊗ r(2)

α , (243)

(idB ⊗∆) (R) =
∑
[
r
(2)
α

]
∑
α

r(1)
α ⊗ r

(2)
α,[1] ⊗ r

(2)
α,[2]. (244)

To avoid computations in the Sweedler components, one can substitute them by the components of R
directly as r

(i)
[j] −→ r(i) (schematically). This allows us to express (243)–(244) solely through elements of the

“extended” R-matrix Rij by

(∆⊗ idB) (R) = µ [R13,R23] ≡
∑
α,β

r(1)
α ⊗ r

(1)
β ⊗ µ

[
r(2)
α , r

(2)
β

]
, (245)

(idB ⊗∆) (R) = µ [R13,R12] ≡
∑
α,β

µ
[
r(1)
α , r

(1)
β

]
⊗ r

(2)
β ⊗ r(2)

α , (246)

which do not contain Sweedler components of R at all. The equations (245)–(246) define a quasitriangular
R-matrix [4]. The corresponding almost co-commutative (binary) bialgebra B(2)

braid =
〈
B(2,2),R

〉
is called a

quasitriangular almost co-commutative bialgebra (or braided bialgebra [7]). Only for them can the almost co-
commutativity equations (235)–(237) be expressed solely in terms of R-matrix components or through the
“extended” R-matrix Rij , using (245)–(246).

Theorem 119. In the binary case, three almost co-commutativity equations for the R-matrix coincide with

µ◦2 [R12,R13,R23] = µ◦2 [R23,R13,R12] . (247)

Conversely, any quasitriangular R-matrix is a solution of (247) by the above construction. The equation
for the “extended” R-matrix Rij (247) is called the quantum Yang-Baxter equation [8, 49] (or the triangle
relation [48]). In terms of the R-matrix components (238) the quantum Yang-Baxter equation (247) takes the
form ∑

α,β,γ

µ
[
r(1)
α , r

(1)
β

]
⊗ µ

[
r(2)
α , r(1)

γ

]
⊗ µ

[
r
(2)
β , r(2)

γ

]
=

∑
α′,β′,γ′

µ
[
r
(1)
β′ , r

(1)
α′

]
⊗ µ

[
r
(1)
γ′ , r

(2)
α′

]
⊗ µ

[
r
(2)
γ′ , r

(2)
β′

]
. (248)

Let us consider modules over the braided bialgebra B(2,2)
braid and recall [50] how the universal R-matrix

generalizes the standard flip τV1V2 : V1 ⊗ V2 → V2 ⊗ V1. Define the isomorphism of modules (which in our
notation correspond to a 1-place action ρ (7)) cV1V2

: V1 ⊗ V2 → V2 ⊗ V1 by

cV1V2 ◦ (v1 ⊗ v2) = τV1V2 ◦ R ◦ (v1 ⊗ v2) =
∑
α

ρ
(
r(2)
α | v2

)
⊗ ρ

(
r(1)
α | v1

)
, vi ∈ Vi, r(i)α ∈ B, i = 1, 2. (249)

The quasitriangularity (245)–(246) and (249) on V1 ⊗ V2 ⊗ V3 leads to (see, e.g., [7])

(cV1V3
⊗ idV2

) ◦ (idV1
⊗cV2V3

) = cV1⊗V2,V3
, (250)

(idV2
⊗cV1V3

) ◦ (cV1V2
⊗ idV3

) = cV1,V2⊗V3
. (251)
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Similarly, the quantum Yang-Baxter equation (247) gives the braid equation [50] mapping V1 ⊗ V2 ⊗ V3 →
V3 ⊗ V2 ⊗ V1:

(cV2V3
⊗ idV1

) ◦ (idV2
⊗cV1V3

) ◦ (cV1V2
⊗ idV3

) = (idV3
⊗cV1V2

) ◦ (cV1V3
⊗ idV2

) ◦ (idV1
⊗cV2V3

) . (252)

Putting V1 = V2 = V3 = V shows that cV V is a solution of the braid equation (252) for any module V , if
the R is a solution of the Yang-Baxter equation [7, 50].

n′-ary braid equation
Let us consider possible higher arity generalizations of the braid equation (252), informally. Introduce the

modules Vi over the polyadic bialgebra B(n′,n) (Definition 98) by the r-place actions ρ(r)
Vi

(b1, . . . br | vi), bj ∈ B,
vi ∈ Vi, i = 1, . . . s, j = 1, . . . , r (see (47)). Define the following morphisms of modules

cV1...Vn′ : V1 ⊗ . . .⊗ Vn′ → Vn′ ⊗ . . .⊗ V1. (253)

We use the shorthand notation cV n′ ≡ cV1...Vn′ , idV ≡ idVi and introduce indices manifestly only when it
will be needed.

Proposition 120. The n′-ary braid equation has the formcV n′ ⊗
n′−1︷ ︸︸ ︷

idV ⊗ . . .⊗ idV

 ◦
idV ⊗cV n′ ⊗

n′−2︷ ︸︸ ︷
idV ⊗ . . .⊗ idV

 ◦ . . .
◦

 n′−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV ⊗ cV n′

 ◦
cV n′ ⊗

n′−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV


=

 n′−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV ⊗ cV n′

 ◦
cV n′ ⊗

n′−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV

 ◦ . . .
◦

 n′−2︷ ︸︸ ︷
idV ⊗ . . .⊗ idV ⊗ cV n′ ⊗ idV

 ◦
 n′−1︷ ︸︸ ︷

idV ⊗ . . .⊗ idV ⊗ cV n′

 , (254)

where each side consists of (n′ + 1) brackets with (2n′ − 1) multipliers.

Proof. Use the associative quiver technique from [14] (The Post-like quiver in Section 6).

Remark 121. There can be additional equations depending on the concrete values of n′ which can contain a
different number of brackets determined by the corresponding diagram commutation.

