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The hydrodynamic Kelvin-Voigt model of production systems with a flow method of organizing production is considered. The main
macro parameters of the state of the production line and the relationship between them are determined. The analysis of the main
characteristics of models of elastic elements, which are used to analyze the occurrence of the dynamic stresses in a moving conveyor
belt, is presented. A boundary value problem for elastic longitudinal vibrations in a conveyor belt with a moving material is
formulated. It is assumed that the deformation of the conveyor belt element corresponds to the Kelvin-Voigt model and there is no
sliding of the moving material on the belt. When determining the forces of resistance to motion acting on an element of the belt, the
recommendations of DIN 22101: 2002-08 were used. The analysis of the Kelvin-Voigt model of the elastic element is carried out
and the distinctive features of the model are demonstrated. The justification of the choice of the Kelvin-Voigt model of an elastic
element for describing the process of occurrence of the longitudinal vibrations in a conveyor belt is given. The dependence of the
non-uniform flow of material and the magnitude of tensions in the belt is estimated. An expression is written for the speed of
propagation of disturbances along a moving conveyor belt with the material. The reasons for the acceleration and deceleration of the
conveyor belt associated with the uneven supply of material at the entrance of the transport system are determined. The relationship
between the speed of a conveyor belt and the mass of material along a section of the conveyor is demonstrated. It is shown that an
increase in the power of the electric motor at the start and acceleration of the conveyor belt, as well as a decrease in power during the
braking and stopping of the conveyor belt, is the cause of the appearance of dynamic stresses in it. The characteristic phases of the
initial movement of the conveyor belt with the material are analyzed. The process of occurrence of dynamic tensions with the
constant and variable acceleration of the conveyor belt for the phase of acceleration and deceleration of the conveyor belt is
investigated. For the analysis, a dimensionless model of a conveyor line was used. An expression is obtained for static and dynamic
tensions in the conveyor belt. The amplitude of oscillations of dynamic stresses and the characteristic time of damping of oscillations
in a conveyor belt is estimated. A quadratic dependence of the speed of damping of a wave of dynamic tensions with an increase in
the oscillation frequency is demonstrated. An inversely proportional dependence of the characteristic decay time of the generated
dynamic tensions on the value of the viscosity coefficient of the composite material of the conveyor belt is shown.

KEY WORDS: hydrodynamic model of a transport system, two-moment description, Hooke model, balance equations, PDE
production model

In article [1], the hydrodynamic Hooke's model of a transport system is considered, which was used to analyze the
mechanism of the occurrence of longitudinal vibrations in a conveyor belt when material moves along a transportation
route. To construct a model of the transport system, the equations of two-moment description (2) were used in the form
[1,2]:
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where [ ;(]0 (t,5), [ ;(]1 (,8) are respectively, the density of the material and the flow of material at the moment in
time ¢ at the point of the transport route, which is determined by the coordinate S, S e [O, S4 ]; S 1is the length of the
transport route; A(z)is the intensity of material receipt at the entrance of the transport system at the point S=0;
f(2,S) is the force that acts on the material per unit mass of the material and the belt [3]; & (S ) is Dirac delta function.
We will assume that the specific density of the conveyor belt is constant and equal [Z]OC , the conveyor section is

located horizontally, and the material does not crumble from the conveyor belt.
The force acting on the section dS of the density conveyor belt [Z]OC =const, on which the material with

density [ ;(]0 (¢,S) is located can be calculated as follows [1, Fig. 1]:

f(t,S)dm = R(t,S + dS) - R(t,S) — dFyy , dm={x)y@.$) +[xloc S , 3)

R(S)=0o(t,S)Bh, 4)

© O.M. Pihnastyi, V.D. Khodusov, 2020


https://orcid.org/0000-0002-5424-9843
https://orcid.org/0000-0003-1129-3462
https://doi.org/10.26565/2312-4334-2020-4-13

96
EEJP. 4 (2020) Oleh M. Pihnastyi, Valery D. Khodusov

where dm is the total mass acting on the belt; B is conveyor belt width; /4 is conveyor belt height; o(¢,S) is conveyor
belt tensions; Fyy is sum of total resistances to belt movement [1]:
Fw =Fg+Fn+ Fg¢ + Fg. 5)

Descriptions of each component of the secondary resistance (5) are discussed in detail in [1]. Detailed information
on the methods for calculating secondary resistances is given in [4].
Primary resistances F are related to the frictional resistance along the conveyor belt, with the exception of

specific resistances. The primary resistances Fy, assuming a linear relationship between the resistances and the
transported load, are determined by the expression

dFy =dS- fc 'gm( [xlor +([l]o(t,S)+[Z]oc)°°S5c),
Jfc 1s the coefficient of resistance to motion, which includes the rolling resistance of the driving rollers and the

resistance of the belt being pressed; g, =9.81 (m/sec?); [;(]0 g 1s linear load from rotating parts; J¢ is the angle of
inclination of the section of the conveyor section. The force Fy , taking into account the influence on the movement of

secondary resistances, can be expressed through the value of the primary resistance to movement Fy [4]:
Fy =(C-1)Fy, C~105.

The force Fs;, characterizing the gradient resistance of the conveyor belt and transported material [4]

d Fg; =dS -sind¢ -gm( (7)o @5+ [Z]OC)

for a horizontally located conveyor section ( d¢ =0) not present.
The calculation of the force Fg, associated with special resistances in the transport system is determined by the
design features of the transport system. For most conveyor-type transport systems, it is assumed

FS << FH .
Divide (3) by dm
1 OR(1,S) 1 ofy
0@+ xloc) a5 xS +[xloc) S

substituting the result into (2), we obtain an equation that, together with equation (1), determines the propagation of
stress disturbances along the conveyor belt, taking into account the distribution of material along the transport route

1=
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To solve the system of equations (1), (7), the relationship between the tensions and the relative deformation of the
section of the conveyor belt must be known

(6)

G(t’S) :fd(g(tas))

This dependence is determined by the properties of the composite material from which the conveyor belt is made and is
a model of an elastic element.

FORMULATION OF THE PROBLEM
The cost of transporting material from the place of extraction to the place of material processing reaches 20% of
the total cost of mining material [5]. These costs can be significantly increased in the case of underloaded transport
systems. This is especially important for long-distance transport systems [6, 7]. To reduce unit costs, systems are used
to control the speed of the conveyor belt <,u> and the value of the incoming flow A(z) to the input of a separate section

from the accumulating bunker. The control of the parameters of the transport system changes the linear density of the
material [ ;(]0 (¢,S) along the transportation route. Control algorithms assume the operation of the conveyor section in

the mode of acceleration or deceleration of the conveyor belt [8, 9]. This leads to the generation and propagation of
tension disturbances along the conveyor belt [10]. If the maximum permissible tension value of the conveyor belt is
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exceeded, such control modes destroy the transport system. The danger of such situations is relevant at the present time
and requires a detailed analysis of the causes of disturbances for conveyor belts made of different materials.

