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Relaxation of the electron energy and momentum densities is investigated in spatially uniform states of completely ionized plasma in
the presence of small constant and spatially homogeneous external electric field. The plasma is considered in a generalized Lorentz
model which contrary to standard one assumes that ions form an equilibrium system. Following to Lorentz it is neglected by
electron-electron and ion-ion interactions. The investigation is based on linear kinetic equation obtained by us early from the Landau
kinetic equation. Therefore long-range electron-ion Coulomb interaction is consequentially described. The research of the model is
based on spectral theory of the collision integral operator. This operator is symmetric and positively defined one. Its eigenvectors are
chosen in the form of symmetric irreducible tensors which describe kinetic modes of the system. The corresponding eigenvalues are
relaxation coefficients and define the relaxation times of the system. It is established that scalar and vector eigenfunctions describe
evolution of electron energy and momentum densities (vector and scalar system modes). By this way in the present paper exact close
set of equations for the densities valid for all times is obtained. Further, it is assumed that their relaxation times are much more than
relaxation times of all other modes. In this case there exists a characteristic time such, that at corresponding larger times the evolution
of the system is reduced described by asymptotic values of the densities. At the reduced description electron distribution function
depends on time only through asymptotic densities and they satisfy a closed set of equations. In our previous paper this result was
proved in the absence of an external electric field and exact nonequilibrium distribution function was found. Here it is proved that
this reduced description takes also place for small homogeneous external electric field. This can be considered as a justification of the
Bogolyubov idea of the functional hypothesis for the relaxation processes in the plasma. The proof is done in the first approximation
of the perturbation theory in the field. However, its idea is true in all orders in the field. Electron mobility in the plasma, its
conductivity and phenomenon of equilibrium temperature difference of electrons and ions are discussed in exact theory and
approximately analyzed. With this end in view, following our previous paper, approximate solution of the spectral problem is
discussed by the method of truncated expansion of the eigenfunctions in series of the Sonine polynomials. In one-polynomial
approximation it is shown that nonequilibrium electron distribution function at the end of relaxation processes can be approximated
by the Maxwell distribution function. This result is a justification of the Lorentz-Landau assumption in their theory of
nonequilibrium processes in plasma. The temperature and velocity relaxation coefficients were calculated by us early in one- and
two-polynomial approximation.

KEYWORDS: plasma, generalized Lorentz model, relaxation coefficients, collision integral operator, spectral theory, one-
polynomial approximations, functional hypothesis.

INTRODUCTION

This paper is devoted to the investigation of relaxation processes in completely ionized plasma. It is meant
nonequilibrium processes that can be observed in spatially homogenous states of a system. Near the equilibrium they
describe the so-called kinetic modes of the considered system. Taking into account relaxation processes in theory of
spatially non-uniform states is the next step after their investigation for spatially uniform nonequilibrium states. From a
different point of view taking into account relaxation processes is extension of set of parameters that describe
nonequilibrium state (reduced description parameters). This is the main trend in theory of nonequilibrium processes.
Some important examples are given by the extended irreversible thermodynamics [1], a theory with nonequilibrium
correlations of the standard reduced description parameters as additional independent ones (see, for example, [2]), a
theory of nonequilibrium states in the vicinity of the standard ones (see, for example, [3]).

In the present paper plasma is considered in the generalized Lorentz model, in which electron-electron interaction
is neglected and the ion subsystem is assumed to be an equilibrium ideal gas. In the standard Lorentz model [4] the ion
subsystem is a system of hard spheres in the rest. The generalized Lorentz model is based on the Landau kinetic
equation [5] (see also in [6]) and, therefore, takes into account peculiarities of the Coulomb interaction. It was
introduced in our paper [7]. The same model is discussed in [8] on the base of the Boltzmann kinetic equation.

In plasma states with different component temperatures their relaxation is observed. For the first time the problem
of equalizing the electron and ion component temperatures in plasma was investigated by Landau [5] (the component
velocity relaxation is considered analogously in [9]). His research was based on the mentioned kinetic equation [5] and
shows that temperature relaxation process is slow one because big difference electron and ion masses. In his
investigations (see additional examples in [10]) he assumed without proof that the plasma components quickly become
equilibrium and are described by the Maxwell distribution functions. This assumption belongs to Lorentz and was
introduced by him in his theory of transport phenomena in metals [4]. Fundamental investigation of the plasma
hydrodynamics on the same basis belongs to Braginsky [11]. Similar problem for electron-phonon two-component
system was discussed by Bogolyubov and Bogolyubov (Jr.) in their research [12] on the polaron theory. They
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considered solution of the kinetic equation for polarons interacting with equilibrium phonon system using the Maxwell
distribution with macroscopic velocity as a good approximation for the polaron distribution function.

In fact the mentioned assumption is unfair because the Maxwell distributions for electrons and ions with different
temperatures and macroscopic velocities are not solution of kinetic equations for all models of the plasma dynamics.
Therefore, the main problem of the theory is to find the main approximation for electron and ion distribution functions
of plasma with two component temperatures and velocities. This problem is related to the absence of a small parameter
in the theory of relaxation. An approach to solution of this problem was proposed by us with the idea to investigate
relaxation processes in the vicinity of standard described nonequilibrium processes (equilibrium states included) [3]. An
important example is our investigation of the two-fluid plasma hydrodynamics in the vicinity to one-fluid one [13] (see
also a review [14]).

Our previous investigations of nonequilibrium processes in plasma (for example, in [13-15, 16]) are primarily
based on the Bogolyubov idea of the functional hypothesis (its consistent and complete discussion see in [6]).

