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The paper discusses the properties of the nonlinear thermodiffusion equation corresponding to the heat transfer processes occurring
with a finite velocity in gas from a high intensity source. In the previous papers A. J. Janavicius proposed the nonlinear diffusion
equation which provided a more exact description of impurities diffusion by fast moving vacancies generated by X-rays in Si crystals.
This is similar to the heat transfer in gas with constant pressure by molecules carrying a greater average kinetic energy based on the
nonlinear thermodiffusion of gas molecules from hot regions to the coldest ones with a finite velocity by random Brownian motions.
Heat transfer in gas must be compatible with the Maxwell distribution function. Heat transfer in gas described by using nonlinear
thermodiffusion equation with heat transfer coefficients directly proportional to temperature 7' . The solution of the thermodiffusion
equation in gas was obtained by using similarity variables. The equation is solved by separating the linear part of the equation that
coincides with Fick's second law. The obtained results coincide with Ya.B. Zeldovich’s previously published solutions of nonlinear
equations by changing the respective coefficients.
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In the previous papers we have discussed the nonlinear diffusion of impurities in semiconductors [1-2], nonlinear
thermodiffusion in gas [2-3] and heat transfer in metals by electrons [4] using mathematical methods of similarity
variables [1] for the solution of the nonlinear equation. The obtained results are important for engineering calculations of
heat transfer in gas at constant pressure.

It is assumed that the process of thermal transmittance in gas is similar to nonlinear diffusion process of impurities
described as Brownian movement of atoms in solids spreading with a finite velocity. Heat transfer can be described by
using a modified theory of nonlinear diffusion in solids [1]. In this case the frequency of the jumps of diffusing
molecules [2] depends upon the coordinates and changing molecules concentration 7 and temperature 7' according law

of ideal gas defining pressure p = nkT .
The coefficient of thermal conductivity of gas can be expressed in the following way [2], [6]
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Here A is the mean value of a free path of diffusing molecules, v - the mean velocities of molecular movement,
¢, - the molar heat capacity at constant volume, p - the density of gas, n — the number of molecules per unit volume,
k - Boltzmann constant, T — temperature of gas, g - molar mass, R — gas constant, d- the distance between centers
of the diffusing molecules of the gas, D, (T') - the thermodiffusion function of impurities in gas for the isobaric process.

The equation of thermodiffusion in gases can be obtained with the coefficient D, (7") , which is proportional to the

temperature [7] of gas. Similarly, as in the case of nonlinear diffusion in crystal silicon [1] by using (1), the coefficient
D, (T) can be introduced
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The constant pressure p = n(r,0)kT (r,t) = ng(r,t)kT(r,t) at slow impurities transmission in gas with decreasing
temperature 7(r,t)is compensated by increasing the concentration n(r,¢) of impurities in gases with heating from the
spherical source of temperature 7T .

Here D, is the thermodiffusion proportionality constant for the nonlinear thermodiffusion function D), (T') for the
specific heat capacity ¢, of gas at the constant pressure p, K - the coefficient of thermal conductivity at source. From

the theory of Brownian motion follows that the diffusion velocity and the maximum penetration depth of impurity atoms
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and heat transfer velocity must be finite. Consequently [1], the thermodiffusion coefficient D, (r,¢), defined by

thermodiffusion constant at source D__ , is directly proportional to the temperature

ws 2

D, (T)=D,,(r,t)= T“‘T(r ,t)=D,T(r,t), D, =D,T, 3)
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which requires that the first Fick law must be improved by introducing the heat flux [1], [2] according the radial direction

j=-D,T(r I)T(r+Ar ,0)—T(r, t) D, TdT )
Ar dr
with the finite length Ar of the jumps with the finite velocity [1] of diffusing particles. It can be assumed that the jump
length of the diffusing atoms or molecules from one equilibrium position to another in solids or fluids has the definite
value L .
In gases L may be the average free path of diffusing particles. From the conservation the number of diffusing
particles

gSDW grad(T)dS = j T av . b, =D, T(x,y,2,1) (5)
and the theorem of Gauss’ [6]

j div(D,, - grad(T))dV = j T v (6)

the following nonlinear thermodiffusion equation is obtained
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By using the nonlinear diffusion equation [5], [6] the following thermodiffusion equation in spherical coordinates can be
obtained
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The equation (6) for temperature 7'(r,t), 0<r<r,, 0<t<t, can be rewritten in the spherical case
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which mathematically coincides with the nonlinear diffusion equation [2].
The numerical calculations provided in [2] give the dependence n(r,t) as a straight line in the region 0<r <7,

0<t<t,. The temperature 7(r,t) dependence was obtained in a similar way [7].