MODEL OVERVIEW

The process of propagation of tension disturbances along the conveyor belt of the transport system largely depends
on the properties of the material from which the conveyor belt is made. An overview of the models of elastic elements
for materials of various properties is presented in [9]. The analysis of the main characteristics of elastic element models
is presented: Hookean element, Newtonian element, Maxwell element, Kelvin element, Venant element, CDI geometric
beam element and CDI five-element. The finite element method (FEM) is chosen to describe the transport system [11].
The calculation was carried out for the different start and stop modes of two operating transport systems with an elastic
element of the CDI five-element composite model. The length of one of the conveyors was 9 km. The article [12]
presents a comparative analysis of elastic element models: Vogit element and Maxwell element. A system of Lagrange
equations was chosen to model the transport system. For the conveyor section, the calculation for speed, acceleration
and tension in the belt for several modes of operation is performed. In [13], for the model of the elastic element
Maxwell element and the model of the Winkler foundation transport system, a calculation was made for the speed of the
conveyor belt. The article [14] presents the calculated “belt stretch curve” and “velocity curves” for the Kelvin-Voigt
element model of the elastic element and the transport system model represented by the Lagrange system of equations.
The article [15] analyzes the models of the elastic element Kelvin-Voigt element, the combination of Hooke and
Kelvin-Voigt element, as well as the combination of two Kelvin-Voigt elements. The analysis of long-wave oscillations
in the conveyor belt of the transport system for the Hooke element model and the analytical model of the transport
system is presented in [1]. The mechanical properties of composite materials for the manufacture of a rubber conveyor
belt with polyester and polyamide cartridges are given in [16]. The results of experimental studies of composite
materials of a rubber conveyor belt with polyester and polyamide cartridges are presented. As a result of experimental
studies, values were obtained for the tensile strength, elastic modulus, Poisson's ratio for new and operated rubber
conveyor belts. Analysis of these indicators, which characterize the properties of a specific material of the conveyor
belt, allows you to determine the model of the elastic element, and, accordingly, the type of dependence between the
tension and the relative deformation.

CONVEYOR TYPE PRODUCTION LINE MODEL
In this paper, the Kelvin-Voigt element model will be used to analyze the arising stresses in the conveyor belt

(Fig. 1):

o(t,S)=Ee(t,S)+n

de(t,S)
d ™

where E is the elastic modulus of the element; 7 is element viscosity.

E
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Figure 1. Kelvin-Voigt element

Equation (7) is used to calculate the normal tensions of an element. If the tension is constant o (t,S) = o = const , then
the equation has a solution

g(t,S):G—;(l—e_t/to), to =

& |

At t>>1,, the limiting value for the element deformation is obtained:
. o
lim &(t,8)=—2 .
t—>0 E

Atw << @y s the limit transition to the model of an elastic element follows, in which the stress and strain can be

calculated in accordance with Hooke's law:
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o(t,S) ~ Es(1,S), Ee(t,8)>> nost.s), 2285 L hees), n_1
dt E wy

The analysis of the arising deformations in accordance with Hooke's law was investigated in [1]. Substituting
expression (7), which determines the relationship between stress and strain, into equation (6), we obtain

dp) _ BhE 2s(1,S) | Bhny 2%e(t,5) 1 oFyy ®
at (ly.)+[xloc) os (@) +lxloc) aos — (xlo@.)+[xloc) oS

Let us introduce the absolute elongation of the conveyor belt(z,S) at the moment of time ¢ for the

technological position S . The ratio of the elongation dW (¢,S) of the element by the conveyor belt to the length of the

segment dS is the relative deformation of the element

ow(t,S) )
et,S)y=—>>—=, e(t,S)~107".
(t,9) T (,5)
The speed of the conveyor belt <,u> , on which the material is located, consists of the speed of the belt in equilibrium
t,, and the oscillatory part of the belt speed @ :
dw(t,S) daw(,S) ow(,S) oW (t,S)
= +—, = + .
) =smy + =5 dr Rl O
Since the relative deformation of the element £(¢,S) is small, then
aw(t,S) ow(,S) oW (t,S)
= + t,§)r —=,
dt ot <ﬂ>g( ) ot
ow(t,S
|</¢>g(t, S)| << #‘ 9)
ot
For the relative deformation, represented in the form of a plane wave W (¢,S) ~ el (@1=kS) , it follows
o| 1 oW (t,S) ow (t,S)
<< |—==— | = , — =~ oW(,S), t,8)=—"-=~kW(,S),
) k‘ Sl =pn o OWS), (tS) = —— (t.9)

where @ is the oscillation frequency; k is wave vector; Ay is disturbance wavelength; u ph is the phase velocity of

propagation of the disturbance wave, that is, the velocity of movement of a point with a constant phase of oscillatory
motion in space, along a given direction. A negative value of the wave vector corresponds to the case of propagation of
a backward wave. In this paper, we will consider perturbations whose propagation satisfies the condition (8). Assuming
that for the case when the functions W (z,S), <,u> have a large gradient, the destruction of the conveyor belt occurs.

Taking this into account, we write down the expression for the change in the speed of the belt, neglecting the values of
higher orders of smallness

d(p)

dpy 2w (1,9)

I

dt dt 8[2
where the order of smallness is given below:
2 2 2
IWES) e (s.5). IWES) 2wy, IWES) 2.
otoS o2 252

When the length of a segment dS of the transport route changes, the density changes ([;(]0 t,S)+ [Z]OC)- Let the
length of the segment dS change and become equal (dS + dW(t,S)), dS >>dw(t,S) . In this case, the linear density

will change and become equal to ([;(]0 @8+ [;(]OC)+ (A[;(]O (t,S)+A[;(]0C). For a given segment of the transport

route, we have

as((xlo@.9) + [xloc )= (as + aw . ))[xlo ) + [rloc )+ (Alx o .8) + Alx]oc ) -
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Neglecting a quantity of the second order of smallness dW (¢, S )(A[;(]o @,S)+ A[;[]OC ) , we obtain

0~as(A[x]ot.9)+ Alxloe )+ dm .9 [l .9 + [xloc ) -

from where

odw(t,8) _ Akt +Mlrhe _
as [x)o@.9)+[xloc

and

BhE 2 2 BhE
~C,2t,8)-¢),  C,%(tS)= .
e +lele) " (i-2) v [T, @) +[xloc

The function C,/,Z(t, S) determines the speed of propagation of disturbances along the conveyor belt [8]. The local

change in density as a result of stretching the belt does not significantly affect the propagation of stress disturbances
along the conveyor belt. Thus, we represent equation (8) in the form

0 WS Cp S R

2
owW(,S) 2 7%
———=+C t,S - ), 10

v )E 01082 BhE oS f"’() (10)

as?

o’w(t,S)

2
C, S
a2 4

where fy, (¢) is the acceleration of the conveyor belt for the steady state

dyty, B
7—fw(f)-

For horizontal conveyor sections cosoc =1, where

ag_SW: Fegmrlor + [l @.)+ [xhc))-

The solution of the equation for the case

2 3
pOMES) WS E
as? 1082 n

>>

is presented in [1]. In this paper, we consider the case for which the relation £/n~ o

Let's assume that at the initial moment of time the linear density of the material is distributed along the transport
route according to the law

0, §<0,

L 550, selo;s,].