According this one plasma component distribution functions fap(x,t) (a 1is component number) after some

characteristic time 7, depend on time only through the asymptotic values ﬁf;’) (x,2) of some parameters &, (x,7) (u
is parameter number)
f,)——f 0, & xD——E(x0), £ (x,0) =1, (x, (1)), (1)

t>>7 t>>7,

which are called the reduced description parameters. Here f,,(x,&)is some functional of the functions&,(x).
Asymptotic distribution function fé; )(x,f) is exact (as well f,,(x,2)) solution of kinetic equation which describes

evolution of the plasma. Parameters §fl+) (x,t) describe states of the plasma and satisfy a closed set of equations of the

form

0,00 (x,t) = L, (x,EM (1)) )

where L, (x,&) is some functionals of the functions &, (x) . The Bogolyubov idea of the functional hypothesis is basis

of his method of the reduced description of nonequilibrium systems. In these terms according above discussion the main
problem of the relaxation phenomena in plasma investigation is to find the distribution function fap (x,&) in spatially

uniform states.

Contrary to our mentioned papers [13-16], which are based on the Bogolyubov method of the reduced description
on nonequilibrium states, the present paper develops kinetics of the system through elaborating the spectral theory of
the collision integral operator without assumption that relaxation processes are considered at its completion. This is
possible because the plasma is considered in the generalized Lorentz model [7] in which kinetic equation for electrons
is a linear one and ions form an equilibrium system. In this approach the relaxation phenomena in plasma are discussed
for spatially uniform states in our papers [17, 18] and exact distribution function is found in the terms of scalar and

vector eigenfunction A > Bp P, of the collision integral operator. These eigenfunction are calculated by the method of

truncated expansion in the Sonine polynomial series. The paper [17] discusses this problem for the case of the presence
constant small spatially homogeneous external electric field with some simplifying assumptions.

The presented paper provides a consequence investigation of the relaxation processes in plasma at small electric
field. Spectral theory of the collision integral operator is discussed in the terms of eigenfunctions that are irreducible
tensors.

The paper is constructed as it follows. In the section "Basic equations of the theory" the generalized Lorentz
model is formulated following to [7] and basics of spectral theory of the collision integral operator are presented. The
section "Evolution of energy and momentum densities of the electron system" discusses dynamics of the densities. The
next section "Reduced description of the system by energy and momentum densities" investigates long time evolution
of the system and predicts equilibrium state of the system. The section "Approximate calculation of the main quantities
of the theory" discusses approximate solution of the spectral problem for the collision integral operator.

BASIC EQUATIONS OF THE THEORY
This paper is devoted to the study of relaxation processes in spatially homogeneous completely ionized plasma in
the presence of small external electric field. The plasma is considered in the generalized Lorentz model in which the ion
subsystem is assumed to be in equilibrium and in the state of the macroscopic rest with the temperature 7, . The model

is based on the Landau kinetic equation [5] and was introduced in our paper [7]. The electron kinetic equation of the
model has the form

of (¢
6tfp(t)=—]?;#()+]p(fp,(t)), (F,=—ek , Id3pfp(t)=n) 3)

n
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with collision integral given by the formula

I (f Y=—/I| D L4 £ f
() ap{ nl(p>[apl+m% ﬂ “

n

where function D, (p) is defined by expressions

4 2 3 p p 2 3
D,/(p)=2re’z Ljd PWySy (;—Hj, Su(w) = W0, —u,u)/u. ®)
Here L is the Coulomb logarithm, —e is charge of an electron, ze is charge of an ion, £, is homogeneous constant
electric field. Hereafter electron and ion equilibrium distribution functions are written as

pZ p2

ComT, _ n, CoMT,
e o, I (w,)=0; W, =E—————5¢€ 0 (6)
o (%) P QaM T,)Y?

n

W =———>
p (Zﬂ_mTO)3/2

(n, n, are electron and ion component number of particles densities; m , M are electron and ion masses).

It is convenient to conduct the research of the considered system using the collision integral operatorl% given by
the formulas [7]

Ka,=w'I (w.a Ka, =- o _»n D,/( )% 7
p = Wp Lp\Wpdp)s P ap, mI, "lpap, (7

(hereafter arbitrary real functions are defined by a,,, b > ---)- In the term of scalar product
(a,.b,)= Id3pwpapbp =(a,b,) ((a,)= Jd3pwpap ) (3

linear operator K is a symmetric and positively defined one. Therefore, its eigenfunctions g;, and eigenvalues A

. 9
Kgip = ﬂ'igip ( )
have the properties
li >07 (gi’gi’)zbié‘ii" <glp>:0 (10)

(b, are normalization constants). In this paper eigenfunctions g;, are chosen in the form of symmetric irreducible

tensors multiplied by a function of the momentum modulus. The simplest of them are given by expressions

1
Clp)=4,. CP)=B,p1, Cu(P)=Cy (PP =3P 0p)s oo €y (P) e (11)

Convolution of arbitrary two indices of each tensor Cll...l (p)(s=2)is equal to zero.

Instead of distribution function f , itis convenient to introduce new one g, and rewrite the kinetic equation (3) in
its terms
ow (1+g)
P P
F,

1 it
o, w, +Kg, (12)

f,=w,(+g,), 0Jg,=-

to simplify investigation of the small electric field case. Solution of this equation can be sought, following to our paper

[17], in the form of a series in eigenfunctions g, of the operator K

g,(=2.¢(g, (13)
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In the absence of the electric field this solution is given by relation

gLO) = zci()gipeitﬂf > 4 =1/7, (14)
where the coefficients ¢, are defined by initial value of the distribution function f,(z=0). Each term in this formula

describes a relaxation (kinetic) mode of the system (hereafter a'® denotes contribution to a quantity a in the absence
of the electric field). Eigenvalues A, are called the relaxation coefficients and define the relaxation times 7, of the

system.