Example 122. In case n′ = 3 we have the ternary braided equation for cV1V2V3
: V1 ⊗ V2 ⊗ V3 → V3 ⊗ V2 ⊗ V1 on

the tensor product of modules V1 ⊗ V2 ⊗ V3 ⊗V4 ⊗ V5, as

(cV3V4V5 ⊗ idV2 ⊗ idV1) ◦ (idV3 ⊗cV2V5V4 ⊗ idV1) ◦ (idV3 ⊗ idV2 ⊗cV1V4V5) ◦ (cV1V2V3 ⊗ idV4 ⊗ idV5) =

(idV5 ⊗ idV4 ⊗cV1V2V3) ◦ (cV1V4V5 ⊗ idV2 ⊗ idV3) ◦ (idV1 ⊗cV2V5V4 ⊗ idV3) ◦ (idV1 ⊗ idV2 ⊗cV3V4V5) . (255)

The ternary compatibility conditions for cV1V2V3
(corresponding to (250)–(251)) are

(cV1V4V5
⊗ idV2

⊗ idV3
) ◦ (idV1

⊗cV2V5V4
⊗ idV3

) ◦ (idV1
⊗ idV2

⊗cV3V4V5
) = cV1⊗V2⊗V3,V4,V5

, (256)
(idV3

⊗cV2V5V4
⊗ idV1

) ◦ (idV3
⊗ idV2

⊗cV1V4V5
) ◦ (cV1V2V3

⊗ idV4
⊗ idV5

) = cV1,V2,V3⊗V4⊗V5
. (257)

Now we follow the opposite (to the standard [50]), but consistent way: using the equations (255)–(257)
we find polyadic analogs of the corresponding equations for the R-matrix and the quasitriangularity conditions
(245)–(246), which will fix the comultiplication structure of a polyadic bialgebra B(n′,n).

Polyadic almost co-commutativity
We will see that the almost co-commutativity equations for the R-matrix are more complicated in the

polyadic case, because the main condition (232) will have a different form coming from n-ary group theory [47].
Indeed, let G(n) =

〈
G | µ(n)

〉
be an n-ary group and H′ =

〈
H ′ | µ(n)

〉
, H′′ =

〈
H ′′ | µ(n)

〉
are its n-ary subgroups.
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Recall [47] that H′ and H′′ are semiconjugated in G(n), if there exist g ∈ G, such that µ(n)
[
g, h′1, . . . , h

′
n−1

]
=

µ(n)
[
h′′1 , . . . , h

′′
n−1, g

]
, h′i ∈ H ′, h′′i ∈ H ′′, and if g can be on any place, then H′ and H′′ are conjugated in G(n).

Based on this notion and on analogy with (3), we can “polyadize” the almost co-commutativity condition (232)
in the following way.

Let B(n′,n) =
〈
B | µ(n),∆(n′)

〉
, be a polyadic bialgebra, and the opposite comultiplication ∆

(n′)
cop = τ

(n′)
op ◦

∆(n′), where τ(n′)
op is the polyadic twist (72).

Definition 123. A polyadic bialgebra B(n′,n) is called polyadic sequenced almost co-commutative, if there exist

fixed (n− 1) elements R(n′)
i ∈ B⊗n′ , i = 1, . . . , n− 1, called a polyadic R-matrix sequence, such that

µ(n)

[
∆

(n′)
cop (b) ,R

(n′)
1 ,R

(n′)
2 , . . . ,R

(n′)
n−1

]
= µ(n)

[
R

(n′)
1 ,∆(n′) (b) ,R

(n′)
2 , . . . ,R

(n′)
n−1

]
...

= µ(n)

[
R

(n′)
1 ,R

(n′)
2 , . . . ,R

(n′)
n−1 ,∆

(n′) (b)

]
, ∀b ∈ B. (258)

Definition 124. A polyadic bialgebra B(n′,n) is called polyadic sequenced almost semico-commutative, if only
the first and the last relations in (258) hold

µ(n)

[
∆

(n′)
cop (b) ,R

(n′)
1 ,R

(n′)
2 , . . . ,R

(n′)
n−1

]
= µ(n)

[
R

(n′)
1 ,R

(n′)
2 , . . . ,R

(n′)
n−1 ,∆

(n′) (b)

]
, ∀b ∈ B. (259)

Remark 125. Using (n− 1) polyadic R-matrices R(n′)
i is the only way to build a polyadic analog for the almost

commutativity concept, since now there is no binary multiplication.
The definition (258) is too general and needs to consider (n− 1) different polyadic analogs of the R-matrix

which might not be unique. Therefore, in a similar way to the correspondence of the neutral sequence (3) and
the polyadic unit (2), we arrive at

Definition 126. A polyadic bialgebra B(n′,n) =
〈
B | µ(n),∆(n′)

〉
is called polyadic almost (semi)co-commutative,

if there exists one fixed element R(n′) ∈ B⊗n′ called a n′-ary R-matrix, such that

µ(n)

∆
(n′)
cop (b) ,

n−1︷ ︸︸ ︷
R(n′), . . . ,R(n′)

 = µ(n)


n−1︷ ︸︸ ︷

R(n′), . . . ,R(n′),∆(n′) (b)

 , ∀b ∈ B. (260)

In components the n′-ary R-matrix R(n′) is

R(n′) =
∑
α

r(1)
α ⊗ . . .⊗ r

(n′)
α , r(i)α ∈ B. (261)

Remark 127. Polyadic almost co-commutativity (260) can be expressed in component form, as in the binary

case (239), only if we know concretely the polyadic twist τ(n′)
op ∈ Sn′ (where Sn′ is the symmetry permutation

group ON n′ elements), which is not unique for arbitrary n′ > 2.

Example 128. For B(3,3) the ternary almost (semi)co-commutativity (260) is given by

µ(3)
[
∆(3)
cop (b) ,R(3),R(3)

]
= µ(3)

[
R(3),R(3),∆(3) (b)

]
, ∀b ∈ B, (262)

which with τ (3)
op =

(
123
321

)
becomes, in components,∑

[b]

∑
α,β

µ(3)
[
b[3], r

(1)
α , r

(1)
β

]
⊗ µ(3)

[
b[2], r

(2)
α , r

(2)
β

]
⊗ µ(3)

[
b[1], r

(3)
α , r

(3)
β

]
=
∑
[b]′

∑
α′β′

µ(3)
[
r
(1)
α′ , r

(1)
β′ , b[1]′

]
⊗ µ(3)

[
r
(2)
α′ , r

(2)
β′ , b[2]′

]
⊗ µ(3)

[
r
(3)
α′ , r

(3)
β′ , b[3]′

]
. (263)
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Example 129. In the exotic mixed case B(4,3) where the polyadic twist “without fixed points” (72) is τ (4)
op =

(
1234
3142

)
,

the polyadic almost co-commutativity (260) becomes∑
[b]

∑
α,β

µ(3)
[
b[3], r

(1)
α , r

(1)
β

]
⊗ µ(3)

[
b[1], r

(2)
α , r

(2)
β

]
⊗ µ(3)

[
b[4], r

(3)
α , r

(3)
β

]
⊗ µ(3)

[
b[2], r

(4)
α , r

(4)
β

]
=

∑
[b]′

∑
α′β′

µ(3)
[
r
(1)
α′ , r

(1)
β′ , b[1]′

]
⊗ µ(3)

[
r
(2)
α′ , r

(2)
β′ , b[2]′

]
⊗ µ(3)

[
r
(3)
α′ , r

(3)
β′ , b[3]′

]
⊗ µ(3)

[
r
(4)
α′ , r

(4)
β′ , b[4]′

]
. (264)

Equations for the n′-ary R-matrix
Here we consider the most consistent way (from a categorical viewpoint) to derive equations for the polyadic

R-matrix, in other words, through using the braided equation (252) (and n′-ary braided equation (254)) with
the concrete choice of the braiding cV n′ .