()0 0.9) =[]y, (0.5) = H(S)¥(S) . H(S) ={

Let us supplement the system of equations (10) with boundary conditions for the equation describing oscillatory
processes in the transport system. The tensions o(¢,0) and o(¢,S;) are determined by the tension forces of the

conveyor belt 7} and 7, (Fig. 2).
7, L

S
AT, N
Ty 7,

Figure 2. Conveyor belt tension diagram

Let us write the system of equations for the forces 7;, that determine the movement of the belt at the characteristic
points of the horizontal conveyor section:
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Ty =T exp(kpar) ; =0+ Fy@o-3)tFy (-3 Ta=k3, L =T+ Fy@a-1)+ Fy (a1, (D
Sq
Fy(2-3)=Sa - fc ~gm([xlor +tloc)- Fu(a-1)=Fu(-3)* fc " &m J‘[Z]o(f,S)dSa 6c=0,
0
Fy(2-3) = (C=1)Fyy (2-3), Py (4-1) = (C = 1D)Fyy (4-),
Sq
Fst(2-3) =S4 -sindc - g [xoc =0, Fst(4-1) = Fst(2-3) +sindc - & I[Z]o(f, $)dS =0,
0
Sy
Fy (2-3)= 1, Olke Sa» Fy (4-1)=Fy 2-3)+ fyy (r)j[z]o (t.5)dS ,
0

FW :FH+FN+FSt+FS

where F, (2-3): Fyy (a-1) are forces associated with the acceleration or deceleration of the conveyor belt. We believe

that the effects associated with a change in the angular speed of rotation of the drum are small due to the insignificant
value of the moment of inertia of the rollers. The solution of the system of equations (11) makes it possible to determine
the tractive effort for the transport conveyor for a steady motion:

exp(kp)

=k o) Koy (2o Pofao)+ Fy (4o it

Ty =T — Fw (4-1) — Fy (4-1)>

where k is the coefficient of adhesion between the drum and the belt; & is drum loss factor "A"; « is total belt wrap
angle of drive drums. For steel drum without moisture is k;, ~ 0.3, k; *1.03 [17] and o =7, we get exp(kpa) =2.56.
In accordance with (9), the expression for the tension in the conveyor belt takes the form

wes) %W (1,S)

o(t,S)=E
oS o1oS

Atpoints S =0, S =S, , the conveyor belt is engaged with the drive and driven shafts of the conveyor section. In
this regard, it can be assumed that

_a%w,S)
s=s, 0@

dews)| _owes)| de(1,S)

=0. (12)
dt |g_o  010S |S:O dt

S=S,

Taking into account the values of the acting forces 7}, 7y, let write down the boundary conditions

2
N _ pW(S) L OWs)

O-(ta Sd) = -
Bh as g, atos

S=8,

exp(kpa)

1
= E(’\%Fw (2-3) +ksFy (2-3)+ Fw (4-1) + Fy (4_1))W ,

2
S It 4 )] I chl 4 %)
Bh 3 |50 o1aS

_pmes)| _Fwa)rfy @)
s lsos, Bh

Let us supplement the system of equations with initial conditions. Consider the mode of occurrence of oscillations,
assuming that at the initial moment there were no oscillations

oW (1,S)
ot

=0.
t=0

The tension of the conveyor belt at the initial moment of time is determined by the initial distribution of material along
the technological route ¥(S) and the acceleration of the conveyor belt £, (¢). Then
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5(0.5) = (0.0) + Fyyy (4-1)(0,8)+ Fypp (4-1)(0.5),
S

Fry (4-1)(0.5) = fc - &m J-([Z]OR +[xhoe +POMS . P (4-1)(0.8) = (C = 1)Fipp (4-1)(.) . [1]y(0.8) = ¥(S)
0

S
Fyy (4-1)(0.8) = £,,(0) j [k +rloc + ¥OMS . Py (4-1)(0.8) = Figg (4-1)(0. S) + Fry (4-1)(0.5) -
0

Let us estimate the value of the acceleration of the conveyor belt f,, (r). Asynchronous motors with phase rotor

are usually installed on powerful belt conveyor sections. The acceleration and deceleration of the conveyor belt of a
separate section occurs with the help of a rheostat, which sequentially changes the resistance in the rotor circuit.
Simulation of starting up of the drive member of a mechanical system is given into [18]. The qualitative characteristic
connecting the torque of the electric motor M, and the engine speed n,,g is shown in Fig.3 [19], where M ;00 ,

Nepgis the rated torque of the electric motor and the rated engine speed. For the mode of acceleration and
deceleration, the relative torque of the electric motor (M eng /M eng 0) fluctuates within insignificant limits with a
change in the relative speed (”eng / Neng 0), (Fig.3). If the engine power Ngyo is constant, the engine speed 7,g
will fluctuate around the rated value 7,4 . Let us estimate the amplitude of the oscillation, which is associated with
the uneven flow of material at the input of the conveyor section. We write the engine power through the traction force
Ti, the radius of the drive shaft » and the rotation speed of the drive shaft:

Neng =Tiro, ©=2mepg -

The change in force 77 occurs due to uneven material receipt

dNeng  dTy do dTy )
=—ro+Tir—=—"ro+T f, ) =0, H=r—».
dt dr Y T a 1y @ fy@O=r dt

Assuming for steady motion £y, (#) =0, the equation takes the following form

Sy
M) do dfy (1) fy (O -
= esMO~S, & <y M(t) = J'([;(]OC +xlo@$)s,
0
Meng 2 /\ [ — — T
— N P
Meng 0 1/: L~ o~
7 N ;
/
AW