EVOLUTION OF ENERGY AND MOMENTUM DENSITIES OF THE ELECTRON SYSTEM
In this paper relaxation processes are investigated which related to electron subsystem energy & and momentum
7, densities that are defined by the formulas
2
_[ 3 _ _[ s _ _pP _3
8=Id pef,=(£,8,)+&, 7r,=fd rf,p,={pg,) (SP=E,€O=§HTO )- (15)
In this connection scalar Ap and vector B , P, eigenvalues and the corresponding eigenvalues Ay, A, are most

important

A

KA, =2;4,, KB,p,=4,8,p, ((4,)=0).

(16)

To these relations the normalization conditions should be added which for the further convenience are chosen in the
form

(A,e,y=3n12, (B,e,)=3n/2. 17)

According to (13), (16) function g, can be written in more concrete form

g,=cd,+¢,B,p + D ag, (18)
i#T ,u;
with understandable notations for the coefficients c¢,. Now expressions (15) for electron energy ¢ and momentum
7, densities give

ﬂl =CT<plAp>+cun<pprpn>+ z c[<plgip>ﬂ 8:80+CT<gpAp>+cun<ngppn>+ Z ci<‘9pgip> (19)

i#Tu; i#T Uy

Taking into account the rotational invariance considerations and conditions (17) gives

3n
7 =mnc,, E=¢, +70T (20)

because
<plgip>=0a <‘9pg[p>:0 (l;éT,l/l) (21)

Note, to explain these identities that tensors (p,g;,) and (&,g;,) with i#T,u are expressed only through sums of

the Kronecker delta of the type d,, products. Convolution of arbitrary two indices of each irreducible tensor is equal to
zero and therefore averages in (21) are equal to zero.
Let us derive time equations for the densities & , 7, . Kinetic equation (3) and definitions (9), (12), (15), (16), (18)
after integration by parts give the next time equations for the momentum density 7,
0,m =nF,—(pKg,) = nF, —c;(pKA,) —c, (pKB,p,) + D c(pKg,)=

T u;

=nk)—c Ar <plAp> —Cy, Ay <pprpn> + z ci/li<p1gip> >

=T Uy

(22)
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and for the energy density &

1 g 1 A A A
0,6= ;;le, —(¢,Kg,) = ;ﬂ'lF] —cy(e,KA,)—c, (¢,KB,p)+ Y c(&,Kg,) =
iTu;

(23)
1
=;;le, —cpA(e,A4,)—¢, A,(&,B,p,)+ > cA(€,8,) -

i#T u;

are obtained. The rotational invariance considerations, formulas (16), (17), expressions (20) and identities (21) give
final form of these equations

1
atﬂ-l :nlrl_ﬂuﬂ.l’ Gtg:;ﬁlﬂ_/lT(g_gO)' (24)

The obtained equations are valid for all times and without assumption that electric field is small.

REDUCED DESCRIPTION STATE OF THE SYSTEM BY ENERGY AND MOMENTUM DENSITIES
Let us discuss state of the system at long times. Here and in our paper [17] it is assumed that characteristic time 7,

with the property
7,7, >>1,>>1, (i#T,u) (25)
exists. Let us prove that at long times the following relation
g, (=g, 0.7 (1) (26)
is true, where gif)(t) , (), 7Y (t) are asymptotic values of the quantities g L), @), m(t):
ety = e, m@o = 00, g0 = “(t) 27)
>>7, >>7, >>

and g, (&,7) is some function. In the situation described by relations (26), (27) the system would be completely

described at ¢ >>7, by parameters e, 7[1(+) (t) because the electron distribution function (12) is expressed at

t >> 7, through parameters e @), 7[1(+) ()
= (+) (+)
fp (t) t>:ro Wp[l + gp (8 (t), T (t))] ) o8)

Parameters ' (¢) 7[,”) (t) according to (22) satisfy exact close equations

1
atﬂ./(Jr) = I’ZE - ;i’uﬂl(+) H atg(ﬂ = Zﬂ/F} - ﬂ’T (g(+) - 50) (29)

According (1), (2), if (26) is true, in the system the reduced description by parameters & (¢) 7[,”) (t) is observed and

the statement (26) expresses the Bogolyubov idea of the functional hypothesis.
In our paper [17] under assumption (25) it was proved that in the absence of external electric field function

g,(&,7) is given by exact expression
(0)(8 m)=(e-¢&))A,2/3n+mB,p, /mn. (30)

In order to investigate possibility of the reduced description in the presence of electric field let us restrict ourselves by
small field. Exact electron distribution function is sought in a series in powers of the field E,

- (0) O 2y .
f,=w,(+g,), g,=g, +8, +0(E"); (31)
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1 1 1 1 1
g _zc( >glp =4, +cBp+ Y C()g,p
i#T u
(1) WD ™ ; : . (0) ) . .
where ¢, w > Ciooare functions of time and have to be found. Functionsg,”, g,” according to (12) satisty

equations

aw ,(1+g)
op,

First of these equations is due to (16), (31) true. The main contribution gfuo) to function g, with arbitrary

0 & (0 1 71 1
0,8 =—Kg, 0,8 = ~Kg. (32)
coefficients ¢, ¢; is chosen in the form (31) that is enough for investigation of the system at ¢ >> 7,, because
A;>> A0, A, (i#T,u) (33)

(see (14), (25)). The second equation (32) with account for normalization condition (10) give set of equations for
' =(g\g,)/b; from (31)

1 —tA ~t A, 1
atcf) =Fi(ase " +bye 4 +cil)_ﬂ'ici( .

functions ¢;

(34)
Here according to (31) after integration by parts the time independent coefficients a;, , b, , ¢,
1o 5 0w, (l+g)) ; og, 1(,0g 9,
——|d p d 1+ (0) p _ L VAN 0) “Sipy | _
; | P g j (1) 2= | (e 2
- a,-le‘”f bhye ey (35)
0, 0, 0,
a,=c(A, g"”)/b by=c,(B,p, g1p>/b e =By
op
are introduced (in [17] this expression wrongly assumed to be constant). Solution of equations (34) has the form
¢V =cVe b a, Fe T —eH) (A= Ap) + by F(e P —eRY (A, = A,) +c,(1—e ) [ 4, (36)

