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The instability of a freely falling jet of liquid in air taking into account the viscosity of the contacting media is considered. In
neglecting the viscosities of both media, instability was studied by Rayleigh and Plateau. They showed that instability develops as a
result of the action of surface forces, and is expressed in a change in the cylindrical shape of the boundary of a freely falling jet of
liquid with air into a sequence of spherical drops. In subsequent works, by phenomenological consideration of viscosity by means of
the Ohnesorge number, it is shown that the viscosity of each of the contacting media affects the nature of the instability. However,
this method of taking viscosity into account is not entirely correct, because does not take into account the specificity of the boundary
conditions existing at the interface. It is proposed to use percolation boundary conditions, the validity of which is proved by the
example of the exact determination of the threshold velocity of occurrence of Kelvin-Helmholtz instability. A dispersion equation of
the Rayleigh-Plateau problem with percolation boundary conditions that describes the instability taking into account the viscosity of
both media is obtained. The dissipative nature of the development of such instabilities is substantiated. The growth rates of
instabilities are determined in cases when: the jet and medium have a low viscosity (ideal fluids); the jet is characterized by high
viscosity, and the environment is small; the jet and the environment are highly viscous. It is shown that the theoretical model of
droplet decay of the jet in the absence of viscosity of both media is quite good, in quantitative terms, consistent with experimental
results. The maximum increment is equal yg =~ 0.32, against the Rayleigh-Plateau increment yg, = 0.34, for disturbances with

the same wave number X~ 0.7. It was also shown that for viscous jets and a weakly viscous environment, the instability

increment describes the experimental results with a rather high degree of accuracy. Numerical calculations show that for jets of
comparable viscosity, the instability increment decreases with increasing viscosity of the environment. If the viscosity of the
environment is constant, then the increment of instability will be greater where the viscosity of the stream is higher. It is shown that
the results of theoretical calculations are in good agreement with the available experimental data.

KEYWORDS: Rayleigh-Plateau instability, surface tension, viscosity, percolation boundary conditions, dissipative instability,
instability increment, wave number, instability range.

In the classical formulation the Rayleigh-Plateau problem is associated with a study of the hydrodynamic
instability of the cylindrical boundary of a freely falling jet of liquid with respect to its decomposition into separate
droplets.

Joseph Plateau first observed and characterized this instability in 1873 [1]. He noted that the instability occurred
when the liquid column length A exceeded the column diameter D =2R by a factor of about 3.13, i.e. when the

condition A >3.13-2R, was satisfied. Later lord Rayleigh corroborated the Plateau's work results by theory giving an

analytical description of this physical phenomenon [2, 3]. He showed that such an unstable behavior of a jet was due to
the availability of small perturbations on its surface, which could increase at certain wavelengths. Rayleigh showed that
sinusoidal perturbations of the surface were unstable due to effect of surface forces. However, the criterion for
instability development defined by him differs from Plato's criterion and takes the following form A >4.51-2R, . Taking

account of the formation of small intermediate droplets between the main droplets leads to a slight decrease in the
unstable wavelength to the value of 1>4.42-2R, [4]. However, such a decrease does not violate the general

conclusions regarding the criterion for the development of instability, which has been confirmed with a sufficient
degree of reliability by a significant number of experiments [5].

The physical phenomenon under consideration has a simple physical substantiation. The process of decomposition
the ow into droplets is due to the need of the system to occupy a position with the minimum potential energy. And since
in a free state a fixed cylindrical volume of a liquid is subject to surface tension forces, it will tend to take a spherical
shape that has a minimal surface and, therefore, the minimum potential energy of capillary forces [6]. The above
mentioned refers to a cylindrical liquid jet that is unstable with respect to its decomposition into droplets. However, the
list of such processes in the ambient environment is much longer [5]. Study of such processes is motivated not only by
their practical application, but also by a scientific content. The latter should include the definition of physical
mechanisms leading to decomposition of jets under various conditions, as well as the description of the effect of surface
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tension and viscosity on the dynamics of processes. And if the surface tension is the basis of instability, then viscous
forces can lead to a change in the characteristic decomposition times without changing the limits in which the stability
of the system is observed [5].

As a rule, the viscosity in problems of jet stability is taken into account phenomenologically by introducing, along
with the jet radius R,, a new characteristic length, called the “penetration depth”. This length is determined by the

Ohnesorge number Ok =v,/p/oR, [7] and has the form: /, = /v/o where v - the coefficient of kinematic viscosity, o

- the liquid density, o - the coefficient of surface tension.