1,4 4

’ \
12 }/
1 1

IV AAA T N

0,8

[ A1 ™
0,6 // \__\
oo/
0,2 A
0 Peng

1 0908 0,7 0,6 05 04 03 02 0,1 0 Agpg0

Figure 3. Mechanical characteristic of a phase rotor induction motor

where M (¢) is the total weight of the material with a belt for a separate conveyor section; ¢, is the characteristic

duration of the acceleration or deceleration mode. The maximum change in the mass of the material on the conveyor
section occurs when the material arrives at the maximum intensity at the entrance of an empty conveyor line. In this
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case, the mass of the belt without material is equal to M (¢) = [Z]OC S4, and the intensity of the incoming flow of

material is A(f) < [ ;(] wr . Then

0 max

do_ 1 aM@ A0 Dloma or

M@y d M@ e Sa

Taking into account that

[Z]Omax - [Z]OC > e NL 5

Sa Ty
follows

T

where T, is the time it takes for the material to pass the transportation route. The inequality allows us to formulate an

do o w
<

important result: the uneven flow of material at the entrance of the transport system does not accelerate or decelerate of
the conveyor belt. Uneven material flow leads to the destruction of the conveyor belt as a result of shock loads [20].

DIMENSIONLESS MODEL OF CONVEYOR LINE
Let's introduce dimensionless designations [1, 21, 22]:

t S o) ¥(S) Ty
T=—, 52_7 6, (Z-rf):—a !//(5): s }/(Z’):ﬂ,(t)—, g(T) H (t)
T, d S d 0 [X ]Omax [X]Omax S d [X]Omax v S d
wes) opSy [xloc [xlor 7
W ( 5) - W = > 0 0 T > Vp = s
0t Wmax ax E € [X]Omax R [X]Omax i ET, d
_ Cngm ([X]Omax + [Z]OC )Sd N (Z')I ([X]Omax + [Z]OC )fl// (t)Sd
oy Bh ’ e opBh ’
2
’ BhE (Td j ’ BhE
Ve ' =—"7F1—| —| , C, (9=
£ Delomax +Lxloc (Sa v Leloy @.8) +x)oc
2 2 1+6c 2 2 Or 2 2
VT =vg ?, vy©=vg Vb[“-&(;} Vaf =VyVg :Vf(r)vg ,
Oc Or c (kg +1)exp(kpa)
= = 1+ . = = s T )RR
arn alz(z') vp 1+0C ( + HCJ-I-VJ (T)1+6C . 23] a](T) K12a12(‘[)a K12 eXp(kba)_ks

where v, determines the ratio of the resistance force Cf-g,, ([x] +[7(]0C )Sd at maximum load [;(] to the

Omax Omax

maximum permissible tension force, which ensures the belt break o,Bh; v f is the ratio of the inertia
force ([X]Omax + [Z]OC ) 1/ (1)S; at maximum load [;{]Omax and acceleration f,, (r) to the maximum permissible tensile
force, which ensures the belt break o,Bh; vy =Cy, /(Sd /T, d)is the relative speed of wave propagation, which is
defined as the ratio of the propagation speed of the disturbance wave Cy, to the characteristic speed of the conveyor
belt a pyr = (Sd / Td) The forces Fyy (2-3)> Fy (2-3)> Fw(4-1)> Fy (4-1) taking into account dimensionless

parameters can be written in the form:

Fw (2-3) - Oc +0r Fy (2-3) _ (0) Oc
oy Bh 1+6c opBh S 1vec
1 1
Fy (4— F, (4
w-1) _, fctor J.HO(T’g)dg, v (4 1):Vf(r) o ., J‘%(T;f)dég_
Uth l+l9c 1+9C O'th 1+9C 1+9C
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Then equation (10), which describes the oscillatory processes in the transport system, takes the dimensionless
form

*Wo(r.8) _ 20 Wo(m)  1+0c 2, OMo(@d) 1voc | alvlc
672 £ 52 O@dH+oc FT ae2pr Op(@H+oc f o Oc
1% 1%
+ngv,{_R_—RJ, (13)
Oc  Oy(z.8)+0c

with boundary conditions:

1 1

My(z,9) —a ta exp(kpa) J.QO(T:GE) de—v Or [ explhpa) J.QO(T;EE) e, (14)
06 ey TP explkpa) kg ) ac P 0c | explkpa) — ky ) ac
M@ _am@o|  FwE-)+Fy (1)
¢ sy 08 ey opBh
1 1
ks 0y(z,$) Or kg 0y(7,$)
= dé—1|-vp— dé. 15
“ren (exp(kw)—ks JI oc "o [exp(kw)—ks M oc ()
and initial conditions:
Wy (z,8) _o0, (16)
ot li=o
1 1
Mo (0,8) _ W (0,£)| _vbj‘gc”’R“”(f)dg_v (T)J‘Hcﬂ//(é)dg _
o0& S 1+6c S 1+ 6c
¢ 7=0
1 4 1 <

_ kg v . v .| OrR kg y($) y ()
—a(0)+enz(0 [exr)(kba)—kst fc “ 1+§+I fc “le fc (eXp(kba)—ksM fc d§+j fc @
0

0 0 0
(17

ANALYSIS OF THE SOLUTION FOR LOW-LOADED CONVEYOR LINES
Let us consider a solution for the case of initial conveyor movement when the conveyor line is low loaded. The
specific density of the material along such conveyor lines is low compared to the specific gravity of the conveyor belt

Op(z,6) <<bOc,  y(5)=6p(0,5)<<bc.

Taking into account this assumption, equation (13) takes the form
2 2 3
oW oW o W
o(faf):wz 0@  ,20W(@s) | 2

1 —viTaa(7) (18)
072 0&? T ag2er
with boundary conditions:
%‘ —ai (), T —a@-an,
g £=1 ¢ £=0
and initial conditions:
Mow) -, T o1 0) - a1 &),

ot

£=0 o5
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During the initial movement of the conveyor belt, three characteristic phases should be distinguished: a) the period
of time of the initial start-up, when the conveyor belt from a state of rest turns into movement along the entire route; b)
the phase of the formation of a static force, along the conveyor belt; c) the phase of acceleration of the conveyor belt to
the rated speed. Let us dwell on the analysis of the last phase of the start of the conveyor belt. The phase of acceleration
of the conveyor belt to the nominal speed is characterized by a quasi constant value of the traction torque (Fig.3), [19]
and a quasi constant value of the acceleration of the elements of the conveyor belt. In this regard, the function v ¢ (7)
will be assumed to be slowly varying during the characteristic time of the acceleration process ¢, .

Let us choose the solution to the equation in the form
Wo(z,8) =Woo(z,5) +Wo1(7,5) .