Initial conditions c(l) = c(l)(t =0) for c(l) are not related to the external field and further will be replaced by zero.
According to (25), (33) expression (36) gives

¢V = a,Fe T I (A= Ap)+byFe /(A A v e F LA (i T,

1

>>7,
_ _ —tA
Cg);, —famF,+an,(e e (A, = )+ e (=e T Ay (37)
&) = a, F(e Y Y (g = A) b, B+ F(1-e )] A,
’”t>>

Entering here coefficients are defined by (35). The rotational invariance considerations give

8 8 o,
a; = c(d, g"”)/b —0, by = ¢,(B,p, gzp>/b 20, ¢, = (Zy/p =0;
i#T u p i#Tu p i#Tu ap[
oA oA o4 38
aTlEC<Apa_pj>/bT:O’ bTIECm<Bppma_p>/bT¢0’ CTIE<a_pj>/bT:0; (8)
0B oB 0B
a,, =4, 2y b 20, b, =c,(B,p, ”p”}/b =0, o, =Py /p, 20

P op, P
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(see remark after relations (21)). Therefore, formulas (37) receive the form

oV = bFe M I(A=4)  (i#Tu), o = bRt e ) (4, -2,

1
>> >>

- - (39)
A = a,FieT =) (A =AY+, F-e ) 4,
T >>1 n n
Finally, according to (27), (31) the electron distribution function g, at long times is given by the formulas
gi;f) = c§+)Ap + cl(lj)Bpp, + Z cf”gip ;
i#T,u;
& =ce T by F(e e ) (4, ~ p). o =byFe (A= 4,). (40)

. ~thy - e
Cz(l:) —c e +a, Fe “r_, ’/1:4)/(,1T—,1u)+cun,ﬂ(l—e Y1) 4,

with the accuracy up to the first order in the electric field contributions included. It is interesting to note that here
secular terms grooving with the time are absents. Relations (37) show that without identities (38) they may be present.

Asymptotic distribution function g;” according (20), (40) takes the form

2 1
g;*) :3—n(g(+) —&)4, +%”1(+)Bpp1 + Z Cl'(+)gzp . (41)

i#T,u;

Also due to (20), (40) asymptotic values of energy and momentum densities are written as

%(g(ﬂ - 50) = C€7MT _’_leF}(e_Mu - eimr )/ (ﬂ’u - 2’I") >
- )

L a0 e etra Fe T e Y (A~ ) be, Fi(l—e TV A
mn n n

. . . —tA —tA . . .
These formulas can be considered as a set of equations for functionse ', e "™ . These equations are obtained here in

the first in the electric field approximation. However, in all approximations relations of this type can by used to express

. 1A - . . . : .
functionse 7, e through asymptotic densitiess'”, 7. In all approximations in the field coefficients

12 -
¢ (i#T,u) are expressed through exponentse ' ", e ™ and, therefore, always they expressed through

', 7" So, in all in the field approximations distribution function g'” is a function of &, 7" .

In our case ¢ ™ as a function of 8(+), 7Z'l(+) should be substituted in expression for ™ given by (40) and

Ay

densities £

calculated in the main approximation in electric field. Therefore, quantity € * as a function of g™ , 7[,”) should be

found from (42) only at F, =0 that gives

efllu — Cl’l 7Z.(+) ,

+) _ () bc
S g ¢ =Fx i
c mn

- s’ 2 =
1’"n szn(ﬂ,i —/Iu) (C cncn ) (43)

So, asymptotic electron distribution function g, (&,7) according (26), (40), (43) has the form

2 1 c b,
enm)=—(-¢)A,+—r,| B,p, + F,—~ . 44
gp( ) 3}1( 0) 14 mn pp I 2 i%llgp /’{,l—ﬂ,u ( )

In the method of reduced description, elaborated by Bogolyubov, this result with definitions (26), (27) expresses his
idea of the functional hypothesis (see general definitions in (1), (2)). It means: after some time 7, distribution function

g,(t) depends on time ¢ only trough asymptotic values (), ﬂ,(+)(t) of parameters &(t), 7,(¢t) and the
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quantities &7 (¢), 7[1(+) (¢) satisfy closed set of equations (31). Therefore, in this paper the functional hypothesis is
proved in the presence of small electric field. For the case of the absence of the field it was proved in our paper [17].
Reduced description of the system by average densities ™ (¢) ﬂ,(,+) (¢) can be discussed in the terms of electron

component temperature 7(f) and macroscopic velocity u,(¢) defined by formulas
e =GnT+mmu®) /2, 7' =mnu,. (45)
Exact evolution equations (29) gives exact nonlinear dynamic equations describing the system by variables 7" and u,,
1
ou, =-Au,+—F,, 0T =-A,(T-T,)+ (24, —ﬂ,[)mu2 /3 (46)
m

the second of which does not contain the field. The Cauchy problem for these equations can be easily solved.
Equilibrium state of the system is described by relations

u,(t) = w!', u!=-vE, =<
t>>1'T,T“ mi
22, -2 “n
T = T, T9=T,+AT, AT=2""2"71) « f) g2
t>>77,7, 3I71/1 Z

(F, =—eE,). Of course, equilibrium quantitiesu? , 7/ coincide with onesu.', T* in the steady state of the system.
Coefficient v is called the electron mobility and the developed here theory gives an exact expression for him. Our

theory predicts difference AT of equilibrium electron and ion temperatures in the presence of external electric field
which also is an exact result.

