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Thermodynamic properties of diamond are theoretically investigated on the ground of self-consistent description of a phonon gas in
lattice, which generalizes the Debye model with taking into account the phonon-phonon interaction. In many cases properties of
crystals of certain symmetry can be well approximated by a model of an isotropic continuous medium, if its elastic moduli are chosen
optimally. They should be found for a crystal of each symmetry from the condition of their proximity to the exact elastic moduli, which
are measured experimentally and are given in the corresponding tables. At high temperatures, the nonlinear phonon interaction takes into
account both three- and four-phonon interactions. In this reason we take into account not only the second-order elastic moduli tensor in
the reduced isotropic crystal model, but also the third- and fourth-order elastic moduli tensors, which are all together characterized by
nine independent components. Account of the phonon-phonon interaction leads to the redefinition of the phonon’s speed and of the
Debye energy. Their dependence on the temperature occurs. In the absence of interaction and neglecting the nonlinear effects, the
phonons are the same as that of the Debye model. They are called "bare" or "Debye". Phonons whose speed is renormalized due to
the interaction are called the “self-consistent” ones. It is shown that, at high temperatures, the theory predicts the linear in the
temperature deviation of the isochoric heat capacity from the Dulong-Petit law. Unlike for the most crystals, where the decrease in
the isochoric heat capacity is observed, our calculations for diamond and crystals with diamond structure predict the linear increase
of the isochoric heat capacity with the temperature, viewed experimentally. The isobaric heat capacity of diamond, similar to other
substances, linearly increases with the temperature.
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The Debye model [1] is the simplest way to described thermodynamic properties of dielectric crystals. In this
approximation a crystal is considered as a continuous elastic isotropic medium in which oscillations propagate with the
average speed ¢, . At temperatures of the order of the Debye temperature ©®, and higher, the phonon density in a
crystal becomes higher than the particle number density, so nonlinear effects get appeared due to phonon interactions. A
generalization of the Debye model which takes into account the phonon-phonon interaction was proposed in [2,3].

In many cases properties of crystals of certain symmetry can be well approximated by a model of an isotropic
continuous medium, if its elastic moduli are chosen optimally [4]. A similar approach for an approximate account of
nonlinear effects, which are cubic in the strain tensor degree, was used in [5]. In this model, a nonlinear elastic medium
is characterized by five elastic moduli. In many cases, for a more complete description of the nonlinear effects, it is
necessary to take into account fourth-order terms by the strain tensor in the free energy as well. For these cases, the
nonlinear elastic properties of the medium are characterized by nine elastic moduli [6-9].

The behavior of the heat capacity of diamond at high temperatures differs from the behavior of the heat capacity of

most crystals of other symmetry. Here it is necessary to distinguish the heat capacity at a constant volume C,
(isochoric) and the heat capacity at a constant pressure C, (isobaric). The isochoric heat capacity is a more

fundamental characteristic [10], but the isobaric heat capacity is usually determined experimentally. In the high
temperature limit in accordance to the Dulong - Petit law [1],

0,

2
1
C, =3N|1-—| =2 |, |
= 1= %2 m

the isochoric heat capacity tends to a constant value. The difference between the heat capacities in the high-temperature
limit is proportional to the temperature [1]:

C,—-C, =9y, VT, Q)

where n=N/V is the particle number density; I'=0In®/dInn is the Griineisen parameter; y, = n' (611/ 6p)T is the
coefficient of isothermal compressibility. Thus, in the high-temperature limit the experimentally observed heat capacity
C, grows linearly with increasing the temperature, but C, tends to a constant value. Equation (2) allows one to find

the isochoric heat capacity using the measured isobaric heat capacity and the quantities #, I, ;..
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It turns out that at high temperature the heat capacity C, contains a linear in the temperature correction to the

Dulong-Petit law C, =3N . This deviation can be explained by taking into account the interaction of phonons. Note

that an early attempt to explain the high temperature deviation in the behavior of the diamond heat capacity from the
standard Dulong — Petit law was made in [11]. The proposed therein explanation is based on the choice of the
anharmonic potential of atomic interaction, in the same way as in a diatomic molecule.

The self-consistent approach to the description of the phonon system is fundamentally non-linear, and initially
takes into account anharmonic effects. Moreover, this approach is also correct in the case when nonlinear corrections
are not small corrections to the harmonic approximation. For getting results of the self-consistent description of
phonons one should add together an infinite number of corrections of the standard perturbation theory based on the
harmonic approximation. A comparison of the self-consistent description with the standard perturbation theory was
carried out in [12,13] using the example of an anharmonic oscillator. It is shown that the standard perturbation theory
has a small range of applicability, and this region narrows with increasing of energy level. The field of applicability of
the self-consistent description is much wider, even when anharmonisms is not small. Therefore, the proposed approach
to the description of the nonlinear properties of crystals is fundamentally new and cannot be reduced to [14-17] in
which the effect of phonon anharmonicity was studied.

For the most crystals, the isochoric heat capacity C, obeys the deviation from the Dulong — Petit law: it linearly

decreases with increasing the temperature. In diamond-like crystals, such a deviation receives the opposite sign. In this
paper we show how these features in the behavior of the high-temperature heat capacity of diamond can be described in
framework of the many-particle approach.