Suppose that the n′-ary braiding cV n′ is defined still by a 1-place action ρ(1), as in the binary case (249).
At first glance, we could define the braiding (similar to (249))

cV1...Vn′ ◦ (v1 ⊗ . . .⊗ vn′) = τV1...Vn′ ◦ R
(n′) ◦ (v1 ⊗ . . .⊗ vn′)

= τV1...Vn′ ◦

(∑
α

ρ(1)
(
r(1)
α | v1

)
⊗ . . .⊗ ρ(1)

(
r
(n′)
α | vn′

))
, vi ∈ Vi, r(i)α ∈ B, (265)

where ρ(1) : B ⊗ Vi → Vi is the 1-place action (see (7)). We recall that only the n-ary composition of 1-place
actions (n is the arity of multiplication µ(n)) is defined here (see [10])

n︷ ︸︸ ︷
ρ(1)

(
b1 | ρ(1)

(
b2 . . . ρ

(1) (bn | v)
))

= ρ(1)
(
µ(n) [b1, . . . bn] | v

)
, bi ∈ B, v ∈ V. (266)

As in the binary case (240)–(242), we need the “extended” polyadic R-matrix.

Remark 130. The standard definition of the “extended” n′-ary R-matrix can be possible, if the algebra
〈
B | µ(n)

〉
contains one polyadic unit (element) eB , because in the polyadic case there are new intriguing possibilities (which
did not exist in the binary case) of having several units, or even where all elements are units (see the discussion
after (3) and [14]).

Definition 131. The “extended” form of the n′-ary R-matrix is defined by R
(2n′−1)
i1...in′

∈ B⊗(2n′−1), such that

R
(2n′−1)
i1...in′

=
∑
α

eB ⊗ . . .⊗ r(i1)
α ⊗ . . .⊗ r(in′ )α ⊗ . . .⊗ eB , i1, . . . , in′ ∈ {1, . . . 2n′ − 1} (267)

where r
(ik)
α are on the ik-place.

In this way we can express in terms of the “extended” n′-ary R-matrix (267) the n′-ary braided equation
(254), in full analogy with the binary case (247).

Example 132. For the ternary case

cV1V2V3
◦ (v1 ⊗ v2 ⊗ v3) = τV1V2V3

◦ R(3) ◦ (v1 ⊗ v2 ⊗ v3)

=
∑
α

ρ(1)
(
r(1)
α | v3

)
⊗ ρ(1)

(
r(2)
α | v2

)
⊗ ρ(1)

(
r(3)
α | v1

)
, vi ∈ Vi, r(i)α ∈ B, (268)

and we define R
(5)
i1i2i3

by (267), i1, i2, i3 ∈ {1, . . . , 5}, τV1V2V3 =
(

123
321

)
, and consider the ternary braid equation

(255). Using (266) we obtain (informally)

R
(5)
123R

(5)
145R

(5)
254R

(5)
345 = R

(5)
345R

(5)
254R

(5)
145R

(5)
123. (269)

Remark 133. Unfortunately, a “linear” R(n′) n′-ary braiding cV1...Vn′ (as in (265) and (268)) is not consi-
stent with the polyadic analog of the quasitriangularity equations (250)–(251), because the polyadic almost
co-commutativity (260) contains (n− 1) copies of n′-ary R-matrix R(n′).

Therefore, in order to agree with (260), instead of (265), we have
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Definition 134. The polyadic braiding cV1...Vn′ is defined by

cV1...Vn′ ◦ (v1 ⊗ . . .⊗ vn′) = τV1...Vn′ ◦ ρ
(n−1)


n−1︷ ︸︸ ︷

R(n′), . . . ,R(n′) | (v1 ⊗ . . .⊗ vn′)


= τV1...Vn′ ◦

 ∑
α1,...αn−1

ρ(n−1)
(
r(1)
α1
, . . . r(1)

αn−1
| v1

)
⊗ . . .⊗ ρ(n−1)

(
r
(n′)
α1 , . . . r

(n′)
αn−1 | vn′

) ,

vi ∈ Vi, r(i)α ∈ B, (270)

where ρ(n−1) : Bn−1 ⊗ V → V the (n− 1)-place action (see (7)).

Remark 135. The twist of the modules τV1...Vn′ should be compatible with the polyadic twist τ(n′)
op in (258). In

the binary case they are both the same flip
(

12
21

)
, but in the n′-ary case they can be different.

Example 136. Consider the ternary braided equation (255), but now for the braiding cV1V2V3 , instead of (268),
where we have

cV1V2V3
◦ (v1 ⊗ v2 ⊗ v3) = τV1V2V3

◦ ρ(2)
(
R(3),R(3) | (v1 ⊗ v2 ⊗ v3)

)
=
∑
α,β

ρ(2)
(
r(3)
α , r

(3)
β | v3

)
⊗ ρ(2)

(
r(2)
α , r

(2)
β | v2

)
⊗ ρ(2)

(
r(1)
α , r

(1)
β | v1

)
, vi ∈ Vi, r

(i)
α,β ∈ B, (271)

where ρ(2) : B ⊗B ⊗ V → V is a 2-place action (7). In this way (271) is consistent with (262). In each place of
the 2-place action ρ(2) we then obtain the relation (269).