APPROXIMATE CALCULATION OF THE MAIN QUANTITIES OF THE THEORY
Obtained results show that the main next problem is solving of the spectral problem for the collision integral

operatorle . In our paper [17] calculation of the eigenfunctions Ap , B , P, and corresponding  eigenvalues Ars A,

from equations (16), (17) is proposed to conduct by the method of truncated expansion in the Sonine polynomials

Sy (x) (¢=0,1,2,..., @ is a real number)

A,=Ya,S*(Be,), B, Zb S%(pe,) (B=T;"). (48)
q=0

An example of this approach is given in our paper [19], where relaxation processes in polaron subsystem of
semiconductors are investigated on the basis of equations (16), (17) but with different operator[& and with functions
Ap, Bp D, » which describe relaxation processes close to the equilibrium. The choice of polynomials is suggested by

normalization condition

al/2 ea « n 2I'(g+a+1
(57285 (B S, ) =y

P (49)
which contains the average with the electron Maxwell distribution w, (4). Formulas (48), (49) and normalization

conditions (17) give first coefficients in expansions (48)
a4y=0, a=-4, b=p. (50)

In the s -polynomial approximation it is assumed that only s coefficients in (48) are not equal to zero. The convergence
rate of this procedure cannot be estimated because the considered spectral problem does not related to a small
parameter.

The further calculations are similar to ones in quantum-mechanical perturbation theory. Equations (16) take the
form

Z;Aqq'aq'z/lTaqxq’ z qq' q _;tubqu’ (51)
q=
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where Aqq , B , are matrix elements of the collision integral operator K and some coefficients X, Yy,

Ay = {S;/z(ng)’S}f (Be,)is B,y = {p/S;/z(ﬂgp)’p/S;’/z(ﬂgp)} ;
5 T(qg+3/2) _4mnT(q+5/2) (52)
Y = 2nT ’ 7= 2
q! B q!

are introduced. Here standard in kinetic theory notation for the matrix elements of the operator K is used and related
quantities are called the integral brackets

{a,.b,}=(a,Kb,) (53)

(according to (8) (a,b,) is the scalar product of functions a,,b,).

In one-polynomial approximation relations (50) - (52) give [7]

3 2
AB]Z_ﬂ[E_ﬂgpj’ A= ﬂ{ep,g} BY'=p, /1151]:%{1)[’]?[} (54)

(a quantity a in s-polynomial approximation is denoted by al* ) Entering here brackets can be calculated exactly [7]

1/2# e4zan0 2442 i

52 12 72
27 2

4_2
e z Lno [ _
3(1_‘_# )1/2 1/2T3/2 T

m_ (u=(m/M)") (55)

In paper [13] these values were calculated in the main approximation in the parameter ¢ which is a small one because
p<(m,/m,)"? ~2,34-107 (56)

(here m,, m, are electron and proton masses). As a result our expression for A, coincides with one from [13] but our

e’
expression for A, gives one from [13] after the replacement n, — n,(z +1) . This result is expected because in [13] the
dynamics of ions was more fully taken into account.

Starting from Landau investigation on the temperature relaxation in the completely ionized plasma [5] it is

assumed that electron distribution function in spatially uniform states coincides in the main approximation with the
Maxwell one (analogous assumption is made in the velocity relaxation theory [9]). In the terms of our consideration it is

confirmed only in one-polynomial approximation at small temperature difference 7' —7;, and small velocity u,, . Really,
according to (4), (50) the Maxwell distribution for electron system with temperature 7' and macroscopic velocity u,
can be rewritten as

1(¢, 3 1
_ =w{1+F[7p—§](T—TO)+Fpnun+..1=wp[1+A£}](T—TO)+B£}]pnuu +...]=
0 0 0

w

p—mu

(57)

_ 2 m 1 o
_Wp|:1+§Ap (8—50)4'%317 pnﬂ'u‘l‘...

This expression should be compared with nonequilibrium distribution function given by formulas (12), (30). This
remark shows, why Landau relaxation theory [5] gives relaxation coefficient A, which coincides with one in one-
polynomial approximation /1[T1] from (55) taken in the small g limit.

Our general expression (47) for the mobility of electron in plasma can be concretize in one-polynomial
approximation with the velocity relaxation coefficient 4, from (55) that in the main in small g approximation gives

32
37,
T 952 23,1 2
2 Lno

(58)
' e’m

Electron mobility defines electron current j, of the plasma in the steady state
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J, =—neu, , u' =-vE, (59)

and therefore gives the plasma conductivity o
J' =0k, g =env=—— (60)

(see (47)). This formula for o is exact one. It in the one-polynomial approximation and in the main order in the
parameter 4 according to expression (58) gives

3T3/2
0

C=—fi—nt———.
52 12 2 12
27 e m “zL

(61)

Here the plasma neutrality condition 7,z = n is taken into account (7, n, are electron and ion component densities).

Note, that this formula differs by numerical coefficient from one obtained for the Lorentz plasma in [10] where
approximate expression for the collision integral of the form

Arzze* nmL
Ip(f)z—v(p)é'fp, v(p)zT (fpzwp+§fp, Ip(w)=0) (62)

is used.
Our formula (47) gives exact expression for the electron and ion component temperature difference in equilibrium

or steady state of the plasma. In one-polynomial approximation (55) for relaxation coefficients A, 4, it can be
expressed through the electron mobility v by the formula

sz

3

This formula was derived also in [8] but without control of its accuracy.

AT = E?. (63)

DISCUSSION

In the present paper the investigation of completely ionized plasma based on our generalization of the Lorentz
model is conducted in the presence of constant and spatially uniform electric field. The generalization is based on the
Landau kinetic equation and takes into account features of the Coulomb interaction. Contrary to Lorentz it is assumed
that ions form equilibrium system. Kinetic equation for the model is linear one and for investigation of nonequilibrium
processes a spectral theory of the collision integral operator is used. This operator is rotationally invariant, symmetric
and positively defined one. Therefore quantum-mechanical approaches for approximate investigation of nonequilibrium
processes in the system are applied here. Eigenfunctions of the collision integral operator describe kinetic modes of the
system. In the paper irreducible symmetric tensors as eigenfunction of this operator are used. This very simplifies using
rotationally invariance ideas in the calculations. On this base it is proved that energy and momentum densities of the

electrons &, 7, are described only by scalar Ap and vector B,p, ecigenfunctions correspondently. Moreover, this

allows proving that for the mentioned densities exact closed linear evolution equations are valid which are true for all
times.