In section 2 we briefly comment on the basic equations of [2,3]. Expression for the free energy and equation for
the speed of interacting phonons are obtained there in the general form. In section 3 these expressions are calculated for
the isotropic medium, and the nonlinearity parameter is introduced. Section 4 describes how to obtain the elastic moduli
of the approximate isotropic medium from the elastic moduli of a crystal. Section 5 contains calculations of the high-
temperature heat capacity of diamond. For comparison, same calculation is given for NaCl as a typical crystal of the
cubic crystal system. Our conclusions bring together in the last section.

SELF-CONSISTENT DESCRIPTION OF INTERACTING PHONONS
We present relations on which the approach developed in [2,3] is based. Let phonons in the crystal lattice be
described by the Hamiltonian density operator

H(r)= ”“2(;) +U, (r)+U, (r)+U, (r), 3)

. . . . 1
where quadratic, cubic, and fourth-order in the strain tensor u,, = E(V u+Vau, +Vu, vV /.uu) terms have the form

1 1
Ainth iUpj > U, = g /Ia[bjz‘kuaiubjuck > U,= _ﬂ’a[bjrkdluuiubjuck Uy s 4

1
U2:E aibj " ai 24

and p is the density, u,(r) is the displacement vector field, 7, (r)= pii, (r) is the canonical momentum. Here and
further on, the standard agreement on the summation over repeated indices is used. Due to the symmetry of the strain
tensor U, =u;, the elastic moduli satisfy the known symmetry conditions for both permutations of pairs of indices and

permutations of indices within the each pair [18]. With the fourth order in the displacement vector gradients accuracy,
the Hamiltonian density takes the form

2
r ~ ~
H(r)= ”“2(p) +%;La[b].v[uavjub +U, +U,, ®)
where
~ 1 1
U, = E/Itzibfvi”avjucvbuc +glm'bfc‘kviuavjubvkuc’
(6)
-~ 1 1 1
U4 = gﬂ’aiijaucviucvbusv‘fus +Zﬁ’aibjckviuavjubvkusvcus +aA’uibjckdlviuaVfubvku"vlud'

In the quantum description, the displacement and the canonical momentum should be considered as operators for
which the well-known commutation relations are valid:

7, (v)u, (r')=u, (r') 7, (r)==ind,s(r—r'),

u, (r)u, (r')—u, (r")u, (r)=0, 7z, (r)7,(r')-7,(r") 7z, (r)=0. @
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In general the elastic moduli are functions of the temperature. Here as well as in the standard Debye model, we
will neglect this effect, as well as the difference between the isothermal and adiabatic modules. In what follows we will
take into account only the temperature dependence of the observed values, associated with the phonon excitation. The

total Hamiltonian H = I H(r)dr is the sum of the free phonon Hamiltonians and their interactions H =H +H,,

where

_J'[ wijluav ub}ir, H, = [[T,(x)+T,(r)]dr. ®

To describe the system of interacting phonons, we use the self-consistent field method in the formulation
developed for fermionic [19] and for bosonic [20, 21] systems. The implementation of this method on the example of
the anharmonic oscillator was demonstrated in [22, 23]. In the proposed formulation, the method of a self-consistent
field is introduced at the level of the Hamiltonian, rather than at the level of the equations of motion. This makes
possible to achieve the fulfillment of all thermodynamic relations. In this method, the total Hamiltonian is represented
as the sum of two terms

H=H +H,. ©9)

Here, the approximating self-consistent Hamiltonian

H, j{ v, a}dr+go (10)
describes “free” phonons with renormalized speed, and the correlation Hamiltonian

H, j[ (Ay = 18,0, ) Vi,V u, +U, +U}d & (11)

describes the interaction of these phonons. The self-consistent Hamiltonian (10) contains the only one effective
modulus of elasticity 4 and describes the phonon system in the isotropic approximation when phonons with arbitrary
polarization have the same speed. In addition, H includes &,, which does not contain operators. The inclusion of this

term is essential, since it describes the change in the ground state during the transition from the exact Hamiltonian to the
self-consistent one. Thus, by means of the renormalization of the elastic modulus, the main interaction between the
original phonons in the isotropic approximation is taken into account in Hamiltonian (10), and Hamiltonian (11)
describes the residual interaction, which is not included in the self-consistent field method. The self-consistent
Hamiltonian (10) in the representation of phonon creation and annihilation operators, which satisfy the standard

commutation relations [b bl ] O s | Brasbiwr | = [bk*a,b+ J:O,takes the form

ka ®
Hg=hY (k)b b, += hZa) , (12)
k,a

where a)(k) = ¢k , and the phonon speed with arbitrary polarization is ¢ = ﬁ?/ p . The free energy of the system with
Hamiltonian (12) is given by