Polyadic triangularity
A polyadic analog of triangularity [4] can be defined, if we rewrite (246) as

(idB ⊗∆) (R) = µ [R13,R12] ≡
∑
α,β

µ ◦ τop
[
r(1)
α , r

(1)
β

]
⊗ r(2)

α ⊗ r
(2)
β , (272)

where τop is the binary twist. Instead of the R-matrix formulation (the left equality in (272)), we use the
component approach by [3], and propose the following

Definition 137. A polyadic almost co-commutative bialgebra B(n′,n) =
〈
B | µ(n),∆(n′)

〉
with the polyadic

R-matrix R(n′) =
∑
α r

(1)
α ⊗ . . .⊗ r

(n′)
α , r

(i)
α ∈ B is called quasipolyangular, if the following n′ relations hold∑

α

∆(n′)
(
r(1)
α

)
⊗ r(2)

α ⊗ . . .⊗ r
(n′)
α =

∑
α1,...αn′

r(1)
α1
⊗ r(1)

α2
⊗ . . .⊗ r(1)

αn′

⊗
(
µ(n)

)◦` [
r(2)
α1
⊗ r(2)

α2
⊗ . . .⊗ r(2)

αn′

]
⊗ . . .⊗

(
µ(n)

)◦` [
r
(n′)
α1 ⊗ r

(n′)
α2 ⊗ . . .⊗ r

(n′)
αn′

]
, (273)

∑
α

r(1)
α ⊗∆(n′)

(
r(2)
α

)
⊗ . . .⊗ r

(n′)
α =

∑
α1,...αn′

(
µ(n)

)◦`
◦ τ(n′)

op

[
r(1)
α1
⊗ r(1)

α2
⊗ . . .⊗ r(1)

αn′

]
⊗ r(2)

α1
⊗ r(2)

α2
⊗ . . .⊗ r(2)

αn′
⊗ . . .⊗

(
µ(n)

)◦` [
r
(n′)
α1 ⊗ r

(n′)
α2 ⊗ . . .⊗ r

(n′)
αn′

]
, (274)

...∑
α

r(1)
α ⊗ r(2)

α ⊗ . . .⊗∆(n′)
(
r
(n′)
α

)
=

∑
α1,...αn′

(
µ(n)

)◦`
◦ τ(n′)

op

[
r(1)
α1
⊗ r(1)

α2
⊗ . . .⊗ r(1)

αn′

]
⊗
(
µ(n)

)◦`
◦ τ(n′)

op

[
r(2)
α1
⊗ r(2)

α2
⊗ . . .⊗ r(2)

αn′

]
⊗ . . .⊗ r

(n′)
α1 ⊗ r

(n′)
α2 ⊗ . . .⊗ r

(n′)
αn′ , (275)

where τ(n′)
op is the polyadic twist map (72). The arity shape of a quasipolyangular B(n′,n) is fixed by

n′ = ` (n− 1) + 1, ` ∈ N. (276)
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Remark 138. As opposed to the binary case (245)–(246), the right hand sides here can be expressed in terms
of the extended R-matrix in the first equation (273) and the last one (275) only, because in the intermediate
equations the sequences of R-matrix elements are permuted. For instance, it is clear that the binary product∑
α,β

(
r
(1)
β ⊗ r

(2)
α ⊗ eB

)
·
(
r
(1)
α ⊗ r

(2)
β ⊗ eB

)
=
∑
α,β

(
r
(1)
β · r

(1)
α ⊗ r

(2)
α · r(2)

β ⊗ eB
)
cannot be expressed in terms of

the extended binary R-matrix (240).

Almost co-medial polyadic bialgebras
The previous considerations showed that co-commutativity and almost co-commutativity in the polyadic

case are not unique and do not describe the bialgebras to the fullest extent. This happens because mediality is a
more general and consequent property of polyadic algebraic structures, while commutativity can be treated as a
particular case of it (see (66)). Therefore, we propose here to deform co-mediality (rather than co-commutativity
as in [4, 48,50]).

Let B(n′,n) =
〈
B | µ(n),∆(n′)

〉
, be a polyadic bialgebra. Now we deform the co-mediality condition (120)

in a similar way to the polyadic R-matrix (260).

Definition 139. A polyadic bialgebra B(n′,n) is called polyadic sequenced almost co-medial, if there exist

(n′ − 1) fixed elements M
(n′2)
i ∈ B⊗n′2 , i = 1, . . . , n − 1, called a polyadic M -matrix sequence, such that (see

(120) and (260))

µ(n)

[
τ
(n′,n′)
medial ◦

((
∆(n′)

)⊗n′)
◦∆(n′) (b) ,M

(n′2)
1 ,M

(n′2)
2 , . . . ,M

(n′2)
n−1

]
= µ(n)

[
M

(n′2)
1 ,

((
∆(n′)

)⊗n′)
◦∆(n′) (b) ,M

(n′2)
2 , . . . ,M

(n′2)
n−1

]
= µ(n)

[
M

(n′2)
1 ,M

(n′2)
2 , . . . ,M

(n′2)
n−1 ,

((
∆(n′)

)⊗n′)
◦∆(n′) (b)

]
, ∀b ∈ B, (277)

where τ (n′,n′)
medial is the polyadic medial map (69).

Definition 140. A polyadic bialgebra B(n′,n) is called polyadic sequenced almost (semi)co-medial, if only the
first and the last relations in (277) hold

µ(n)

[
τ
(n′,n′)
medial ◦

((
∆(n′)

)⊗n′)
◦∆(n′) (b) ,M

(n′2)
1 , . . . ,M

(n′2)
n−1

]
= µ(n)

[
M

(n′2)
1 , . . . ,M

(n′2)
n−1 ,

((
∆(n′)

)⊗n′)
◦∆(n′) (b)

]
, ∀b ∈ B, (278)

If all the elements in the sequence (similar to the neutral sequence for n-ary groups (3)) are the same

M
(n′2)
1 = M

(n′2)
2 = . . . = M

(n′2)
n−1 ≡ M (n′2), we have

Definition 141. A polyadic bialgebra B(n′,n) is called polyadic almost (semi)co-medial, if there exist one fixed
element M (n′2) ∈ B⊗n′2 called a polyadic M -matrix, such that (see (120) and (260))

µ(n)

τ(n′,n′)
medial ◦

((
∆(n′)

)⊗n′)
◦∆(n′) (b) ,

n−1︷ ︸︸ ︷
M (n′2), . . . ,M (n′2)



= µ(n)


n−1︷ ︸︸ ︷

M (n′2), . . . ,M (n′2),

((
∆(n′)

)⊗n′)
◦∆(n′) (b)

 , ∀b ∈ B. (279)

Remark 142. The main advantage of the polyadic almost co-mediality property over polyadic almost co-
commutativity is the uniqueness of the medial map τ (n,n)

medial and nonuniqueness of the polyadic twist map
τ

(`τ )
op (72).