Let us represent a function Wy(z,&) as

Wo1(,E) = A(D)E2 + B(r)E + Coy -

where C;is an unknown constant. We define the coefficients A(r), B(zr) in such a way as to ensure the presence of
boundary conditions for the function W (z,&) in the form

OWoo (7,$) Woo 5)‘ o Moo (t,£) _Wo(t,8) — Wo1(t.6)
% e '

0¢ L:l

=0,
oF oF oF

This implies the conditions for determining the coefficients A(7), B(r)

Moo (z,6)|  _ W6  _ IWoi(z.9)

S P o6 sy ey = () (T)—2A(r)§—B(r))§:1 =a1(r) - 24(t) - B(r) =0,

Moo@ 8| _Wp@dl W9
o ey 0% e % e

=(e1(2)~a21(2) 2406 = B(0)) oy = 21 (1) =121 (2) = B(2) =0.

From the solution of the system of equations it follows

A(r) = “2;_(”, B(D)= a1 (r) a1 (7).

aj(7)

. £2 +(a1(0) a1 ())E + Coy -

Wo(z,8) =Wyo(7,8) +

Substitution Wy (7,¢) into (18), an equation for Wy (7,&) is obtained

Mo@8) _, 2008, 2 53W00(Ta§)_d20612(f)(§2 1]_d2a1(r) Ervn

2 dayp (7)
2 2 "1 2 2 |2 2 I (19)
or o0& o&“or dr dr v

2

with boundary conditions:

aWoo(f,f)‘ 0 aWoo(r,eﬁ)‘ o
% oy ’ I P
and initial conditions:
Wo@.d)|  __depp@| (&2 .| _da@)] Mo (©0.8) _
or | dr | .ol 2 dr | _o”" o0&

a) the acceleration of the conveyor belt is absent or constant v ¢ (r)=v 0 =const.
If the acceleration value is constant or absent, then by definition a5 (7) it follows

day(@) _, d*a(7)
dr ’ dr?

0
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and equations (19) take the form
2 2 3
oW 0“Wyo (7, oW ,
00(7,¢) 2 (e 20 W)

; (20)
072 02 T a2
Moo (7, f)‘ 0. M@ _,
0 oy o6 o
M@ _, M0 (0.9) _
or o o '

Let's represent the solution to the problem (20) in the view

[e0)
Moo (7.6)= Y T (), (2).
n=0
Using the boundary conditions for solving the problem, the solution is written as

Woo(r.)= ) Tle)eos(me).

n=0
this implies

2
d°T,(r) dT, (z)
—"2+(7zn)2v,7v12;—+(7zn)2V12Tn(z')=0.
dr v

Let us search a solution to the equation in the form 7, (7) = exp(pnz-). Substituting 7, (z) into the original
equation, carrying out the differentiation and after cancellation by exp( pnr), the equation is obtained, that determines
the parameter p,,

2 2
Pn” +2ypppto,” =0,

yn=—lmwn) ==L, o =(mn )

2 2
Pn12="Tn NV —@y" .

Of particular interest in the analysis of conveyor-type transport systems is the case 0 <y, < w,

Pn12="Ynti0p,, @Opn =\NPn ~7n
Let's represent the solution as
Ty(z)=Cip exp(pn IT)"' Con exp(pn 27)’
and determine the constants of integration from the initial conditions
Pn1Cin + Pn2C2, =0, Cin +C2y =0.

Thus, if there is a constant acceleration of the conveyor belt under the considered boundary and initial conditions,
there are no oscillations in the belt.

b) the acceleration of the conveyor belt is linearly dependent on time v f (r): Vio+VeIT.

With a linear dependence of acceleration on time

dapp() _, ~ bc d*ayy(7) 0
- fl b - E
dr 1+0C de
equation (19) takes the form
P8 _ 2 W(.8) 2 PWeo(nE) 5 6
> 22 =y 3 ==+ vy > =V TV f , 21
or o& o&%or 1+6c
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Moo (7, é)‘ 0 Moo(z.9)|  _,
o6 o 06 lewo
Moo(7,€) oc | & Mo (0,€)
= D, ‘5——§+K12§ 005020,
| 1+0c o&

Let us search a solution to the problem in the form of an expansion in a Fourier series in &

o0
Woo(z.8) =Ty (z)+ ZTn (z)cos(mé),
n=1
considering 7 as a parameter. To find Wy (7,¢&) we define the functions T, (r) Let us write the initial conditions in

the form of Fourier series:

1
o0
Wop(z.¢) —a—O+Za cos izn§ ay, =2JM cos(;zné)dcf.
or =0 2 or =0
n=1 0
Let's define the coefficients a,,
6 K 1 6 1 -1)" -1
ag :—2Vf1 c |22 - R ay, _2Vf1 C > + K12 ( ) > .
1+6c\ 2 3 1+6¢ (m) (,m)
substitute the expected form of the solution Wy (7,<) in (21)
2
d TOZ(’ —vnv i, (22)
dr 714+ 6¢
T
75(0)=0, d O(O)__ Oc (Kpp 1 ’
dr 1+6c\ 2 3
2
G +V,7V12(7m)2 dT”(T)+v12(7m)2Tn(r):O, (23)
dr? dr
[— n -
dTn(O) _2Vf1 0(: +K12( 1) ! , Tn(O):O
dr 1+6¢ ( )2 (,m)2
The solution to equation (22) has the form
Oc 272 (Kpp 1
Tolz)=vys — === . 24
o() V/llwc{vnw 2 ( ) 3f (24)

Let's search for the solution to equation (23) in the form 7, (r):exp(pnr). Substituting 7, () into (23),

differentiating and cancelling by exp( pnr), we obtain the equation that determines the parameter p,,
2 2
Pn” +27npn +@p~ =0,
Vi 2

Vv
Vn :777(”"‘/1)2:70)11 , a’nZZ(”nVl)z-

Consider the form of the solution for the case 0 <y, <®,

Pn12="VnTip,, Dpn =\Nn ~7n
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The solution to the equation is searching as
T, (r)=Cyy exp(p,, IT) +Cop eXp(Pn 27) >

the integration constants are determined from the initial conditions

Pu1Cin + Pn2Con =-2v 1 fc ! + K12 (—1)”—1 Clp+Co, =0.
nl1%1n n n f 1+06c ( )2 ( )2 > n n
wherefrom:
Vel 6, 1 -1)" -1
Cion =Fi /1 6fc +K12( )

a)pn 1+ HC (7271)2

(m)?

After simple transformations, the solution can be represented as

(-1)" -1
(m)?