F=g, +ﬁ2m(k)+3T21n(1—e*““’<")) : (13)
2 k k

The value &, is found from the condition <H > =<H S>, where the average is carried out with the statistical operator
;) =expf (F -H S) , B=1/T is the inverse temperature. The result is [3]
3| 1 < kik Ay, ( j ) ( 1) n’
gy = | — Yy L e k| fi+=||+———1T, 14
0 265{3,02 S Szk: Jitsy 8V pct (14

where

( 1. +1/2)( 1, +1/2) kil +

& kk, (15)
Zﬂ“aiajck |:3klik1jk2kk2c + 2klik1kk2jk2c ] +34 [3k klak2bk2j + 2klik1bk2ak2j J} ’

aibj
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-1
and f, = [eﬂ ha(k) —IJ is the phonon distribution function. The phonon speed Cg, renormalized due to the interaction,

can be found from the requirement of the free energy (13) minimum, 0F/dcy =0. As a result, we obtain a nonlinear
equation, which determines the speed of “new” phonons

272 kkA,, 1 At I
e =LJ12#(fk +—j+%— (16)
3V 4k 2) 6p e, J

kp

where J = +l k’dk , and the upper integration limit is the Debye wave number k, =(67°N/V v [24].
Ji 2 g Y D
0

Equation (16) is valid for the self-consistent description of the nonlinear properties of crystals of arbitrary symmetry.

In the absence of interaction and neglecting the nonlinear effects, the phonons are the same as that of the Debye
model. They are naturally called "bare" or "Debye". Phonons whose speed is renormalized due to the interaction in
accordance with (16) will be called the “self-consistent” ones. Even in the case of neglecting the dependence of the
modules 4, on the temperature, that is assumed in the ordinary Debye model, the renormalized speed ¢; of our
approach depends substantially on the temperature, since it is expressed in terms of integrals of the distribution
function. In the considered approach, the parameter A is chosen so that Hamiltonian (10) is as close as possible to the
exact Hamiltonian H = H +H, and therefore describes the phonon system with the best approximation with the

quadratic Hamiltonian [3].

THERMODYNAMIC PROPERTIES OF NONLINEAR CRYSTALS
IN THE ISOTROPIC MEDIUM APPROXIMATION

Calculations of the renormalized speed (16) and of the thermodynamic properties of a certain symmetry nonlinear
crystal is a complicated and cumbersome procedure that should be separately performed for each crystal class. In many
cases, properties of the crystal can be described qualitatively, and even quantitatively, once anisotropy is not strong
enough, in the isotropic medium approximation. In [4] such a method was developed to describe elastic waves in
crystals. To account of nonlinear effects, that are cubic in the strain tensor, such a method was used in [5]. For a more
consistent description of thermodynamic, and in some cases, kinetic properties of the crystal, fourth-order terms in the
strain tensor should also be taken into account. The model of the isotropic medium that describes properties of a crystal
allows one to substantially simplify the results and to generalize the method to crystals of arbitrary symmetry. In this
case, parameters of the isotropic medium model should be found for a crystal of each symmetry from the coincidence
with the exact moduli of elasticity condition.

Let us consider the interacting phonons in the isotropic medium in more detail. In this case, the second-order
elastic modulus tensor is

ﬂ’aib/ = ﬂgafab/ +,u(ij,ba) ’ a7

where A, g1 are the Lame coefficients. For brevity, we have used the symbol (ij, ab) =0.0,+0,_0,. The third and

ij~ ab ia~ jb *
fourth order anharmonic elastic moduli tensors in the isotropic elastic medium have the form

Ao = A8,,8,8,, + B| 8, (jk.cb)+3, (ik,ca)+ 3, (ij.ba) |+ s

. : 18

+C[ 8, (ij.bk)+ 0, (ij.be) + 5, (jk.ab) + 5, (ab, jc) ],
/’i’aibjckdl = Cl 5411' 5bj é‘ck 541'[ + CZ/’i’zfth;Lkdl + C3 /’i’cg?b}c/aﬂ + C4/’i’c£;4b;'c/aﬂ + CS ﬂ’ifb}ekdl b (19)
where
2B i = 8.6, (Ik,ed)+6,8, (jl.db)+6,8, (jk.cb)+ 20)
+6,,8, (il,da)+ 6,6, (ik,ca)+ 6,06, (ij,ba),
Aopa =8, 8,4 (jkocl)+ 8, (jk,cd)+ 8, (klbe)+ 5, (be.kd) |+

+6,,[ 8, (kl.di)+ 5, (kl.da)+ 3, (li,cd)+ 35, (ad,lc) |+ on

1

+8, [ 8,y (il. ja)+ 3, (il,ba) + &, (ij.da) + 5, (ab,di) | +
+8, [ 8, (ij.bk)+ 8, (ij.bc) + 3, (jk,ab)+ 5, (ab, jc)],
l{ffbj.ykd[ = (il, da)(jk, cb) + (ik,ca)(jl,db) +(ij,ba)(kl, dc) , (22)
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/Ia(fbi.ckd, = (ab, ci)(jl, dk)+(ij, ca)(kl, db)+(ik, ba)(jl, dc)+(ij, ka)(bl,dc)+
+(ab,jc)(il,dk)+(ij,bc)(kl,da)+(ab,jk)(il,dc)+(ij,bk)(cl,da)+ (23)
+(ad,ci)(jk,lb)+(jl,cb)(ik,da)+(jk,db)(il,ca)+(il,ka)(cj,bd).