The jump of hotter molecules or particles of impurities with a greater kinetic energy in the region » +Ar with lower
temperature is only possible if exists hotter at the point .
This requirement is equivalent to the approval that thermodiffusion and diffusion must occur with finite value jumps and
velocities. This is very important in defining coefficients of thermal conductivity [3], [7] and diffusion [1], [2].
The nonlinear heat conduction equation [8] presented for one dimensional case

OE _ 0
o x( (E )—j (10)

using energy density E , which cannot be directly measured, is not perspective viable as equation (9) for temperature
T(r,t), which can be measured directly for calculation thermal conductivity [9].

The aim of the article is to get the nonlinear equation describing the flow of atoms and molecules in gases by the
thermodiffusion for a spherically symmetric case and to find its approximate analytical solution.

THE NONLINEAR THERMODIFFUSION EQUATION FOR A SPHERICALLY SYMMETRIC CASE
The solution of (9) can be obtained by introducing similarity variable [5] ¢ and function f(§)

T(&)=T,f(£), f:J%“:\/;—t,
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0<E<g, 0<r<n, 1,=53D, It =&\D,t, (11)

which depends on the thermodiffusion constant D, at source with temperature 7, . By substituting (11) into (9) the
following nonlinear differential equation can be obtained
0’ 2 .0

o (o) 1
6Ef By ?(faf (5] 2y

The nonlinear equation (12) can be solved approximately by separating first three terms like the linear equation of

o 1.9 _

S o0& 26;‘

(12)

hot molecules diffusion [2] can occur with the different lengths A7 of the some average frequency of jumps as at linear

heat transmittance approach
o’ f, 29, f, o f, 20, f,
f[? £o¢ 2565] > {? £o¢ 25(35} o (42

The part of nonlinear equation (12) is transformed to linear (13) and obtained the following expression representing
thermodiffusion only by nonlinear processes

L L /Y L/ A/
(a;j ot 2565 0. 5p 3¢ f (14)

The first [2] and the third terms in (14) represent a nonlinear diffusion or thermodiffusion. The second term in (14)
represents the connection with linear thermodiffusion (13) and nonlinear equation (14) by introducing the term

P(é)= %{ - f;, which will be demonstrated below gets small numerical values in the region 0 <& <2.

APPROXIMATE ANALYTICAL SOLUTION

The term P(§) = %E - f, of nonlinear equation (14) can be excluded. Thus, a simplified equation is obtained

9.1 I 0
o +£=0, 2 (15)

The equation (15) is solved for the source point temperature 7, and environment temperature 7,
1 1
f(s")=1—252, TE)=Tf(), 0s&<¢,, T, =Ts(1—zsi2),

T,-T
¢ 16
T (16)

N

£=4

by satisfying the boundary conditions for the maximum distance 7, of heat penetration

T,-T
f(§)=0,¢, = =2D,t ST <, a7
ws N
and by satisfying the boundary condition for temperature 7 at the source point ¥ =0, £ =0
JO)=1, T(0) =T, f(0)=T. (18)

The solution of the linear thermodiffusion equation (13) can by expressed [2] by similarity variables

F@E) =1 T¢) _A¢ —erfe (ﬂJ (19)
T, & 2
where the radius of source is A¢ .
The nonlinear thermodiffusion equation (14)
D Legileo 20)

0F 2 2
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can be solved analytically by introducing a new variable

Z:S(_S(eo Sr:Z+ e

Yo _
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The equation (21) can be modified to the following form

1 ol- 1
LML) Ly 22)
1-f, oz 2
which is easy to integrate
f, =1-C-exp[0.25z° +0.5¢ z]. (23)

The obtained solution of the equation must satisfy the boundary condition for maximum heat penetration depth

£(0)=0, z=0,¢=¢,=2, C=1. (24)
For the heat penetration from the point source a multiplier for the obtained solution of the equation must be introduced

fn(Z):L(l—exp(O.ZSZZ+0,5.§e.z)) 27183

, 00 582, 25)
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The comparison of solutions (Table) f, (&) of nonlinear thermodiffusion equation (25) and f(&) of simplified

equation (16) shows the coincidence of both numerical solutions which depend on similarity variables § .