The polyadic M -matrix M (n′) in components is given by

M (n′2) =
∑
α

m(1)
α ⊗ . . .⊗m

(n′2)
α , m(i)

α ∈ B, i = 1, . . . , n′2. (280)
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Example 143. In the binary case for B(2,2) = 〈B | µ,∆〉 we have an almost co-mediality (279) as

µ
[
τmedial ◦ (∆⊗∆) ◦∆ (b) ,M (4)

]
= µ

[
M (4), (∆⊗∆) ◦∆ (b)

]
, ∀b ∈ B. (281)

which gives, in components (cf. for R-matrix (239))∑
[b][b]

∑
α

µ
[
b[1][1]

,m(1)
α

]
⊗ µ

[
b[2][1]

,m(2)
α

]
⊗ µ

[
b[1][2]

,m(3)
α

]
⊗ µ

[
b[2][2]

,m(4)
α

]
=
∑
[b]′[b]

∑
α′

µ
[
m

(1)
α′ , b[1]′[1]

]
⊗ µ

[
m

(2)
α′ , b[1]′[2]

]
⊗ µ

[
m

(3)
α′ , b[2]′[1]

]
⊗ µ

[
m

(4)
α′ , b[2]′[2]

]
. (282)

Let us clarify the connection between the almost co-commutativity and almost co-mediality properties.

Theorem 144. If B(n′,n) is polyadic almost (semi)co-commutative with the polyadic twist map τ(n′)
op (72) and

the n′-ary R-matrix R(n′) (261), then (260) can be presented in the “medial-like” form

µ(n)

τ(n′,n′)
R ◦

((
∆(n′)

)⊗n′)
◦∆(n′) (b) ,

n−1︷ ︸︸ ︷
M

(n′2)
R , . . . ,M

(n′2)
R



= µ(n)


n−1︷ ︸︸ ︷

M
(n′2)
R , . . . ,M

(n′2)
R ,

((
∆(n′)

)⊗n′)
◦∆(n′) (b)

 , ∀b ∈ B, (283)

where

τ
(n′,n′)
R =

n′︷ ︸︸ ︷
τ
(n′)
op ⊗ . . .⊗ τ(n′)

op , (284)

M
(n′2)
R =

n′︷ ︸︸ ︷
R(n′) ⊗ . . .⊗ R(n′). (285)

Proof. Applying (260) to each Sweedler component b[i] of ∆(n′) (b), i = 1, . . . , n′, we obtain n′ relations for the
polyadic almost (semi)co-commutativity. Then multiplying them tensorially, we obtain

n′︷ ︸︸ ︷
τ
(n′)
op ⊗ . . .⊗ τ(n′)

op

 ◦ (∆(n′) (b[1]

)
⊗ . . .⊗∆(n′) (b[n′])) ◦


n′︷ ︸︸ ︷

R(n′) ⊗ . . .⊗ R(n′)



=


n′︷ ︸︸ ︷

R(n′) ⊗ . . .⊗ R(n′)

 ◦ (∆(n′) (b[1]

)
⊗ . . .⊗∆(n′) (b[n′])) ,

which immediately gives (283). The converse statement is obvious.

Corollary 145. Polyadic almost co-commutativity is a particular case of polyadic co-mediality with the special

“medial-like” twist map τ (n′,n′)
R (284) and the compositeM -matrix (285) consisting of n′ copies of the R-matrix

(261).

Example 146. In the binary case we compare the medial map (66) with the composed “medial-like” twist map
(284) as

τmedial = idB ⊗τop ⊗ idB , (286)
τR = τop ⊗ τop, (287)
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or in components

b1 ⊗ b2 ⊗ b3 ⊗ b4
τmedial7→ b1 ⊗ b3 ⊗ b2 ⊗ b4, (288)

b1 ⊗ b2 ⊗ b3 ⊗ b4
τR7→ b2 ⊗ b1 ⊗ b4 ⊗ b3. (289)

This shows manifestly the difference between (polyadic) almost co-commutativity and (polyadic) almost co-
mediality.

Equations for the M-matrix
Let us find the equations for the M -matrix (279) using the medial analog of the n′-ary braid equation.

Now the morphism of modules cV1...Vn′2
becomes (see for the R-matrix (265))

cV1...Vn′2
◦ (v1 ⊗ . . .⊗ vn′2) = τ

(n′,n′)
medial,V1...Vn′2

◦ ρ(n−1)


n−1︷ ︸︸ ︷

M (n′2), . . . ,M (n′2) | (v1 ⊗ . . .⊗ vn′2)

 =

τ
(n′,n′)
medial,V1...Vn′2

◦

 ∑
α1,...αn−1

ρ(n−1)
(
m(1)
α1
, . . .m(1)

αn−1
| v1

)
⊗ . . .⊗ ρ(n−1)

(
m

(n′2)
α1 , . . .m

(n′2)
αn−1 | vn′2

) ,

vi ∈ Vi, r(i)α ∈ B, i = 1, . . . , n′2, (290)

where τ(n′,n′)
medial,V1...Vn′2

is the medial map (69) acting on n′2 modules Vi, M (n′2) is the polyadic M -matrix (280),
and ρ(n−1) is the (n− 1)-place action (7). Now instead of the n′-ary braid equation (254) we can have

Proposition 147. The n′-ary medial braid equation iscV n′2 ⊗
n′2−1︷ ︸︸ ︷

idV ⊗ . . .⊗ idV

 ◦
idV ⊗cV n′2 ⊗

n′2−2︷ ︸︸ ︷
idV ⊗ . . .⊗ idV

 ◦ . . .

◦

 n′2−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV ⊗ cV n′2

 ◦
cV n′2 ⊗

n′2−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV



=

 n′2−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV ⊗ cV n′2

 ◦
cV n′2 ⊗

n′2−1︷ ︸︸ ︷
idV ⊗ . . .⊗ idV

 ◦ . . .

◦

 n′2−2︷ ︸︸ ︷
idV ⊗ . . .⊗ idV ⊗ cV n′2 ⊗ idV

 ◦
 n′2−1︷ ︸︸ ︷

idV ⊗ . . .⊗ idV ⊗ cV n′2

 , (291)

where we use the notation cV n′2 ≡ cV1...Vn′2
, idV ≡ idVi , and each side consists of

(
n′2 + 1

)
brackets with(

2n′2 − 1
)
multipliers.

Proof. This follows from the associative quiver technique [14].
We observe that even in the binary case the medial braid equations are cumbersome and nontrivial.

Example 148. In the binary case n′ = 2 we have the map cV n′2 (see (286), (288))

cV1V2V3V4
: V1 ⊗ V2 ⊗ V3 ⊗ V4 → V1 ⊗ V3 ⊗ V2 ⊗ V4 (292)

which acts on
V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊗ V5 ⊗ V6 ⊗ V7.