The sixth-order tensor (18) is determined by three elastic moduli A4,B, C, and the eighth-order tensor (19) is

determined by five elastic moduli C, +C,. When taking into account effects of the order not higher than four, four
invariants can be constructed from the strain tensor:

']] = uii ’ ']2 = uaiuia > J3 = uaiuibuba s J4 = uuiuibubjuja : (24)
These invariants are not independent due to the relation
1 4 1
J, :gJ;‘ ~-J2J, +§J1J3 +EJ22. (25)
The contribution to the free energy of the third and fourth order terms in the strain tensor is given by equations
F, = %(Ajf +5BJ,J, +8CJ; ) , (26)
F, = %(CIJI4 +12C,J}J, +32C,J,J, +12C,J; +48C,J, ) . 27)
Taking into account the relation (25), equation (27) can be written in the form
1
F, = Z(DJI4 +12EJ}J, +32FJ,J, + 12GJ22), (28)
where
D=C+8C,, E=C,-4C,, F=C,+2C,, G=C,+2C;. (29)

Thus, there are two elastic moduli in the linear theory A, s, three third order modules 4,B,C and four fourth
order modules D, E,F,G [6-9]. In the considered case, the value (15) is determined in terms of the elastic moduli as

(£ +12)(A£, +12) ,
I= kzk: o Vi + v, (ks ), (30)

where
Vy=94+6u+6A4+32B+32C+D+8E+8F +18G,

31
Vi =6A+24u+4A4+48B+88C +8E +40F +10G. G1)

Taking into account these relations, after integrating (30) over the angles, we arrive at the following equation,
which determines the speed of self-consistent phonons in the isotropic elastic medium

v,
c§:c§+% Vo+—1|J, (32)
2477 pe 3
where the average speed of the “bare” phonons is defined by
1 A+4
¢ =—(2cf+cf)=—( 4), (33)
3 3p

and the longitudinal and transverse velocities of sound are determined by the known relations c,2 =(/1+2y)/ o,

¢! = u/p [18]. Note that the definition (33) differs from the definition of the average Debye rate [1]:

1 2 1
—=p" { T } : (34)

o |47 (ar2u)”

In the model, where the average speed or the Debye energy are phenomenological parameters, this difference in
the definition is not significant. However, since the average velocities (33) and (34) are expressed differently through
the elastic moduli, this distinction should be taken into account in a more exact description. The standard Debye energy

is determined by the relation ®,, = fic,k, [24], but in the considered approach, as it can be seen from equation (32), the
natural definition of the Debye energy is ®, = /ic,k,,. Since now, besides the speed of the “bare” phonons C,, there
arises the speed of the self-consistent phonons Cg, so it is natural to define the “self-consistent Debye energy”

©,, = hegk, , which, unlike the standard definition of the Debye energy ©, or ©,, is a function of the temperature.
Note, however, that although in its original formulation the Debye energy is assumed to be independent on the
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temperature, in practice experiments (e.g. [25-27]) reveal the temperature dependence of the Debye energy. In the
considered approach, the self-consistent Debye energy © , significantly depends on the temperature due to the phonon-

phonon interaction already at the starting point and, therefore, this approach better reflects the real situation. Although
the shortcomings of the Debye model, associated with a very simplified choice of the spectral density which does not
take into account the details of the structure of the lattice, remain also in our approach.

For the further reference, it is convenient to introduce the symbol o for the ratio of the renormalized due to the
phonon-phonon interaction sound speed ¢, to the original average sound speed ¢, or, which is the same, ratio of the

self-consistent Debye energy to the standard one:

o=c[c,=0,/0,. (35)
Equation (32), on account of the introduced quantity (35), can be written in the dimensionless form [3,4]
(o-z—l)o-=ACD(£j, (36)
T
: o
where 7=7/0, is the dimensionless temperature. We have taken into account that J=-2®@ (—] , where
T

8 37z7dz
®(x)=1+-D(x), D(x):7£ :
parameter that characterizes the system:

is the Debye function. Equation (36) contains a single dimensionless

AEL4 VE)’LK , (37)
32pMc, 3

where M is the mass of the lattice atom. In general, there are no restrictions on the sign of this parameter. However,
calculations show that for the most substances the sign of A is positive. This leads to the fact that in most cases the

phonon speed ¢, and the self-consistent Debye energy @ p increase with the temperature [2, 3]. For diamond and

crystals with the similar structure, such as germanium and silicon, this parameter turns out to be negative. Further on we
will study the solely diamond crystal case.