Table.
'3 0 0.5 1 1.5
£.(&) 1 0.9624 | 0.8347 | 0.5606
(&) 1 0.9844 | 0.7500 | 0.5625 0
RESULTS AND DISCUSSION

The nonlinear diffusion equation is derived [10] by taking into account the local variations of impurities
temperature in the solvent within a mechanism of diffusion driven by random impurities particles collisions with solvent
molecules of density at average frequency

V(x,y,z,t):U~N(x,y,z,t)-u~x/5 (26)

and relative velocity (1) ux/2 = /2 with solvent molecules of density N . Here o is the collision cross-section of
diffusing particles. In real thermodiffusion process the collisions frequency depends not only on the distribution
N(x,y,z,t) but also on the distribution of impurities or hot molecules with velocities [6] as well as on temperature.

Figure 1. Profiles of nonlinear (16) f (&)= Tl and linear (19)

S
F(&)solutions of equation for the point source with
temperature 7 =300,15K and environment temperature
— T,=280,15 K when thermodiffusion coefficient [9]

D, =2.172-10"m* /s and time is 100 s.

0 025 05 0.75 1



17
Modelling of Nonlinear Thermodiffusion for a Spherically Symmetric Case EEJP. 1 (2021)

The presented profiles of f(§) and P(§) in Fig. 2 as well as the results presented in Table 1 show that the term
P() = %f - f, gets small numerical values in the equation (14), and, consequently, can be removed. The linear effects in

equations (12), (13) and nonlinear equations (15), (20) can be separated.

—] T
Figure 2. Profiles of nonlinear (16) solution f(§) :F

S
— and term (14) P(¢) :%f - f, for the point source with
temperature 7, = 300,15 K, environment temperature

T,=280,15 K when thermodiffusion coefficient [9]
D, =2.172-10"m" /s and time is 100 s.

Concentration profiles (Fig. 3) illustrate the obtained parabolic form of nonlinear equation (16) f(¢) :Tz and linear
N

equation (19) F(¢) solutions.

Figure 3. Concentration profiles of nonlinear (16)

f(6= Tl and linear (19) F(§) solutions of equations for
N

the point source with temperature T =300,15K,
— environment  temperature T,=250,15K  when
thermodiffusion coefficient [9] D,, =2.172-107m" /s
and thermodiffusion time is 100 s.

0 038 075 1.I13 1.5
3

It can be explained by taking into account the distribution function [6] of hot molecules with velocities ¢

_ 2
4.c,}exp| €
An 2T )
—= N -¢”-Ac, 27)
n m

possessing the most probable molecular velocity ¢, and average velocity v [6]
o o BT G BTS2 (28)

. . 1 . .
The average value v in (28) must be substituted by the temperature 7 = ETS . Gas densities 7 at this temperature

collide with the hottest molecules 2n, when they satisfy the condition n =2n_, which formats the front of temperature.

The dependence of density distribution of hot molecules ¢, and 7, can explain the formation of the barrier of hot
molecules with greater kinetic energies
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2
mc

3
==kT 29
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and hot shock waves [11] according (16), (17) and Fig. 4 rapidly spreading in space.

Figure 4. Temperature profiles of functions (16), (17)
T
f($= T and d(¢) for the same nonlinear solutions (16)

N

- of the point source with temperature 7, =300,15K,
environment temperatures 7, = 250,15 K and T, = 280,15 K

respectively for presented temperatures functions f(§) and
d(§) when thermodiffusion coefficient [9] at source is

D, =2.172-10"m* / s for the time interval of 100 s.

0 038 075 1.13 15
g

’T -T
In Fig. 4 heat penetration depths (17) from the same source are equal to 7, =2/D, ¢ |- 7 = and can be similarly
N

explained.
All graphs are presented by using computer algebra system MathCAD.

CONCLUSIONS

The flow of atoms and molecules by nonlinear diffusion [1] and thermodiffusion is defined by the finite length Ar
jumps of the hot molecules (4) as well as the finite velocity [1] by using a thermodiffusion coefficient proportional to the
temperature (2), (8). The obtained temperature parabolic graphs [11-12] of the nonlinear solutions in Fig. 4 are generated
by hot atoms or molecules velocities probability (27), (28) and their dependence on temperature.