There are two medial braid equations which correspond to diagrams of different lengths (cf. the standard braid
equation (252))
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1) V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊗ V5 ⊗ V6 ⊗ V7 −→ V1 ⊗ V4 ⊗ V5 ⊗ V6 ⊗ V3 ⊗ V2 ⊗ V7 :

(cV1V5V4V6 ⊗ idV3 ⊗ idV2 ⊗ idV7) ◦ (idV1 ⊗cV5V6V4V3 ⊗ idV2 ⊗ idV7)

◦ (idV1 ⊗ idV5 ⊗cV6V3V4V2 ⊗ idV7) ◦ (idV1 ⊗ idV5 ⊗ idV6 ⊗cV3V2V4V7)

◦ (cV1V6V5V3 ⊗ idV2 ⊗ idV4 ⊗ idV7) ◦ (idV1 ⊗cV6V3V5V2 ⊗ idV4 ⊗ idV7)

◦ (idV1 ⊗ idV6 ⊗cV3V2V5V4 ⊗ idV7) ◦ (idV1 ⊗ idV6 ⊗ idV6 ⊗cV2V4V5V7)

◦ (cV1V3V6V2 ⊗ idV4 ⊗ idV5 ⊗ idV7) ◦ (idV1 ⊗cV3V2V6V4 ⊗ idV5 ⊗ idV7)

◦ (idV1 ⊗ idV3 ⊗cV2V4V6V5 ⊗ idV7) ◦ (idV1 ⊗ idV3 ⊗ idV2 ⊗cV4V5V6V7)

◦ (cV1V2V3V4 ⊗ idV5 ⊗ idV6 ⊗ idV7) = (idV1 ⊗ idV4 ⊗ idV5 ⊗cV6V2V3V7)

◦ (cV1V5V4V6 ⊗ idV2 ⊗ idV3 ⊗ idV7) ◦ (idV1 ⊗cV5V6V4V2 ⊗ idV3 ⊗ idV7)

◦ (idV1 ⊗ idV5 ⊗cV6V2V4V3 ⊗ idV7) ◦ (idV1 ⊗ idV5 ⊗ idV6 ⊗cV2V3V4V7)

◦ (cV1V6V5V2 ⊗ idV3 ⊗ idV4 ⊗ idV7) ◦ (idV1 ⊗cV6V2V5V3 ⊗ idV4 ⊗ idV7)

◦ (idV1 ⊗ idV6 ⊗cV2V3V5V4 ⊗ idV7) ◦ (idV1 ⊗ idV6 ⊗ idV2 ⊗cV3V4V5V7)

◦ (cV1V2V6V3 ⊗ idV4 ⊗ idV5 ⊗ idV7) ◦ (idV1 ⊗cV6V3V5V2 ⊗ idV4 ⊗ idV7)

◦ (idV1 ⊗ idV2 ⊗cV3V4V6V5 ⊗ idV7) ◦ (idV1 ⊗ idV2 ⊗ idV3 ⊗cV4V5V6V7) . (293)

2) V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊗ V5 ⊗ V6 ⊗ V7 −→ V1 ⊗ V6 ⊗ V5 ⊗ V4 ⊗ V2 ⊗ V3 ⊗ V7 :

(idV1 ⊗ idV6 ⊗cV5V2V4V3 ⊗ idV7) ◦ (idV1 ⊗ idV6 ⊗ idV5 ⊗cV2V3V4V7)

◦ (cV1V5V6V2 ⊗ idV3 ⊗ idV4 ⊗ idV7) ◦ (idV1 ⊗cV5V2V6V3 ⊗ idV4 ⊗ idV7)

◦ (idV1 ⊗ idV5 ⊗cV2V3V6V4 ⊗ idV7) ◦ (idV1 ⊗ idV5 ⊗ idV2 ⊗cV3V4V6V7)

◦ (cV1V2V5V3 ⊗ idV4 ⊗ idV6 ⊗ idV7) ◦ (idV1 ⊗cV2V3V5V4 ⊗ idV6 ⊗ idV7)

◦ (idV1 ⊗ idV2 ⊗cV3V4V5V6 ⊗ idV7) = (idV1 ⊗cV6V4V5V2 ⊗ idV3 ⊗ idV7)

◦ (idV1 ⊗ idV6 ⊗cV4V2V5V3 ⊗ idV7) ◦ (idV1 ⊗ idV6 ⊗ idV4 ⊗cV2V3V5V7)

◦ (cV1V4V6V2 ⊗ idV3 ⊗ idV5 ⊗ idV7) ◦ (idV1 ⊗cV4V2V6V3 ⊗ idV5 ⊗ idV7)

◦ (idV1 ⊗ idV4 ⊗cV2V3V6V5 ⊗ idV7) ◦ (idV1 ⊗ idV4 ⊗ idV2 ⊗cV3V5V6V7)

◦ (cV1V2V4V3 ⊗ idV5 ⊗ idV6 ⊗ idV7) ◦ (idV1 ⊗cV2V3V4V5 ⊗ idV6 ⊗ idV7) . (294)

The equations for the M -matrix can be obtained by introducing the “extended” M -matrix, as in the case
of the R-matrix, and this can also be possible if the n-ary algebra

〈
B | µ(n)

〉
has the unit (element) eB ∈ B.

Definition 149. The “extended” M -matrix is defined by M
(2n′2−1)
i1...in′2

∈ B⊗(2n′2−1), such that

M
(2n′2−1)
i1...in′2

=
∑
α

eB ⊗ . . .⊗m(i1)
α ⊗ . . .⊗m

(in′2)
α ⊗ . . .⊗ eB , i1, . . . , in′2 ∈

{
1, . . . , 2n′2 − 1

}
(295)

where m
(ik)
α are on the ik-place.

It is difficult to write the general compatibility equations for the “extended” M -matrix (295).
Example 150. In the binary case n = n′ = 2 we have for the polyadic M -matrix M (4) in components

M (4) =
∑
α

m(1)
α ⊗m(2)

α ⊗m(3)
α ⊗m(4)

α , m(i)
α ∈ B, (296)

and M
(7)
i1...i4

∈ B⊗7 with

M
(7)
i1...i4

=
∑
α

eB ⊗ . . .⊗m(i1)
α ⊗ . . .⊗m(i4)

α ⊗ . . .⊗ eB , i1, . . . , i4 ∈ {1, . . . , 7} . (297)

The map of modules cV1...V4
(292) in the manifest form is

cV1V2V3V4
◦ (v1 ⊗ v2 ⊗ v3 ⊗⊗v4) = τmedial ◦ ρ

(
M (4) | (v1 ⊗ v2 ⊗ v3 ⊗ v4)