APPROXIMATION OF NONLINEAR CHARACTERISTICS OF CRYSTALS BY THE ELASTIC MODULI
OF THE ISOTROPIC MEDIUM
A large number of elastic moduli describe the nonlinear elastic properties of crystals of different symmetry. Most
simply is to describe nonlinear properties of the isotropic medium, where there are nine modules upon the expansion of
the free energy up to the fourth power in the strain tensor. In most cases, crystals can also be well described using the
isotropic medium model, if its parameters are optimally selected. In [4] it was proposed to choose the elastic moduli of
the approximating linearized isotropic medium from the requirement of the minimum of the quantity

A 08 (38)

aibj aibj

I, =

. - 0
where ﬂ'aib/‘ is the modulus of elasticity of a crystal, Z(El.b)j

is the elastic modulus of the isotropic medium. As it was
shown in [28], the free energy of the isotropic medium turns out to be as close as possible to the free energy of the
crystal in the case. It is natural for the approximation of nonlinear elastic moduli to use the analogous condition (38) [5],
minimizing the quantities

2

. =

0 0 |
I, = ﬂ'ailz/'ck -5 ﬂ’aibick{ll - ﬂ’zﬁilz)/'ckdl > (39)

aibjck

where 4,,.4> Ay @re the elastic moduli tensors of the crystal, /1523/.8,(, /153,),[,“,1 are the elastic moduli tensors of the

isotropic medium. Taking the derivatives of I, I;, I, with respect to the elastic moduli of the isotropic medium and

setting them to zero, we obtain the systems of equations whose solutions are the elastic moduli of a reduced isotropic
medium, expressed in terms of the following convolutions of the elastic tensors of a real crystal:

ﬂ‘[(Z) = jfl'l'/(k [} 12(2) = ﬂ’ikik >
ﬂ'l(3) = A 12(3) = A /13(3) = L > (40)
4 4 4 4 4
11( )= ﬂvﬁkkuppv ﬂz( )= ﬂ’iikklppl’ /13( '= ﬂ’iikllppk’ ﬂi = ikkilppl > 25( )= /Ifkk”PPi'
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In terms of these quantities, the reduced elastic moduli are

/l —

(227 -2) (A ), @1

30

A= L(SJP +84 -15), B= L(—w}” —1228 +1927),
105 210 @)

1
C=—(2 (3)+9 (3)_9 (3) ,
g (247 +oa” -4

_ 1 ) _ 6182 _ (4) _ ) )
D_%(llzul 618" —2296 A" ~16712{" +352241"),

E=—) (10341 +43820 +376 4" + 41140 —10024"),
113400 43)

(-287219 +2824) + 11842 + 394" —9784"),

226800

1
= 557, +8220% +10441 + 24694 — 25984 ).
226800( A g 4 * g )

For the cubic crystals, to which diamond belongs, the following components are selected as the independent
components of the elasticity tensors of the fourth, sixth and eighth ranks in the matrix representation [4,6]: 1) ¢,,,¢,,C s

2) €115 C1125Ciss Cio3> Caas Cas 5 3) Ciin1oCii12>Clieo Clizas Ciosss Casaa> Ciizs> Criaas Croaas Cuase - Casgs - 10 this case, equations

(41)-(43) for the elastic moduli of the reduced isotropic medium take the form

A =%(cll +4c, —2044), y7, =%(C” -, +3c44), (44)
A =%(c111 +18¢,,, +16¢,,; —30c¢,,, —12¢,5s +16c456),
B =%(c111 +4c;, =56, +19¢,,, + 20,5 —12¢44), (45)
Czé(c111 =3¢, +2¢15, —9¢14, + 9,55 +9c456),

1
D :E(Cllll +32¢),y, +36¢,,,, +204¢,,;, —132¢,,, —

—24¢)156 = 312¢154y —306C, 565 + 240056 + 6C4404 +12C,4446 )a
1
E= (01111+1401112+901122_301123+2101144_

315
—6C) 156 T 48C 1244 —48C 1456 —3C4u0s — 0C 446 )’

1
F :%(261111 +10¢,;1, =9¢,15, =24¢, 153 + 60,14, +

(46)

+0C, 155+ T8C 244 +306C 355 = 60C 455 — 154445 —30C,446 )7

1
G :_(201111 —=8¢y1, +27¢)15, —42¢)15, +96C, 4y +

630

+24¢, 166 +00C,,4, —54¢566 —168C, 156 +39C,404 +78C 466 )

1166

Equations (44) - (46) are used here for computing the parameters of the proposed model for diamond crystals. The
values of the independent components of the elasticity tensors of the fourth, sixth, and eighth ranks, which are given in
Tables 1 and 2, are either measured experimentally or calculated theoretically [26,27]. As it has been noted, when the
approximate description is used, the temperature dependence of the elastic moduli and the difference between the
isothermal and adiabatic modules could be ignored.
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Table 1
Independent components of the fourth and sixth elasticity tensors of diamond (10" dyn cm™)
Cll C12 C44 Clll C112 CISS C123 C144 C456
108 12.4 57.8 -761 -226 -280 210 -178 -82.0
Table 2

Independent components of the eighth rank elastic tensor of diamond (10'" dyn cm?)

C1111 C1112 C1166 C1122 C1266 C4444 C1123 C1144 C1244 C1456 C4466

2669 946 1074 607 819 1132 -42.5 -138.5 -26.4 48.7 52.8

Using the data given in Tables 1, 2, equations (44) - (46) result in the elastic coefficients of the reduced isotropic
medium for diamond (Table 3).

Table 3
The nine reduced moduli of elasticity of diamond (10'" dyn cm™)
A u A B C D E F G
8.4 53.8 169.1 -162.1 -37.7 637.5 186.8 -280.3 183.9

Using these data together with values of the density o and of the atomic mass M makes possible to calculate the

parameters of the generalized Debye theory for the self-consistent phonons [2,3] in diamond, which are listed in
Table 4.