Relaxation processes in the electron component can be described instead of densities&, 7, by corresponding
temperature 7 and macroscopic velocity u, . The obtained exact evolution equation for the velocity is a linear one but
exact evolution equation for the temperature is quadratic in the velocity. These equations contain the temperature and
velocity relaxation coefficients A, A, as eigenvalues of the collision integral operator corresponding to eigenfunctions

A s B » P, - In these terms steady (equilibrium) states of the system are discussed and exact expressions for the electron

mobility and conductivity are obtained. The equilibrium phenomenon of electron 7" and ion 7, temperature difference

is predicted and is described by an exact expression. This effect was discussed in the literature early [8] but with an
indefinite accuracy.
Important part of the paper discusses long time behavior of the plasma in the presence of a small constant and

spatially uniform electric field. A characteristic time 7, is introduced so, that at ¢ >> 7, only vector and scalar modes of

the system evolve. The mentioned exact relaxation equations are also true for the asymptotic values e™ , ﬂ,(,+) of the

quantities & , 7, . At these times electron distribution function is investigated. In the straightforward perturbation theory
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in electric field it is shown that this function at ¢ >> 7, (asymptotic distribution function) depends on time only through

()

the quantities&*", 71',(l+) . This result expresses the Bogolyubov idea of the functional hypothesis that is basis of his

method of reduced description of nonequilibrium states.

Further discussion of relaxation phenomena in the system needs of approximate expressions for the relaxation
coefficients as eigenvalues of the collision integral operator and corresponding eigenfunctions. However, the related
spectral problem can be solved only approximately. With this end in view in the paper the method of truncated
expansion in the Sonine polynomials is used. As a result, relaxation coefficients are written in the one-polynomial

approximation but exactly in small electron-to-ion mass ratio ,u2 . Details of these calculations with consideration of the

two-polynomial approximation are discussed in our paper [18]. These results show that commonly used the Maxwell
distribution function with electron component temperature and velocity as the electron distribution function in the

presence of relaxation processes (see [5, 9, 10, 12]) is true only in one-polynomial approximation and for small u, and
T —T,, . This explains why our temperature relaxation coefficient A, in one-polynomial approximation coincides with

the Landau one [5].

On the base of the obtained here results spatially nonuniform states of plasma in the presence of relaxation
processes will be investigated in a subsequent paper.