)
= τmedial ◦

(∑
α

ρ
(
m(1)
α | v1

)
⊗ ρ

(
m(2)
α | v2

)
⊗ ρ

(
m(3)
α | v3

)
⊗ ρ

(
m(4)
α | v4

))
,

vi ∈ Vi, m(i)
α ∈ B, i = 1, 2, 3, 4, (298)
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where τmedial is the medial map (286), and ρ : B × V → V is the ordinary 1-place action (7).
After inserting (298) into (293) and (294), using (297) we obtain the equations for M -matrix

M
(7)
1546M

(7)
5643M

(7)
6342M

(7)
3247M

(7)
1653M

(7)
6352M

(7)
3254M

(7)
2457M

(7)
1362M

(7)
3264M

(7)
2465M

(7)
4567M

(7)
1234

= M
(7)
6237M

(7)
1546M

(7)
5642M

(7)
6243M

(7)
2347M

(7)
1652M

(7)
6253M

(7)
2354M

(7)
3457M

(7)
1263M

(7)
2364M

(7)
3465M

(7)
4567 (299)

and

M
(7)
5243M

(7)
2347M

(7)
1562M

(7)
5263M

(7)
2364M

(7)
3467M

(7)
1253M

(7)
2354M

(7)
3456

= M
(7)
6452M

(7)
4253M

(7)
2357M

(7)
1462M

(7)
4263M

(7)
2365M

(7)
3567M

(7)
1243M

(7)
2345, (300)

which respect the braid equations (293) and (294).

Remark 151. The unequal number of terms in (299) and (300) is governed by different commutative diagrams
of modules (293) and (294), respectively (cf. (247) and (250)–(252)).

Medial analog of triangularity
Now we consider the possible analogs of the quasitriangularity conditions (similar to (245)–(246) and

quasipolyangularity (273–(275)) for a polyadic almost co-medial bialgebra B(n′,n).

Definition 152. A polyadic almost co-medial bialgebra B(n′,n) =
〈
B | µ(n),∆(n′)

〉
with the polyadic M -

matrix M (n′2) =
∑
αm

(1)
α ⊗ . . . ⊗ m

(n′2)
α , m

(i)
α ∈ B is called medial quasipolyangular, if the following n′2

relations hold∑
α

(
∆(n′)

)⊗n′
◦∆(n′)

(
m(1)
α

)
⊗m(2)

α ⊗ . . .⊗m
(n′2)
α =

∑
α1,...αn′2

m(1)
α1
⊗m(1)

α2
⊗ . . .⊗m(1)

αn′2

⊗
(
µ(n)

)◦` [
m(2)
α1
⊗m(2)

α2
⊗ . . .⊗m(2)

αn′2

]
⊗ . . .⊗

(
µ(n)

)◦` [
m

(n′2)
α1 ⊗m

(n′2)
α2 ⊗ . . .⊗m

(n′2)
αn′2

]
, (301)

∑
α

m(1)
α ⊗

(
∆(n′)

)⊗n′
◦∆(n′)

(
m(2)
α

)
⊗ . . .⊗m

(n′2)
α

=
∑

α1,...αn′2

(
µ(n)

)◦`
◦ τ(n′2,n′2)

medial

[
m(1)
α1
⊗m(1)

α2
⊗ . . .⊗m(1)

αn′2

]
⊗m(2)

α1
⊗m(2)

α2
⊗ . . .⊗m(2)

αn′2
⊗ . . .

⊗
(
µ(n)

)◦` [
m

(n′2)
α1 ⊗m

(n′2)
α2 ⊗ . . .⊗m

(n′2)
αn′2

]
, (302)

...

∑
α

m(1)
α ⊗ . . .⊗m

(n′2−1)
α ⊗

(
∆(n′)

(
m

(n′2)
α

))⊗n′
◦∆(n′)

(
m

(n′2)
α

)
=

∑
α1,...αn′2

(
µ(n)

)◦`
◦ τ(n′2,n′2)

medial

[
m(1)
α1
⊗m(1)

α2
⊗ . . .⊗m(1)

αn′2

]
⊗ . . .

⊗
(
µ(n)

)◦`
◦ τ(n′2,n′2)

medial

[
m

(n′2−1)
α1 ⊗m

(n′2−1)
α2 ⊗ . . .⊗m

(n′2−1)
αn′2

]
⊗m

(n′2)
α1 ⊗m

(n′2)
α2 ⊗ . . .⊗m

(n′2)
αn′2 , (303)

where τ(n′2,n′2)
medial is the unique medial twist map (69). The arity shape of a medial quasipolyangular bialgebra

B(n′,n) is given by (cf. (276))
n′2 = ` (n− 1) + 1, ` ∈ N. (304)

Remark 153. Similar to Remark 138, the medial quasipolyangularity equations (301)–(303) can be expressed
in terms of the extended M -matrix for the first equation (301) and the last one (303) only, because in the
intermediate equations the sequences of M -matrix elements are permuted.
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Example 154. In the case where n′ = n = 2, ` = 3, for the bialgebra B(2,2) = 〈B | µ = (·) ,∆〉 with the polyadic
M -matrix

M (4) =
∑
α

m(1)
α ⊗m(2)

α ⊗m(3)
α ⊗m(4)

α , m(i)
α ∈ B (305)

we have the binary medial quasipolyangularity equations∑
α

(∆⊗∆) ◦∆
(
m(1)
α

)
⊗m(2)

α ⊗m(3)
α ⊗m(4)

α =
∑

α1,α2,α3,α4

m(1)
α1
⊗m(1)

α2
⊗m(1)

α3
⊗m(1)

α4

⊗m(2)
α1
·m(2)

α2
·m(2)

α3
·m(2)

α4
⊗m(3)

α1
·m(3)

α2
·m(3)

α3
·m(3)

α4
⊗m(4)

α1
·m(4)

α2
·m(4)

α3
·m(4)

α4
, (306)

∑
α

m(1)
α ⊗ (∆⊗∆) ◦∆

(
m(2)
α

)
⊗m(3)

α ⊗m(4)
α =

∑
α1,α2,α3,α4

m(1)
α1
·m(1)

α3
·m(1)

α2
·m(1)

α4

⊗m(2)
α1
⊗m(2)

α2
⊗m(2)

α3
⊗m(2)

α4
⊗m(3)

α1
·m(3)

α2
·m(3)

α3
·m(3)

α4
⊗m(4)

α1
·m(4)

α2
·m(4)

α3
·m(4)

α4
, (307)

∑
α

m(1)
α ⊗m(2)

α ⊗ (∆⊗∆) ◦∆
(
m(3)
α

)
⊗m(4)

α =
∑

α1,α2,α3,α4

m(1)
α1
·m(1)

α3
·m(1)

α2
·m(1)

α4

⊗m(2)
α1
·m(2)