Table 4
Values of the parameters VO, V1 (31)n A (37), which determine the nonlinear properties of diamond crystal.
P, g/cm3 M, 105 g Vo, 10“dyn/cm2 Vi, 10“dyn/cm2 A
3.5 1.99 -1784.98 -2030.2 -0.00817

The values of the temperature independent longitudinal and transverse sound velocities, the average velocities of (33),

(34) and, the corresponding Debye temperatures, are given in Table 5.
Table 5

Temperature independent longitudinal, transverse and average sound speeds
and the Debye temperature of diamond.

¢ 10° ¢ 10° cp 10° ¢ 10° s 1
sm/c sm/c sm/c sm/c kp 10" cm O K ® K
12.31 18.09 9.37 14.59 2.18 1560.6 2430.0

THE TEMPERATURE DEPENDENCES OF THE DEBYE ENERGY. HEAT CAPACITY
Account of the phonon-phonon interaction leads to the appearance of the dependence of the average phonon
speed on the temperature (32), (36) even if such a dependence was absent in the linear approximation. If we determine

the Debye energy or the Debye temperature through this speed ©,, = fic,k,, , the Debye energy will also depend on the
temperature. Figure 1 shows the temperature dependence of the self-consistent phonon velocity and the Debye energy
of diamond, calculated with the nonlinearity parameter A given in Table 4.
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For most solids the nonlinearity parameter A is positive, and the average speed of the self-consistent phonons
increases with the temperature [3]. For diamond and some other diamond-like crystals, the parameter A turned out to
be negative, so that the phonon speed and the Debye energy decrease with the temperature for them (Fig. 1).

1.00

0.99

5 098

0.97

0.96 : > :
0.0 0.5 1.0 15

T
Figure 1. Dependence of the self-consistent phonon speed and the Debye energy of
diamond o =c,/c, =©,/0, on the temperature 7 =7/0, .
Entropy can be obtained by the well-known expression § = —(6F /oT )V with the free energy (13), (14).

Computing the derivative, the speed C, in view of OF / Ocg =0, could be treated as a constant [2,3], then:

S=_N{3m(1_efj_41)(gﬂ. an

From the expression for entropy (47) it follows the expression for the isochoric heat capacity C, =T (8S /oT )V [2,3]:

C Z3N 41DEEJ_L (z_d_aj (48)
g o t) -1z dr)

The temperature derivative in (48) can be found from equation (36) [3]. As it is known, in the Debye model there
is the law of the corresponding states, consisting in the fact that the heat capacity is a function of the dimensionless
temperature 7 =T7/0 [1]. Account of the phonon-phonon interaction leads to the violation of this law, and every
specific phonon system is additionally characterized by its dimensionless parameter A . The calculation of the
parameter A shows that it is positive for the most substances. Consequently, we get increasing the self-consistent
phonon speed with the temperature and the linear in the temperature deviation of the heat capacity C, from the

Dulong-Petit law [3]. Since experimentally it is usually measured the heat capacity CP , which linearly grows at high

temperatures (see eq. (2)), to identify the decrease of C, experimentally, it is necessary to use the equation (2) upon

processing the experimental data.
Figure 2 shows, using NaCl as an example, the typical behavior of the isochoric heat capacity at high

temperatures, characterizing the most substances. The experimental data are taken from [29].
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49.3}
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49.1}
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Figure 2. The molar heat capacity of NaCl at a constant volume: (a) constructed from the experimental data;
(b) subjected to equation (2).
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Figure 3 shows the temperature dependence of the isochoric heat capacity of diamond, plotted by use of the
experimental data from [30, 31]. As we can see, the behavior C, of diamond at high temperatures is qualitatively

different from the behavior of this quantity for the most crystals of the cubic crystal system (Fig. 2).
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Figure 3. The molar heat capacity of diamond at a constant volume: (a) constructed from the
experimental data; (b) calculated by equation (2).

CONCLUSIONS
For the most substances, the linear in the temperature decrease of C, is observed with increasing the temperature.

For crystals with diamond cubic crystal structure, this deviation occurs in the direction of increasing the heat capacity.
In the framework of the approach of the self-consistent phonons, using the approximation of the elastic properties of
crystals by the reduced isotropic medium, it is possible to clarify formulae for the isochoric heat capacity and the Debye
energy.

Account of the phonon-phonon interaction leads to the redefinition of the phonon’s speed and of the Debye
energy. Their dependence on the temperature occurs. The isochoric heat capacity is no longer a constant. At low
temperatures, the corrections to C, are insignificant (the phonon gas can be considered as ideal). At high temperatures,

the sign of the correction depends on the sign of the non-linearity parameter A . It is convenient to calculate it for the

isotropic medium (see eq. (37), (31)). Calculations show that for all crystals of the cubic system A is positive, except
of diamond and crystals with diamond structure. Figures 4, 5 show the difference in the behavior of C, for diamond

and NaCl (as an example of crystals of cubic crystal system).