This allows us to write the solution for the equation (18). The obtained solution makes it possible to determine the
voltage value in the conveyor belt along the transport route

v
Tn(r)ze_ynrsin(a) MR +K1o

pnr/wpn (l + ‘9C) (7271)2

6W06(;’, S) _ _Ze—ynr sin(wpnf):)‘—; (1_f‘C9C) $+K12 (_(17);_)_1 sin(mé)+ a2 (1) + a1 (v) —ayp (1) .

n=1

Over time, the amplitude of fluctuations in the magnitude of dynamic stresses decreases exponentially, so that after a

time of the order of several r, ~—, the oscillations completely damp out. The decay time of oscillations is inversely
7n

proportional to the square of the circular frequency of oscillations 7, ~ a)n_z .

CONCLUSION

Changing the acceleration mode of the conveyor belt of the transport system is one of the sources of dynamic
stresses along the conveyor belt. At the same time, the mechanical properties of composite materials that are used
for the manufacture of conveyor belts have a significant effect on the occurrence of elastic vibrations and their
propagation. The use of composite materials with mechanical properties corresponding to the Kelvin-Voigt model
of an elastic element ensures damping of the resulting elastic vibrations. The paper investigates two modes of
acceleration of the conveyor belt: constant acceleration mode and acceleration ramping over time. It has been
demonstrated that the mode of movement of a conveyor belt with a linear change in the magnitude of acceleration
in time is the cause of the occurrence of dynamic tensions. The damping rate of vibrations is proportional to the
viscosity of the elastic element and the square of the vibration frequency in the transport system. The magnitude
of the generated dynamic tensions is determined by the amplitudes of the oscillations of the first harmonics.

During the characteristic time of change r; ~}/1_1, the amplitude of oscillations for » =2 will decrease by

e ~0.5.10 times, for n=3 will decrease by ¢? ~10* times. The system exhibits low-frequency oscillations of

the first harmonics with a characteristic dimensionless time 7, ~ }/n_l of variation of the oscillation amplitude

and, therefore, the oscillation energy. The use of composite materials with a high value of the viscosity coefficient
ensures attenuation of the arising dynamic stresses, which increases the reliability and durability of the
functioning of transport systems.

ORCID-IDs
Oleh M. Pihnastyi, https://orcid.org/0000-0002-5424-9843; |Valery D. Khodusoyv,

https://orcid.org/0000-0003-1129-3462




108
EEJP. 4 (2020) Oleh M. Pihnastyi, Valery D. Khodusov

REFERENCES

[1] O.M. Pihnastyi, and V.D. Khodusov, East European Journal of Physics, 1, 121-136 (2020), https://doi.org/10.26565/2312-
4334-2020-1-11.

[2] O.M. Pihnastyi, and V.D. Khodusov, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSUMMCS), 10, 67-77 (2017), https://doi.org/10.14529/mmp170407.

[3] OM. Pihnastyi, Scientific bulletin of National Mining University, 4, 104-111 (2017),
http://nbuv.gov.ua/UJRN/Nvngu 2017 4 18.

[4] DIN 22101:2002-08. Continous conveyors. Belt conveyors for loose bulk materials. Basics for calculation and dimensioning.
[Normenausschuss Bergbau (FABERG), DIN Deutsches Institut fiir Normung e.v. Normenausschuss Maschinenbau (NAM)],
(2002), pp.51.

[5] Ju. Razumnyj, A. Ruhlov, and A. Kozar, Mining Electromechanics and Automation, 76, 24-28 (2000).
https://docplayer.ru/64655888-Povyshenie-energoeffektivnosti-konveyernogo-transporta-ugolnyh-shaht.html

[6] M. Alspaugh, in: MINExpo-2004, (New York,Las Vegas, NV, USA, 2004), pp. 17-27 (2004), http:/fliphtml5.com/pfyf/pccg/basic.

[71 SIMINE for conveyors. Siemens. (2020), https://new.siemens.com/global/en/markets/mining-industry/transport/conveyor-
systems.html

[8] R. Pascual, V. Meruane, and G. Barrientos, in: XXVI Iberian Latin-American Congress on Computational Methods in
Engineering (CILAMCE-2005, Santo, Brazil, 19th-21st October 2005), Paper CIL0620, (2005), pp.1-15,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.494.34&rep=rep 1 &type=pdf

[9] L.K. Nordell, Z.P. Ciozda, Bulk Solids Handling, 4(1), 99-104 (1984),
http://www.ckit.co.za/secure/conveyor/papers/troughed/transient/transient-belt-stresses.htm

[10] X.Li.J. Pang, and Z. Kou, Shock and Vibration, 1(1-6), 769309, (2015) http://downloads.hindawi.com/journals/sv/2015/769309.pdf

[11] T.Mathaba, and X. Xia, Energies, 8(12), 13590-13608 (2015), https://doi.org/10.3390/en81212375

[12] G. Yang, Sensors and Transducers, 181(10), 210-218 (2014), https://www.sensorsportal.com/HTML/DIGEST/P_2492 htm.

[13] Yan Lu, Fu-Yan Lin and Yu-Chao Wang, Journal of Theoretical and Applied Mechanics, 45(3), 53-68 (2015),
https://content.sciendo.com/view/journals/jtam/45/3/article-p53.xml

[14] Sanjay G. Sakharwade, Shubharata Nagpal, International Journal of Mathematical, Engineering and Management Sciences,
4(5), 1169-1179 (2019), https://dx.doi.org/10.33889/IIMEMS.2019.4.5-092

[15] P. Kulinowski, Archives of Mining Sciences, 59(1), 123-138 (2014), DOI  10.2478/amsc-2014-0009
https://journals.pan.pl/dlibra/show-content?id=93449&/simulation-method-of-designing-and-selecting-tensioning-systems-for-
mining-belt-conveyors-kulinowski-piotr?language=en

[16] M. Manjgo, E. Piric, T. Vuherer, and M. Burzic, Annals of the Faculty of Engineering Hunedoara, 16(1), 141-144 (2018).
http://annals.fih.upt.ro/pdf-full/2018/ANNALS-2018-1-22.pdf

[17] V.V. Degtjarev, Hopmuposanue monmugHo-sHEPeeMUUECKUX PeCypco8 U pecyiuposaHue pelicuMos 3HEpeOnompedneHus.
[Rationing of fuel and energy resources and regulation of energy consumption modes], (Nedra, Moscow, 1983), pp. 225,
http://www.xn--80affsqimklSh.xn--plai/_1d/7/735 _-.pdf. (in Russian)

[18] S. Gramblicka, R. Kohar, and M. Stopka, Procedia Engineering, 192, 259-264 (2017). https://doi.org/10.1016/j.proeng.2017.06.045

[19] A.O. Spivakovsky and V.A. Dyachkov, Tpancnopmusie mawunst [ Transporting machines), (Mechanical Engineering, Moscow,
1983), pp. 487. (in Russian)

[20] B. Karolewski, and D. Marasova, Maintenance and reliability, 16(2), 229-235. (2014),
http://www.ein.org.pl/sites/default/files/2014-02-09.pdf

[21] N.A. Azarenkov, O.M. Pihnastyi, and V.D. Khodusov, Reports of the National Academy of Sciences of Ukraine, 2, 29-35
(2011), http://dspace.nbuv.gov.ua/handle/123456789/37227.