The approximate analytical solution of nonlinear thermodiffusion equation for the point source in the spherical case
is very complicated and was solved by excluding the linear diffusion equation (13) from the nonlinear equation (12). This
can be physically realized only when the third term on the right side of (9) defining diffusion [2] on the frontier

2
%(z—Tj is significantly greater than the first term representing the self-diffusion from the source having high intensity
s r

of impurities. This can be similar to superdiffusion of impurities by vacancies [13-14] at room temperature in the crystal
silicon irradiated with X-rays.

In this case the obtained nonlinear equation (15), solved analytically (16), as can be seen in Fig. 4, by using similarity
variables, can be applied with sufficient accuracy.

Nonlinear thermal conductivity in gas [3] was considered in one dimensional case with thermal diffusion coefficient

(2) proportional to the gas temperature. Similar equations only for one dimensional case were solved analytically for more
complicated thermodiffusion coefficients [15-16] D=k+m-T", k >0 by using similarity variables.

The analytical solution of a more complicated task of nonlinear thermodiffusion equation for a spherically symmetric
case by using similarity variable and separation of linear processes has been successfully achieved.
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MOJIEJTIOBAHHS HEJTHIMHOT TEPMOJIU® V3Ii IS CPEPHYHO CHMETPUYHOT O BUITAJIKY
Apsunac Y. SInasiuroc, Cirita Typckiene
Incmumym pezionanvnozo poseumxy, Yuieepcumem Lllaynau, Jlumea
eyn. I1. Biwuncoxo, 25, LT-76351

VY craTTi pO3IIANArOTBCS BIACTUBOCTI HENIHIMHOTO pIBHAHHA TepMmoaudysii, IO BiINOBifae mpomecaMm TEIIOOOMiHY, SKi
BiOyBarOTHCS 3 KiHIIEBOIO IIBUAKICTIO B T'a3i BiJl JyKepelia BUCOKOI iIHTEHCUBHOCTI. Y mornepeHix podoTtax A. SIHaBidroc 3arponoHyBaB
HeJliHilHe pIBHAHHA AuQy3ii, ske Hajamo OLTBII TOYHMIT omuc audy3ii MOMIMIOK 3a JOMOMOTOI0 MIBHIAKOPYXOMHX BaKaHCIH,
MMOPOJPKEHUX PEHTTCHIBCHKHM BHIPOMIHIOBaHHSAM y KpucTanax Si. e € momiOHuM 1o Teruionepenadi B rasi 3 MOCTIHHAM THCKOM
MOJIEKYJIaMH, SIKI HECYTh OUIbIIY CepeHIO KIHETHYHY €HEprito, Ha OCHOBI HelliHilHOT TepMoudy3ii MoJeKy 1 ra3y 3 rapsaux oonacreit
y HallXOJOJHINI 3 KiHIEBOIO HIBUJAKICTIO BUIAAKOBHMH OpOYHIBCBKMMH pyXaMHu. TeIiooOMiH y ra3i MOBMHEH OyTH CyMiCHHM i3
¢yukuiero posnopinty MakcBemna. Termonepenaya B rasi ompcaHa 3a JONOMOIOI0 HeJiHiffHOro piBHAHHA TepMmoaudysii 3
koedirieHTaM1 TerIonepeaadi, siki € npsiMo nponopuiiinumy temneparypi 7. Pimenns piBHsHHs TepMoandy3ii B rasi 0yIo oTpuMaHo
3 BUKOPHCTaHHSAM 3MIHHUX MOXIOHOCTI. PiBHSHHSA BHpIIIyeThCS BiTOKPEMIICHHSM JIiHIIHOI YaCTHHU pPIiBHSHHS, SKa BiINOBiZae
npyromy 3akony ®Dika. OTprMaHi pe3yJIbTaTh CHIBIAAAIOTH 3 pilleHHIMH S1. 3eTb10BUYa HENIHIHHUX PiBHSAHB, 0 OYJIH Oy OJIiKOBaHi
paHime, IUISTXOM 3MiHU BiAMOBITHUX KOC]ILi€HTIB

KJIIOYOBI CJIOBA: meniniiiHa TepMonudysis, DKepero BHCOKOI iHTEHCHBHOCTI, pillleHHs MOJi0HOCTI, TemIiepaTypHi npodii,
c(hepuIHO CUMETPUYHHI BUIIAZIOK