0.98
1.00
0.97
0.98
/ 2
< 0.96 i
= = 0.96
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B 0.94
0.94
1.0 15 2.0 25 3.0 096 0.8 1.0 12 1.4
T T

Figure 4. The normalized heat capacity of NaCl at a constant Figure 5. The normalized heat capacity of diamond at a constant
volume, calculated from equation (48), (A = 0.007). volume, calculated from equation (48), (A = —0.00817). The
upper temperature limit is constrained by the melting point.

Using the developed approach, one can calculate corrections to the thermodynamic coefficients of crystals under
conditions when the phonon gas cannot be considered as weakly interacting. Also, it is possible to obtain the
temperature dependences of the longitudinal and transverse Debye energies, if we do not average the speed of phonon.
Estimates show that for diamond the difference between the longitudinal and transverse Debye energies can be
significant.
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HEJIHIAHI EGEKTHA Y ®OHOHHIN CUCTEMI AJIMA3Y
A. Haymogen®, 0.M. Ioayextos™”, B.JI. Xoaycos®
“Xaporiscokuil nayionanvhui ynieepcumem im. B.H. Kapasina, nn. Céoboou, 4, m Xapxis, 61022, Yrpaina
bHayionansnuii Haykosuti yenmp «Xapkiecokuil (izuxo-mexuiynuil incmumympy, @yi. Axademiyna, 1, m Xapxis, 61108, Vkpaina

Ha ocHOBiI MeTony caMOy3rofpKEHOro OIMHUCY ra3y (OHOHIB B PEIIITIN, y3arajibHIOKYoro mojenb Jlebas 3 ypaxyBaHHAM (HOHOH-
(OHOHHOI B3aeMOpii, TEOPETUYHO JOCIIKEHI TEPMOJMHAMIYHI BJIACTHBOCTI ajiMasy. BllacTMBOCTI KpHCTaliB IEBHOI CHUMETpil y
0araTbOX BHUIAJKaX MOXYThb OyTH A00pe ampoKCHMOBaHI MOJEJUII0 i30TPOMHOrO CYLIJIBHOIO CEpelOBHIIA, SIKIO HOro MOy
MPYXHOCTi BUOPATH ONTHMATLHAM YHHOM. IX CJif ITyKaTH 1l KpHCTana KOKHOI CHMeTpii 3 YMOBH iX GNM3BKOCTi M0 TOYHHX
MOJYJIIB MPYXHOCTI, SIKi BUMIPIOIOTBCS €KCIIEPUMEHTANBHO 1 HABEICHI y BIAMOBIAHUX Tabiuusax. B o0macTi BHCOKHX TeMmeparyp
HelniHiiiHe B3aeMollii pOHOHIB BpPaxOBYy€ SIK TPbOX-, TaK 1 YOTUPHOX (HOHOHHI B3aemonii. Lle mpu3BoAWTH A0 TOTO, MO B MOJEINi
HaBEJICHOTO 130TPOITHOTO KPUCTaly HEOOXiHO BpaXxOBYBaTH HE TUIBKH TEH30PH MOJYJIIB IPYKHOCTI APYroro MOPsAKY, a H MOIYIIB
MIPY>KHOCTI TPETHOTO 1 YETBEPTOrO MOPSAKIB, SIKi XapaKTEePU3YIOTHCS AEB'sIThMA HEe3aJeKHIUMU KOMIIOHEHTaMH. BpaxyBanus GpoHOH-
(OoHOHHOI B3aemojii B HAOJMKEHHI CaMOY3TO/DKEHOTO TOJIA MPHU3BOJUTH JO IMOSIBH 3aJICKHOCTI INIBUAKOCTI TaKUX (OHOHIB i
Temneparypu Jlebas Bia Temmepatypu. 3a BiICYTHOCTI B3a€MOJii Ta HEXTyBaHHI HeNmiHIMHUMU edekTaMu, GOHOHH B JIaHii Teopii
TaKi Xk, K B Teopii Jebas. Ix masupaemo «romummy» a6o «aebaeBchbkuMm». MOHOHH, UIBMIKICTH AKMX TEPEHOPMOBAHA BHACHIIOK
B3a€EMOJil, HAa3MBAaEMO «CaMOy3rokeHuMu». [lokaszaHo, 110 HpPH BHUCOKHX TEMIIEpaTypax Teopis mepeadadae JiHiiiHe 3a
TEMIEPATypOl0 BiIXWICHHS 130XOpWYHOI TEIUIOEMHOCTI Bin 3akoHy Jlromonra-IIti. Ha Bigminy Bim OinbIIOCTI KpHCTaliB, A€
CIIOCTEPIra€ThCsl 3MEHIICHHS 130XOpUYHOI TEIUIOEMHOCTI, TEOpis A anMasy 1 alMa3omoNiOHMX KpPUCTaNiB mependada JiHiiHe
3pOCTaHHS IIi€l TEIUIOEMHOCTI 3 TEMIIEpaTypolo, IO BIIIOBiJa€ SKCIEPHMEHTY. [300apHyHa TEIUIOEMHICTE anMasy, sK 1y IHIIHX
PEYOBHH, TIHIHHO 3pOCTAE 3 TEMIIEPATYPOIO.