[22] O.M. Pihnastyi, Problems of Atomic science and technology, 3, 322-325 (2007),
http://dspace.nbuv.gov.ua/handle/123456789/111018.

TIZIPOAAHAMIYHA KELVIN-VOIGT MOJEJbh TPAHCIIOPTHOI CHCTEMH
O.M. Hiruacruii®, B.JI. Xoxycos”
“Hayionanvnuii mexniunuil ynisepcumem «XI1y», 61002
Vkpaina, m. Xapxis, eyn. Kupnuuesa, 2
b Xapriecoxuii nayionansnuil ynisepcumem iveni B.H. Kapasina
61022, Yxpaina, Xapxie, m. Céoboou, 4
PosrnsinyTo rigpoannamiuna Kelvin-Voigt Moziens BUpOOHHUYHX CHCTEM 3 MOTOKOBHM METOJOM OpraHi3arii BUpoOHUIITBA. Bu3HaueHO
OCHOBHI MakpoIlapaMeTpy CTaHy BHPOOHHMYOI JIiHIi i B3a€EMO3B'3Ky MK HUMH. [IpeicTaBneHMil aHai3 OCHOBHHX XapaKTEPUCTHK
Mojeneil IpyKHUX eJIEMEHTIB, sIKi BUKOPHCTAHI I aHaJli3y BUHUKHEHHS TUHAMIYHUX HAIpPYKEHb B PYXOMiil KOHBEEpHIH CTpidIli.
CdopmynboBaHO KpaloBy 3amady /Uil TPYXKHHX [O3JOBXHIX KOJMBaHb B KOHBEEPHIH CTpIYIi 3 pPyXOMHM MarepiaioMm.
TlepenbauaeTnest, mo nedopmarist eleMeHTa CTpiuky KoHBeepa Binnosigae Kelvin-Voigt Mozemni i KOB3aHHS pyXoMOTo MaTepialy Mo
cTpiuy BincyTHid. [Ipn BU3HAUCHHI CHII OIIOPY PYyXY, MFOYHX HA OJUHUYHHHN EJIEMEHT CTPIUuKH, BUKOpUcTaHi pekoMenaanii DIN 22101:
2002-08. Ilpoeneno ananiz Kelvin-Voigt moneni NpyXHOro ejxeMeHTa 1 IPONEMOHCTPOBaHI BigMiHHI pucu Mozenmi. JlaHo
obrpyuryBants Bubopy Kelvin-Voigt Mozerni npyKHOTro enemMeHTa Julsi ONUCy IPOoLecy BUHUKHEHHS MPYKHHUX MO3I0BKHIX KOJIUBaHb B
KOHBeepHiit crpiuri. OmiHeHa 3aJeXHICTh HEPIBHOMIPHOTO HAIXOMKEHHS MOTOKY MaTepiaidy i BElMYMHM HAMpyXeHb B CTPIYLi.
3amucaHo BUpa3 U MIBUIKOCTI PO3MOBCIOKCHHS 30ypeHb B3IOBK PYyXa€ThCsi KOHBEEPHOI CTPIUKM 3 MarepiajoM. BusHaueHO
MPUYUHA TIPUCKOPEHHS 1 TaJbMyBaHHS KOHBEEPHOI CTPIYKM, TMOB'S3aHi 3 HEPIBHOMIDHMM HAAXOMKEHHAM MaTepialy Ha BXil
TPaHCIOPTHOI cucTeMH. IIpOJIEMOHCTPOBAHO 3B'S30K MDK IIBHJKICTIO PyXy KOHBEEPHOI CTPIYKH 1 Macor MaTepially y3IOBXK CeKIii
koHBeepa. [lokazaHo, m0 30UTBIIEHHS IOTY)KHOCTI €JIEKTPOJBHTYHA IIPH CTAapTi i NPHCKOPEHHI KOHBEEPHOI CTPIUKM, a TaKOXK
3MCHIIICHHS TTOTYXHOCTI TIPH TJIbMyBaHHi 1 3yNHHI[ KOHBEEPHOI CTPIYKH € MPUYMHOI BUHHKHEHHS B Hill JMHAMIYHHX HAIPy>KCHb.
AHaJI3YI0ThCS XapaKTepHi (pa3u IOYAaTKOBOTO PyXy KOHBEEPHOI CTPIYKH 3 MaTepianoM. JIOCIiKEHO MpoLec BUHUKHEHHS AHHAMIYHHIX
HaIpy)XeHb 3 MOCTIHHUM 1 3MIHHUM MIPUCKOPEHHSIM KOHBEEPHOI CTpiuky uist (a3 pO3roHy i ranbMyBaHHsS KOHBEEPHOI CTpiuku. Jst
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aHaJTi3y BUKOPUCTaHa MOJIeIb KOHBEEPHOI JIiHIT B 6e3po3MipHOMY BHUIIIsLl. OTprMaHO BUpa3 Ul CTATHYHHX 1 AMHAMIYHUX HAIpY>KeHb
B KOHBeepHii crpiumi. OuiHeHa aMIUTiTy/[a KOJMBaHb AMUHAMIYHHX HAIPYXXEHb 1 XapaKTepHHUl Yac 3aracaHHs KOJIMBaHb B KOHBEEPHIi
crpiuwy. [IpoieMOHCTPOBAHO KBapaTHYHA 3aJISKHICTh IBUAKOCTI 3aracaHHs XBUI JUHAMIYHUX HAMPYXKESHb 31 301IbIICHHIM YacTOTH
konuBaHHA. [loka3zaHa OOEpHEHO MPONOPILiHA 3aJICKHICTh XapaKTEPHOTO 4Yacy 3aracaHHs BUHHKIM JUHAMIYHHX HANpY>KEHb Bil
BEITMYIMHU KoedillieHTa B'I3KOCTI KOMIIO3HIIHHOTO MaTepiary KOHBEEPHOT CTPIUKH.