Note finally, that developed here theory can be applied for investigation of relaxation phenomena in theory of
polarons in the Frohlich model (see, for example, [12]).
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1O PEJJIAKCALIAHUAX MMPOLECIB Y IOBHO IOHI3OBAHIM IJIA3MI
0.11. CokooBebknii?, C.0. CokosoBebkuii®, O.A. T pinimme?
4/[ninposcokuii HayionaneHull ynigepcumem imeni Onecst 'onuapa, kagedpa meopemuunoi gizuxu npocnexkm I aeapina, 72, Jninpo
bIIpuoninposcvra depocasna axademis 6ydienuymea ma apximexmypu, kagedpa Qizuxu
syn. Yepnuwescokoco, 244, JJninpo
Penakcariss TycTHH eHeprii Ta IMIyJIbCy ENEKTPOHIB JOCIHIKYETHCS B IPOCTOPOBO-OJHOPIAHMX CTAHAX IIOBHICTIO 10HI30BAaHOI
IUTa3MH 3a HAassBHOCTI MaJIoOro IOCTIHHOTO i IPOCTOPOBO-OAHOPITHOTO 30BHIIIHBOTO €JIEKTPUYHOro nmois. I[lnasma po3risigaerscs B
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y3arajbHeHiit mogeni JlopeHia, sika Ha BiIMiHy BiJ CTaHZApTHOI Mojeli mependadae, M0 iOHH YTBOPIOIOTH PIBHOBAXKHY CHCTEMY.
Jotpumytouncs JlopeHlla, HEXTYEMO €NEKTPOH-CJICKTPOHHUMH Ta 1OH-IOHHUMH B3aeMOZiAMH. JIOCHIDKEHHS 3aCHOBaHE Ha
NiHIHHOMY KiHETMYHOMY DIBHSHHI, OTPMMaHOMY HaMH paHiuie 3 KiHetmyHoro piBHsHHS Jlanmay. Tomy B HbOMY nanekoiiiHa
CIICKTPOH-IOHHA KYJIOHIBCbKAa B3a€MOJisl ONMUCYETHCS MOCTIAOBHO. JOCHIIDKEHHS MOJETi IPYHTYEThCS Ha CIEKTPaIbHOI Teopil
omepaTopa iHTerpana 3iTkHeHb. Lleil onepaTop CHMETPHYHHIL i IO3MTHBHO BU3HAYEHO. MOro BIACHI BEKTOPH OGHPAEMO y BT
CHMETPHYHUX HE3BITHUX TEH30DIB, sKi ONMMCYIOTh KIHETHYHI MOAU cUCTeMH. BinmoBinHi BacHi 3HaYeHHS € KOS(ILiEHTH penakcarii
1 BU3HAYAIOTh YacH peJakcamii CHCTeMH. BCTaHOBIOEThCS, IO CKAISIPHI 1 BEKTOPHI BIAaCHI (YHKII] ONMUCYIOTH €BOJIOLIIO I'YCTUH
eHeprii Ta IMITyJIbCy eNeKTPOHIB (BEKTOPHY 1 CKasIpHY Moxau cuctemu). Ha 1iif OCHOBI HAMHU BUBOAUTHCS TOYHA CHCTEMa PiBHSIHB
Ul BKa3aHHX TYCTHH, sIKI CIpaBeUuBi [yl Beix uaciB. [lanmi mepenbauaerbesi, mo iX vacu penakcaiii HabGararo Oinmblii yacis
penakcauii BCiX iHIIMX MOA. Y IIbOMY BHIIQIKy iCHY€ TaKuil XapakTepHHI 4ac, [0 NPH BiAMNOBIIHUX BEIMKHUX Yacax CBOJIOLISL
CHCTEMHU CKOPOHYCHO OINKCYETHCSA aCHMITOTHMYHMMM 3HAYEHHSAMH TYCTHH €Heprii Ta immynscy. IIpu ckopoueHoMy omuci (yHKIis
PO3MOAITY eJICKTPOHIB 3aJI€XKUTh Bijl 4aCy TUIbKM 4epe3 aCHMITOTUYHI T'YCTHHHM i BOHH 3a/I0BOJIBHSIOTH 3aMKHYTIH CHCTEMI piBHSHb.
VY mamiit momepenHiii po6oTi el pesynbrar OyB NOBEJSHHUH 3a BIICYTHOCTI 30BHINIHBOTO €JICKTPHYHOTO MO i Oyina 3HaiineHa
TOYHA HEpiBHOBaKHA (YHKIIs po3noxiry. Hamm noBoauThest, IO 1eH CKOpPOYESHWH OIMHC Ma€ Micle 1 Ui Majoro OIHOPiTHOTO
30BHIIMIHBOTO €JIEeKTPHYHOro mons. lle MokHa posrisimaté sk oOrpyHTyBaHHS inei ¢yHKmioHanbHOI rimore3u BoromoGoBa mis
penakcanifHuX mpoueciB B Ia3Mi. J[oka3 ImpoBOIMThCS B meprioMy HaOmmkeHHI Teopii 30ypeHs 3a moseM. OmHak Horo ines
npaBWIbHA y BCIX IOPsAKaxX 3a IOJeM. PyXJMBICTh €JEKTPOHIB B Iuia3mi, il MPOBIAHICTH 1 sIBUILE BiIMIHHOCTI B pPiBHOBa3i
CJICKTPOHHOI Ta IOHHOI TeMIepaTyp AOCITIKYIOThCS HAaMH B TOYHOI Teopii i HaOIMKEHO aHAi3YIOThCs. 3 L€ METOI0, CIIiIyIun
Hauli nonepeaHiit poboTi, 06roBOpPrOEThHCST HAOIMKEHE PIIICHHs CIIEKTPalIbHOI 3aa4i METOIOM YCIYeHOro PO3KIaJaHHs BIACHHUX
¢byukuid B psaun moninoMiB CoHina. Y HaOMMKEHHI OJHOTO MOJIIHOMAa IOKA3yeThCs, IO HepiBHOBakKHa (YHKIlS PO3HOALTY
€JICKTPOHIB B OKOJIMII 3aBEPIICHHS pelakcaliifHuX mHpoleciB Moxke OyTH ampokcuMoBaHa (yHKIi€I0 posnofiny Makcsemra. Lleit
pe3ynsTaT € oOrpyHTyBaHHSM mpunymeHHs Jlopenna—Jlangay B ix Teopii HepiBHOBakHHMX mporeciB B mia3Mi. Koedimientn
pernakcanii TemMIepaTypH i MBUAKOCTI PO3paXxOBYBAJIHC HAMU paHille B HAOMKCHHSIX OTHOTO i IBOX MOJIHOMIB.

KJIFOYOBI CJIOBA: mra3Mma, y3arairsHeHa Mozens JlopeHma, koedilieHTH peakcarlii, orepaTop iHTerpaia 3iTKHEeHb, CIIeKTpabHa
Teopist, HAOMKEHHsI OHOTO, MoJIiHOMA, QYHKIIOHAIbHA TioTe3a

K PEJTAKCALIMOHHBIM ITPOIECCAM B IIOJTHOCTHIO HOHU3UPOBAHHOM IIJIASME
AJM. CokonoBckunii®, C.A. CokosoBekuii,” O.A. T PMHMIINH?
“/[nenposckuti HayuonanvHwlll ynusepcumem umenu Onecs I'onyapa, kagedpa meopemuueckoii usuxu
npocnexkm I acapuna, 72, /[nunpo
bIIpuonenposcras 2ocydapcmeennas axademus. CmpoumensCmed u apxXumexmypbl, Kageopa gusuxu
syn. Yepnuwescvkozco, 244, J{nunpo