KJIFOUOBI CJIOBA: ¢oHOH, i30XOpHYHa TEIUIOEMHICTB, i300apy4Ha TEIIOEMHICTh, POHOH-(GOHOHHA B3aeMonis, eHepris [lebas,
peuriTka ainMasy, MOZYJIi MPY>KHOCTI

HEJIMHEWHBIE Y®PEKTHI B POHOHHOMW CUCTEME AJIMA3A
A. Haymogen®, F0.M. Ioayskros™”, B.JI. Xoaycos®

“Xapvrosckui nayuonanvhoill ynueepcumem um. B.H. Kapasuna, ni. Ceo6oovl, 4, 2. Xaperos, 61022, Vkpauna

PHHIT «Xapvrosckuil huzuxo-mexnuueckuil uHcmumymy, yi. Akademuueckas, 1, e. Xapvkos, 61108, Yxpauna
Ha ocHOBe MeToma caMOCOTJIaCOBAaHHOTO ONMCAHUS Ta3a ()OHOHOB B pemieTke, obobmaromero Moxens [lebas ¢ yueroM (OHOH-
(DOHOHHOTO B3aMMOJEUCTBUS, TEOPETHYECKH MCCIECJOBaHbl TEPMOJAMHAMHYECKHE CBOWCTBa anmasza. CBOMCTBa KpPUCTAJLIOB
OIpeaeIEHHON CUMMETPHH BO MHOTHX CIIy4asiX MOTYT OBITh XOPOIIO annpOKCHMHPOBAHBI MOJIEIBI0 H30TPOITHON CIIOIIHOW CPEJb,
eciy e€ MOJyJIH yIpYrocTH BbIOpaTh ONTUMAaNbHEIM 00pa3oM. VX crexyeT HaXOAuTh A KPHCTasIa KaXI0H CHMMETPUU U3 YCIOBHS
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nx OJIM30CTH K TOYHBIM MOJYJISIM YIIPYTOCTH, KOTOPbIE M3MEPSIIOTCS SKCIEPUMEHTAIBHO M IIPUBE/ICHBI B COOTBETCTBYIOIIMX TaOIMLIaX.
B oOmnacTu BBICOKMX TEMIIEpaTyp HEIMHEHHOE B3aUMOAEHCTBUS (DOHOHOB YYMTHIBACT KaK TPeX-, TaK M 4YeThlpeX (HOHOHHbIE
B3aUMOJIEHCTBUS. DTO MPUBOIHUT K TOMY, UYTO B MOJIEN MPHBEAESHHOTO H30TPOITHOTO KPUCTA/lIa HEOOXOAUMO YUUTHIBATh HE TOJIBKO
TEH30pbl MOMYJICH YyNPYyroCcTH BTOPOrO MOPAAKAa, HO M MOXyJeH YIPYrOoCTH TPETHETO M UYETBEPTOrO ITOPSIKOB, KOTOpPHIE
XapaKTepH3yIOTCSl JICBATHIO HE3aBHCHMBIMH KOMIIOHEHTaMH. Y4YeT (OHOH-(OHOHHOTO B3aMMOACHCTBHSA B IPUOIMKECHUH
CaMOCOTJIaCOBAHHOTO IIOJISI HPUBOAUT K IIOSBICHHIO 3aBHCHMOCTH CKOPOCTH Takux (oHOHOB m Temmepartypsl J[lebas ot
TemIepatypsl. B oTcyTcTBHE B3anMozeicTBHS B IpeHEOpEeKEHHN HETMHEHHBIMA Y dexTamu, GOHOHBI B JTAHHOH TEOPUH TaKHe XKe,
kak B Teopuu [lebas. X Ha3pIBaeM «TOJNBIMI» WIN «Ae0acBCKUMMY. DOHOHBI, CKOPOCTh KOTOPHIX IIEPEHOPMHPOBAHA BCIIEACTBHE
B3aUMOJICHCTBHS, HA3bIBa€M «CaMOCOITIacOBaHHBIMU». Iloka3aHO, YTO NpHU BBICOKHUX TeMIepaTypax TeopHsl IpeaCKa3blBaeT
JIUHEHHOEe 10 TeMIepaType OTKJIOHEHHE M30XOPHYECKOH TeImIoeMKOocTH OT 3akoHa [lromonra-Iltu. B oTnuume or GonbLIMHCTBA
KPHCTAJJIOB, IJie HAaOMIOAaeTCsl yMEHbIIEHHE H30XOPUYECKOH TEMI0eMKOCTH, TeOpusl Ul ajiMa3a M alMa30NoJOOHBIX KPHUCTAIIOB
MpeCcKa3bIBacT JIMHEHHOE BO3PACTaHUE STOH TEIUIOEMKOCTH C TEMIEpaTypol, Y4TO COOTBETCTBYET 3KCIEpHMEHTY. M300apuueckas
TEIJIOEMKOCTb aJIMa3a, Kak U 'y APYTUX BEIIECTB, JIMHEHHO BO3PACTAET C TEMIIEPATYPOH.

KJIOYEBBIE CJIOBA: ¢oHOH, u30XOpHYECKas TEIDIOEMKOCTh, HW300apHuecKas TEeIIOEMKOCTh, (DOHOH-(OHOHHOE
B3auUMoJIeHicTBHIE, 3Heprust Jlebas, pemerka anmasa, MOJyJIN yIIPyTOCTH