KJIIOYOBI CJIOBA: rigpoauHaMiuHa MOZENb TPAHCIIOPTHOI CHCTEMH, JBOX MOMEHTHOE omnmc BHpoOHHITBa, Kelvin-Voigt
Mozenb, 6anaHcoBi piBHsHHs, PDE-Mozens BupoOHuITBa

TAAPOIUHAMHUAYECKAS KELVIN-VOIGT MOJEJIb TPAHCIIOPTHOM CUCTEMBbI
O.M. Murnacrerii®, B.JI. Xoxycos”
“Hayuonanvuvili mexnudeckuu yHusepcumem «XIIH»
61002, Yxpauna, 2. Xapvkos, yi. Kupnuyesa, 2
b Xapvrosckuii nayuonanvuwiii ynusepcumem umenu B.H. Kapaszuna
61022, Yxpauna, Xapvros, ni. Ceo600vl, 4

Paccmotpena runponuHamuueckas Kelvin-Voigt Mopmens HpPOU3BOACTBEHHBIX CHCTEM C IOTOKOBBIM METOIOM OpraHH3aluH
npousBozcTBa. OmnpeeneHbl OCHOBHBIE MakKpoNapaMeTpbl COCTOSHHS NPOU3BOJICTBEHHOH JIMHMM U B3aUMOCBSA3U MEXIY HUMH.
IlpencraBneH aHanM3 OCHOBHBIX XapaKTEPUCTUK MOJENEH yNPYyrux 5SIEMEHTOB, KOTOpBIE HCIONB30BAHbl JUIS aHANU3a
BO3HMKHOBEHHMS JIMHAMHYECKHMX HAIPSDKEHUH B ABIDKYLIelics KoHBeiepHo nente. ChopMyinpoBaHa KpaeBas 3aja4a 1Js ynpyrux
MPOJONIBHEIX KoJIeOaHN B KOHBEHEPHOH JICHTE ¢ ABIDKYIIUMCS MatepuanoM. [Ipenmonaraercs, 9to aedopMariis 31eMEeHTa JISHTHI
KoHBeliepa coorBercTByeT Kelvin-Voigt Momenn H CKONBXKEHHE IBIDKYLIETOCS MaTepuana Io JIeHTe OTCyTcTByeT. [lpm
OIpEJCIICHUU CUJI CONPOTHUBIICHUS IBIXKCHUIO, ICHCTBYIOIMIMX HA CIUHUYHBIA 2J€MEHT JICHThI, UCIONb30BaHbl pekoMeHaanuy DIN
22101: 2002-08. IIpoBemen amamu3 Kelvin-Voigt Mojenu ympyroro sjieMeHTa ¥ IPOJEMOHCTPUPOBAHBI OTIMYUTEIBHBIC
ocobenHoctH Mozend. JlaHo oGocHoBanue BblOOpa Kelvin-Voigt Mozenu ymnpyroro sieMeHTa I ONMCAaHMS IIpolecca
BO3HUKHOBEHHS YNPYTUX IPOAOJBHBIX KosieOaHUi B KoHBeiiepHOH sieHTe. OleHeHa 3aBUCHMOCTh HEPaBHOMEPHOTO ITOCTYILICHUS
[IOTOKA MaTepuaja U BEJIMUYMHBI HANPsDKEHUN B JIEHTE. 3allUCAaHO BBIPAXKEHUE VISl CKOPOCTU PACIPOCTPAHEHUs BO3MYLIEHUH B1OJIb
JBIDKYLIEHCS KOHBEHEpHOW JeHThl ¢ MarepuanoM. OmpenesieHbl MPUYMHBI YCKOPEHHS M TOPMOXKEHHMS KOHBEHEPHOH JIEHTHI,
CBSI3aHHBIE C HEPABHOMEPHBIM MOCTYIUIEHHEM MaTepuaja Ha BXOJ TPAHCIOPTHOH cucteMsl. IIpogeMoHCTpHpoBaHa CBSI3b MEXIY
CKOPOCTBIO JABM)KEHUSI KOHBEHEpHOH JIEHTHI M Maccoll MaTtepuaia BIOJb CEKIMM KoHBelepa. [lokazaHo, YTO yBeJIMYEHHE MOLIHOCTH
SIIEKTPOIBUTATENS TIPH CTAPTE U yCKOPEHHN KOHBEHEPHOM JIEHTHI, a TAakke YMEHBIIIEHHE MOIHOCTH IIPH TOPMOXKCHUH U OCTAaHOBKE
KOHBEHEPHOI JICHTHI SIBJISICTCS IPUYUHON BOSHIUKHOBEHHMS B HEH AMHAMHYECKUX HANPSDKCHHH. AHAIN3UPYIOTCS XapaKTepHbIe (a3bl
HAYaJIbHOIO JIBU)KEHMS KOHBEHEpHOH JEeHTHI ¢ MaTepuanoM. MccienoBaH mpouecc BOSHUKHOBEHHS AMHAMUYECKUX HAIPSKEHUH
MOCTOSIHHBIM M TIEPEMEHHBIM YCKOPEHHEM KOHBEHEepHOW JIeHTHI /Ui (a3bl pa3roHa M TOPMOXKCHUsI KOHBEHepHOW JeHTHL I
aHain3a WCIONB30BaHa MOJEIb KOHBEHepHOW JMHMHM B Oe3pasMepHOM Buje. [lodydeHO BBIpaKEHHE JUI CTATHYECKUX U
JTUHAMHYECKHX HAaNpsOUKEHUH B KOHBeiepHOH neHTe. OLeHeHa aMIUTUTYAa KojdeOaHui JUHAMHYECKUX HANpsDKEHUH M XapaKTepHOe
BpeMs 3aTyXxaHus KojeOaHHWM B KOHBeWepHOW neHre. IIpomemMoHCTpupoBaHa KBaJpaTHYHAs 3aBUCHMOCTb CKOPOCTH 3aTyXaHUS
BOJIHBI AWHAMHYECKUX HANPSDKCHUH C yBEIMYEHHEM YacTOThl KoieOaHms. [lokazaHa oOpaTHO NMpomopnuOHATbHAs 3aBHCHMOCTH
XapaKTepHOTO BPEMEHH 3aTyXaHHS BO3HMKIINX JWHAMHYECKHX HANPSHKEHWH OT BEIMUYMHBI KOI(QQUIMEHTa BSI3KOCTU
KOMIIO3ULIMOHHOI'O MaTepuana KOHBEHepHOH JICHTBI.

K/IIOYEBBIE CJIOBA: ruapoavHamMuyeckas MOJENb TPAaHCIOPTHOH CHCTEMBI, JBYX MOMEHTHOE OIMCaHHE IPOU3BOJCTBA,
Kelvin-Voigt monenb, 6anancossie ypaBHenusi, PDE-mozens npousBoacTsa