α3
·m(2)

α2
·m(2)

α4
⊗m(3)

α1
⊗m(3)

α2
⊗m(3)

α3
⊗m(3)

α4
⊗m(4)

α1
·m(4)

α2
·m(4)

α3
·m(4)

α4
, (308)

∑
α

m(1)
α ⊗m(2)

α ⊗m(3)
α ⊗ (∆⊗∆) ◦∆

(
m(4)
α

)
=

∑
α1,α2,α3,α4

m(1)
α1
·m(1)

α3
·m(1)

α2
·m(1)

α4

⊗m(2)
α1
·m(2)

α3
·m(2)

α2
·m(2)

α4
⊗m(3)

α1
·m(3)

α3
·m(3)

α2
·m(3)

α4
⊗m(4)

α1
⊗m(4)

α2
⊗m(4)

α3
⊗m(4)

α4
. (309)

According to Remark 153, we can express through the extended M -matrix (297) the first medial quasi-
polyangularity equation (306) and the last one (309) only, as follows

((∆⊗∆) ◦∆⊗ idB ⊗ idB ⊗ idB)
(
M (4)

)
= M

(7)
1567 ·M

(7)
2567 ·M

(7)
3567 ·M

(7)
4567, (310)

(idB ⊗ idB ⊗ idB ⊗ (∆⊗∆) ◦∆)
(
M (4)

)
= M

(7)
1234 ·M

(7)
1236 ·M

(7)
1235 ·M

(7)
1237. (311)

The compatibility of (310)–(311) with the (binary) almost co-mediality (281) leads to

Proposition 155. An extended binary M -matrix (297) of the binary almost co-medial bialgebra B(2,2) =
〈B | µ = (·) ,∆〉 satisfies the compatibility equations (cf. (247))

M
(7)
1234 ·M

(7)
1567 ·M

(7)
2567 ·M

(7)
3567 ·M

(7)
4567 = M

(7)
1567 ·M

(7)
3567 ·M

(7)
2567 ·M

(7)
4567 ·M

(7)
1234, (312)

M
(7)
4567 ·M

(7)
1234 ·M

(7)
1236 ·M

(7)
1235 ·M

(7)
1237 = M

(7)
1234 ·M

(7)
1235 ·M

(7)
1236 ·M

(7)
1237 ·M

(7)
4567. (313)

Proof. The identities for the M -matrix(
M (4) ⊗ idB ⊗ idB ⊗ idB

)
◦ ((∆⊗∆) ◦∆⊗ idB ⊗ idB ⊗ idB)

(
M (4)

)
= (τmedial ◦ (∆⊗∆) ◦∆⊗ idB ⊗ idB ⊗ idB)

(
M (4)

)
◦
(
M (4) ⊗ idB ⊗ idB ⊗ idB

)
, (314)

(
idB ⊗ idB ⊗ idB ⊗M (4)

)
◦ (idB ⊗ idB ⊗ idB ⊗ (∆⊗∆) ◦∆)

(
M (4)

)
= (idB ⊗ idB ⊗ idB ⊗τmedial ◦ (∆⊗∆) ◦∆)

(
M (4)

)
◦
(

idB ⊗ idB ⊗ idB ⊗M (4)
)
, (315)

follow from the almost co-mediality condition(281), and then we apply quasipolyangularity (310)–(311).

Remark 156. Two other compatibility equations corresponding to the intermediate quasipolyangularity equati-
ons (307)–(308) can be written in component form only.

The solutions to (312)–(313) can be found in matrix form by choosing an appropriate basis and using the
standard methods (see, e.g., [7, 49]).
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CONCLUSIONS 
We have presented the “polyadization” procedure of the following algebra-like structures: algebras, coalgebras, 

bialgebras and Hopf algebras (see [10,20] for ring-like structures). In our concrete constructions the initial arities of 
operations are taken as arbitrary, and we then try to restrict them only by means of natural relations which bring to mind 
the binary case. This leads to many exotic properties and unexpected connections between arities and a fixing of their 
values called “quantization”. For instance, the unit and counit (which do not always exist) can be multivalued many 
place maps, polyadic algebras can be zeroless, the qeurelements should be considered instead of inverse elements under 
addition and multiplication, a polyadic bialgebra can consist of an algebra and coalgebra of different arities, and a 
polyadic analog of Hopf algebras contains (instead of the ordinary antipode) the querantipode, which has different 
properties. 

The formulas and constructions introduced for concrete algebra-like structures can have many applications, e.g., in 
combinatorics, quantum logic, or representation theory. As an example, we have introduced possible polyadic analogs 
of braidings, almost co-commutativity and a version of the R-matrix. A new concept of deformation (using the medial 
map) is proposed: this is unique and therefore can be more consequential and suitable in the polyadic case. 
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ПОЛIАДИЧНI АЛГЕБРИ ХОПФА I КВАНТОВI ГРУПИ 
С.А. Дуплiй 

Центр інформатики, Університет Монстеру, Німеччина 
Ця стаття продовжує вивчення конкретних алгеброподібних структур у нашому полiадичному підході, де арностi всіх 
операцій спочатку приймаються як довільні, але відносини між ними, форми арностi, повинні бути знайдені з деяких 
природних умов («принцип свободи арностi»). Таким чином, визначаються i досліджуються узагальнені асоціативні 
алгебри, коасоцiативнi коалгебри, бiалгебри i алгебри Хопфа. Вони мають багато незвичайних особливостей у порівнянні з 
бінарним випадком. Наприклад, i алгебра, i поле, що лежить в її основі можуть бути нульовими і непоодинокими, існування 
одиниці i лічильника не обов’язково, а розмірність алгебри не довільна, а «квантована». Можуть бути визначені 
полiадичний твір згортки i бiалгебра, i коли алгебра i коалгебра мають нерівні арiти, полiадична версія антипода, 
querantipode, має різні властивості. Як можливе застосування до квантової теорії груп ми вводимо полiадичну версію 
плетінь, майже кокоммутативнiсть, квазiтриангулярнiсть i рівняння для R-матриці (які можна розглядати як полiадичний 
аналог рівняння Янга-Бакстера). Ми пропонуємо іншу концепцію деформації, яка керується не картою твіст, а медіальною 
картою, де тільки остання унікальна в полiадичному випадку. 
КЛЮЧОВI СЛОВА: полiадичне поле, полiадична алгебра, бiалгебра, алгебра Хопфа, антипод, рівняння коси, плетіння, 
R-матриця, рівняння Янга-Бакстера, медiальнiсть, ко-медiальнiсть, M-матриця, квазiтриангулярнiсть 
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