Penaxcarus mIoTHOCTE!N HEPTUH U UMITYJIbCA SJIEKTPOHOB UCCIEAYETCS B MPOCTPAHCTBEHHO- OJAHOPOIHBIX COCTOSHUSAX MOIHOCTHIO
HMOHHM30BAHHOM TJIa3MBbl NPU HAJIMYMU MAJIOr0 MOCTOSHHOTO M MPOCTPAHCTBEHHO-OJHOPOJHOTO BHEIIHETO 3JIEKTPUYECKOTO MOJIS.
[Inasma paccmarpuBaercst B 00001eHHON Moaenu JIopeHia, KOTopas B OTJIMYKE OT CTAaHAAPTHOM MOJAENHU IMPENoJaraeT, YTo HOHBI
00pa3yloT paBHOBecHYI0 cucteMy. Crenys JlopeHiy, mpenebperaeM 31eKTpOH-3JIEKTPOHHBIMH U HOH-NOHHBIMHU B3aUMOAEHCTBUSMH.
HccnenoaHne 0CHOBaHO Ha TMHEHHOM KMHETUYECKOM ypPaBHEHHUH, TTOMYYEHHOM HaMM paHee U3 KMHETHYECKOTro ypaBHeHus Jlannaay.
IlosToMy B HeM gdanbHOJCHCTBYIOLIEE OJIIEKTPOH-MOHHOE KYJIOHOBCKOE B3aUMOJCHUCTBHE OINUCHIBACTCS IIOCJIEAOBATENIBHO.
HccnenoBanue MoJEIU OCHOBBIBACTCS Ha CIEKTPaNbHOM TeOpUM oOIepaTopa HHTErpana CTOJKHOBEHUH. ITOT omepaTop
CHMMETPHYEH M IIOJIOKHTENBHO ompereneH. Ero coOCTBeHHBIC BEKTOpPHI BHIOMpacM B BHJE CHMMETPUYHBIX HETPHUBOIAMMBIX
TEH30pOB, KOTOpHIC OMNHCHIBAIOT KHHETHYECKHE MOIBI cHcTeMBl. (COOTBETCTBYIONIME COOCTBEHHBIE 3HAUCHHS SIBITIOTCS
k03 ULIHEHTaMI pENaKCalluK M OIPEACIIIOT BPEMEHAa PENIAKCALMH CHUCTEMbl. YCTaHOBICHO, YTO CKAPHbIE W BEKTOPHbIE
cOOCTBEHHbIE (DYHKLMU ONMMCHIBAIOT JBOJIIOLHMIO INIOTHOCTEH SHEPIUM M UMILYJIbCA 3JIEKTPOHOB (BEKTOPHYIO U CKAISAPHYIO MOIBI
cuctemsl). Ha 3Tolf 0CHOBE HaMH BBIBOAMTCSI TOUHAs CHCTEMAa yPaBHEHUH Ul yKa3aHHBIX IUIOTHOCTEH, CIIpaBelIuBas Ul BCEX
BpeMeH. [lanee mpenonaraeTcs, 4To UX BpEMEHa peakcallud HAMHOTO OOoJIbllle, 4YeM BPEMEHA PENlaKCalli BCEX OCTANbHBIX MoA. B
9TOM CJyd4ae CYIIECTBYEeT TaKOe€ XapaKTepPHOE BPEMsl, YTO IPH COOTBETCTBYIOIIMX OOJIBIIMX BpPEMEHAX JBOJIOLUS CHCTEMBI
COKpAIIIEHHO OIMCHIBACTCS aCHMITOTHYECKHMH 3HAUCHUSIMHU IUIOTHOCTEH. [IpH cokpameHHOM omucaHny (QyHKIMS pacIipeesICHUs
JJIEKTPOHOB 3aBUCUT OT BPEMEHH TOJIBKO Ye€pe3 AaCUMITOTUYECKUE IUIOTHOCTH, M OHHU YAOBICTBOPSAIOT 3aMKHYTOH cHcTeMe
ypaBHeHui. B Hamreli nmpenpinymmeil paboTe 3TOT pe3yibTaT ObUI OKa3aH B OTCYTCTBHE BHEIIHETO HJIEKTPUYECKOTO IOJSL M ObLIa
HaiiJleHa TOYHas HepaBHOBECHAs (yHKUMsS pacnpeneneHus. 3/ech TO0Ka3bIBaeTCs, YTO 3TO COKPAILEHHOE ONMCAHUEe MMEET MECTO U
JUISL MAJIOTO OJJHOPOAHOIO BHEIIHETO IEKTPUIECKOTO MOJIs. DTO MOXKHO paccMaTpuBaTh Kak 000CHOBaHHE HeU (QYHKIMOHAIBHON
runoTe3sl boromo0oBa 1JIsl penakcalOHHBIX MPONECCOB B MuiazMe. Jloka3aTeabCTBO MPOBOJUTCS B MEPBOM MPUONMKEHUH TEOPUU
BO3MYyIIEHHH 110 nomto. OHAKO €ro ujest BEpHa BO BCEX MOPSIIKAX MO Moo. IIoABIKHOCTD JNIEKTPOHOB B IIa3Me, €€ IPOBOANMOCTh
U SIBJICHUE Pa3NIM4Ms B PAaBHOBECHHU DJIEKTPOHHON M MOHHOII TeMIiepaTyp HCCIeIyIOTCsS HaMH B TOYHON TEOPHH M NPHOIMKEHHO
ananmm3upytotcs. C 3Toif nenslo, ciaemys Hamel npeasyineil pabote, 006CykaaeTcs IPHOIIDKEHHOE PEIIeHHe CIEKTPAIBHON 33191
METOJIOM YCEUCHHOTO DPAa3JIOKCHUs COOCTBEHHBIX (YHKIMH B psasl moiauHoMoB CoHmHa. B mpuOmmkeHHM OIHOTO HONMHOMA
MOKAa3bIBAETCS, YTO HEpaBHOBeCHast (DyHKIUS pacIpeeeHns SJICKTPOHOB B OKPECTHOCTH 3aBEPIICHNS PEJIaKCAIIMOHHBIX IPOIECCOB
MOXeT OBITh alIIPOKCUMHpPOBaHa QYHKIMEH pacnpeneneHus Makcsemna. DTOT pe3ybTaT sBISETCS 000CHOBAHUEM MPETIOI0KEHUS
Jlopenua—Jlanzay B MX TEOpHM HEPAaBHOBECHBIX IpOLECCOB B miasMe. KoadduuueHTs! perakcalyy TeMIiepaTypbl U CKOPOCTH
PacCUUTHIBAIICH HAMU paHee B MPUOIMKEHHUAX OJHOTO U ABYX MOIUHOMOB.

KIFOYEBBIE CJIOBA: mna3ma, o6obmieHnass monenp Jlopenna, KkoddQuIMeHTs penakcalyy, OIepaTtop HHTerpajia
CTOJIKHOBEHUH, CHEKTPAJIbHASL TEOPHUs], IPUOIIIDKEHIE OHOTO MTOJIMHOMA, (DyHKIIMOHAIBHAS THIIOTE3a