Comparison of the Rayleigh theory for jets with no viscosity, as well as the Rayleigh-Chandrasekhar theory in
viscous media with experimental data [5] indicates a certain agreement. In some cases, the issue of agreement remains
open due to the lack of measurement error data in [5]. Therefore, the method of taking account of the viscosity of media
by means of the Ohnesorge number is not entirely correct, since it does not take into account the specifics of the
boundary conditions at the media interface.

If we consider the liquid jet and the surrounding air as two contacting media with their characteristic parameters,
then the Rayleigh problem [2, 3] transforms into the Kelvin-Helmholtz problem [8, 9]. In this case, as shown in [10],
the jet instability increment can be obtained from the Kelvin-Helmholtz instability increment, assuming the gravity
force equal to zero. At the same time, as shown in [11], only the use of percolation boundary conditions makes it
possible to take into account the viscosity of both media, to determine the threshold number and the increment of
instability development. Under this approach the threshold velocity of instability development coincides with the
experimentally measured. Therefore, on the basis of the foregoing in the present work we consider the Rayleigh-Plateau
problem within the framework of the Kelvin-Helmholtz model of instability development, taking into account the
viscosity of both media and using percolation boundary conditions.

For further research of the Rayleigh-Plateau problem we will turn our attention to the obtained experimental
results. So, in the experimental implementation of the Rayleigh-Plateau problem a liquid jet from a pipe of a certain
radius is falling vertically under gravity. Initially, at the exit of the pipe, the jet has a constant radius equal to the radius
of the pipe. The length of the falling liquid jet increases and reaches such a critical value, when the jet loses its
cylindrical shape as a result of decomposition into a sequence of droplets of almost the same size. Capillary instability
of a liquid jet owing under pressure from a pipe of diameter D=4 mm is presented in Fig 1. The initial sonic
perturbations superimposed on the jet had a wavelength of 4 = 168 mm, 50 mm and 18.4 mm. Their effect on the jet
stability during the motion from top to bottom, respectively, is shown in Fig. 1 [12]. The figure shows that the last value
of the wavelength is closest to the value of 1/D >3.13 found by Joseph Plato.

To understand the physical phenomena underlying the droplet instability of a cylindrical free-falling jet we present
below the result of study of the instability of freely falling jet decomposition into droplets obtained by Rayleigh [2, 3].
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Figure 1. Capillary instability of a liquid jet owing under pressure from a pipe with a diameter of D = 4mm. The initial perturbations
of the jet shape are initiated by sound waves of a wavelength equal to 42, 12.5 and 4.6 of the pipe diameter [12].

THE RAYLEIGH'S PROBLEM
Rayleigh investigated the stability of boundary of a cylindrical liquid jet of radius R, density o and surface

tension o in a cylindrical coordinate system 7,¢,z , where the axes ¢,z were parallel to the interface and the axis z
was oriented vertically upwards. As the values, describing the stability of the liquid boundary, he chose radial - W, and
vertical - W, perturbation of liquid velocity, displacement of liquid interface e(r, @, z,t) from the equilibrium position

R, R(r,zt)=R,+¢&(r,zt); |5| <<R, and deviation of liquid pressure from equilibrium  p,

p(’";zyt):po'i'ﬁ(r’z’t)’ |l’3|<<p0
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For small axially symmetric perturbations of the form

W, =U,(r)exp(—iwt +ikz); W,=U_(r)exp(—iot +ikz);

z

p=P(r)exp(—iat +ikz); &=¢,(r)exp(—iot+ikz). &

2 . . .
where,  and k = 7” - the frequency and the wavenumber of the interface perturbation, respectively, 4 - wavelength

of the perturbation, the dispersion equation has the form [2,3]:

) ok I, (kR,))

®® =—(1-k*R? )
( “)pR; 1,(kR,)

2

where, I, (x) , 1 (x) modified Bessel's functions of the first kind of the zero and the first order, respectively [13].
It follows from (2) that the instability arises for negative values of the square of the frequency w’® <0, i.e. when

kR, <1. In this case the radius perturbation increases with increment:

1,(K)

o)1=

3)

where, ¢ ~ exp( ;/RPI) variation of the liquid boundary displacement in time, I'| = /% 0, K =kR, - dimensionless
PLy
wave number.
From the condition K >1 it follows that the instability is possible when the length of the working circle of the jet
is less than the perturbation wave length in vertical direction. Calculations (3) gives the maximum increment is equal to

7o =0.343,Jc/pR; and is reached at K =0.7 . For example, for a water jet of 10 cm in diameter at the surface
tension coefficient o = 72.58 erg/cm’ (at a temperature of 20°C) and density p =1 g/cm’ [14], the characteristic time
of jet decomposition into droplets is about of order:

-1 pR3 53
max) - _ 291 [0 —291 =3.82s.
(VRP ) \/ p \72.58 @

From (3) follows that if the radius of the jet decreases the characteristic decomposition time decreases. For water
jet of 1 mm in diameter this time will be 3.8 ms. Let us compare the obtained expression for the increment (3) with the
experimental data given in Fig. 1. It follows from the figure that the last value of the sound wave length does not
coincide with, but it is most closely to the Rayleigh value: K =0.7=27R,/A —> 4 =6.28-0.2/0.7 =1.79 cm, which is

about 1.25cm in the experiment. Comparing theory with experiment there is a slight mismatch of theoretical
conclusions with experimental data. Therefore, there is a need to find models that would eliminate this discrepancy. In
the next section a model for describing the instability of jet decomposition into droplets based on the Kelvin-Helmholtz
theory of instability is proposed, which takes into account surface tension, viscosity of both media and uses percolation
boundary conditions.

RAYLEIGH-PLATEAU INSTABILITY IN THE FORMULATION OF THE KELVIN-HELMHOLTZ
PROBLEM WITH PERCOLATION BOUNDARY CONDITIONS
Let us consider the problem of stability of a liquid jet owing freely from a pipe in the formulation of the
Kelvin-Helmholtz problem. Oscillation of the interface between two media with density p,,p, and coefficients of

dynamic viscosity g, 4, in a cylindrical coordinate system p,¢#,z (axes @,z are parallel to the interface, the axis z is
oriented vertically upwards) we will describe using three functions: two functions for the velocity potentials
?s (r,¢, Z,t), the function of the liquid interface displacement from the equilibrium position, where the perturbed

radial position of the interface R(r, ¢,z,t) is determined by expression (1). As in the previous section, due to the axial

symmetry of the problem we assume the perturbed values independent of the azimuth angle ¢ . With this consideration
the velocity of the fluid in media 1, 2 is determined by the expression: W,, =V, (r,z,t)= ﬁ(gol(g) (z2)+ 1, (r,z,t)),
where (pl(g) (z) - the potential of liquid velocities in the equilibrium state; ¢, ,(7,z,) - the potential of the disturbed
velocity of the medium 1, 2; ¢, (r,z,t) - operator of gradient in a cylindrical coordinate system;

‘(pl(,OZ)(Z)‘ >>|¢1,2(r, z,t)| - the smallness disturbance condition. The location of viscous media and the boundaries
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between them are schematically presented in Fig.2. The boundary of viscous media is determined by the expression
R=R,+¢(r,zt) and the media move at different velocities 7, , parallel to the axis z .
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Fig. 2. The layout diagram of the interface of viscous media R =R, + g(r,z,t) moved

at different velocities 7, , parallel to the axis z
For the case shown in Fig. 2 the potential of the equilibrium velocity can be represented as:
(01(2) (Z) =V,z+C, (5)
where, C,, - constant.

The equations for functions ¢, (r,z,¢) and &(r,zt)are well known [15], they consist of the equation for the

incompressibility of a liquid and the equation describing the kinematic boundary condition. The equation for the liquid
incompressibility is as follows:

s .0
A, = Aﬁol,z + ;2 =0, (6)
Oz
1o o. 0. o ... . S . . .
where, A...=——r—+ AL+ P The potential of the equilibrium velocity of the medium (5) automatically
z

ror or o7 -
satisfies the equation (6). In further calculations we omit the sign for the convenience of writing. The kinematic
boundary condition determines the radial velocity of the liquid at media interface:

dR _ 0, . OR = =\p] O,
R U e (LA T s ™
After linearization (7) we have:
Yy
o +V, (22 _%%n ®)
ot r=Ry+&(r.zt) 0z r=Ry+&(r.zt) or r=Ry+&(r.zt)

Equations (6), (8) should be supplemented by a dynamic boundary condition. This condition can be obtained by
integrating along the coordinate r of the radial component of the linearized Navier-Stokes equation:

T:p[a(,j_VtH(W)ijp:o ©)

over a thin transition boundary layer ~A<r—R, — g(RO,z,t) <A, according to the expression:

l‘:R0+£(R0,:,t)+A r=Ry+A
m[ [ (T,_)dr]:m[ [ (T,)dr] (10)

£—0 r:R0+S(R0,z,t)—A r=Ry-A

Let us obtain this dynamic boundary condition. To simplify the procedure of integration over a thin transition layer we
present the coefficient of dynamic viscosity of both media ,u(r) in the following model form:

,u(r) =1 0(=r+Ry—A)+ 1,0(r —R, —A)+

(11)
+(ﬂ1 +,uz)((9(r—R0 +A)—-0(r—R, —A)),

where, 6(x) - asymmetric unit function (x)=1 at x>0 and 6(x)=0 at x<0. When obtaining a dynamic

boundary condition, the model dependence (11) characterizes its percolation boundary conditions [11]. The physical
nature of “percolation boundary conditions” is the effect of the mutual periodic penetration of contacting media near the
interface in areas not previously occupied by them. Such penetration of media is taken into account by a model
representation of the viscosity coefficient at the interface in the form of stepwise functions of the radius. The proposed
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model representation is valid, because in the Kelvin-Helmholtz instability problem with a at boundary [15], the use of a
viscosity coefficient in the form of superimposed steps of the form (11) leads to the dispersion equation, which gives a
threshold ow velocity corresponding to the experimental one. After linearization the Navier-Stokes equation (9) takes
the form:

00p 10 {6(¢(°)(z)+¢)] _[20,”(7) 6, (r)iﬁ_é)}@_p:o (12)

Ot Ox, Ea Ox, or o ¥’ or ) ox,

where, k=r, i=r,z, x, =r, x, =z, the corresponding term should be summed on index "i".
For the selected model dependence of the medium viscosity ,u(r) upon the coordinate z the main contribution to
the dynamic boundary condition makes a summand proportional to 8,u(z) / 0z . Integrating (12) over a thin transition

layer (R0 -AR, +A) along the radius, taking into account (8), and then tending to zero A — 0, we obtain the
following dynamic boundary condition:

— 1Py 2

2
0 . 0P 1o o 0'e
—o+V, /| +2| ——+=— +pl +o0—== t 13
p(@tw oz j‘l (r or BZZJMB p| con 1

1 aZZ
In (13) the pressure difference corresponds to the Bernoulli equation and is determined by the expression:

) I/ZZ I/IZ
p|1 = p, — p, = const , where, const = p, 7—,01 B
Thus, we have a system of equations for perturbed values on the jet boundary:
o’
MG+ =0, (14)
’ oz
06
¢| 1,2 og|  _9Pa (15)
ot re, 0 vk or rr,
2 —Pr
0 . 0P 1o @& o0’¢
—o+V,— || +2|—+— oc—-=0. 16
p(&t(p b j] [r or 622)”}1 0z* (16)

We'll submit the velocity potentials ¢ and the interface displacement & in the form of
Py ~ 1o (r)exp(ikz—iot), &~ g(r)exp(ikz—iwt), where @ and k are the frequency and the wavenumber of the

wave, k=2x7/d, d - the perturbation wavelength along the jet axis. Then from equation (14) we obtain a radius-
restricted solution for a perturbed velocity potential fl(r) in medium 1 and an infinity-restricted solution for a

perturbed velocity potential in medium 2:

f,(r)= 4L, (kr), 0<r<R,

fo(r)=BK,(kr), Ry<r<o (17)

where, 1,(x),K,(x) - modified Bessel functions of the second kind of the zero order [13], 4,B - constants. From

(15), (16) we obtain the system of equations:

—i(w—kV,) = Ak, (KR, ). (18)
—i(@—kV,) = ~BIK, (KR, ), (19)
2 — P2
0. . 0p 10 & o
—p+V, == || +2| —=—+=— —=0. 20
p(@tw 12 ﬁzj‘l [rar azzjl e 0

where, K, (x) - modified Bessel function of the second kind of the first order [13].

Solution of equations (18) - (20) in the Lamb type reference system
PV Ky (kR))/ K, (kR, )+ pV; 1, (kR,)/1,(kR)) =0 gives the following dispersion equation:
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I, (kR,)

( s [1+kRO MJWW [l‘kRo 1, (kRO)D

o+ 20 K. (kR 1 (kR -
SR T

Ilikj:}rﬂm [1—kR0 ITEZJI:Z;DJF @
)
(

K, (kR,) I, (kRy))
(szRo K, (kRO) + pkR, 1, (kRo)J

Let us consider the solution of equation (21) with no viscosity, i.e. assume g, = 1, =0. In this case the equation
(21) takes the form:

(22)

R3
— 2 X=kR, Y =aG P

W oR, o

The instability increment is determined by the expression:
Vxo (X,G)=Im(Y(X,G)) (23)

and is realized at positive values of the radical expression (22).
The summands for water and air proportional to small values p,V,’ / oV <<1 and p,/p, <<1can be neglected

where, G =

in (23). As a result, we come to the following expression for the instability increment:

X 5L(X)
Vo (X, G)=—== [1-GX ——. (24)

e 0O~ T )
In (24) the constant G is specified by the system parameters at the initial time. Let us determine its value. From
experimental studies of jet decomposition into droplets with no viscosity it follows that instability is possible for X <1

[5]. Therefore, from the condition of stability . (1,G)=0 it is easy to determine the value G':
G=1,(1)/1,(1)~2.24.

We compare the obtained expression for the increment (24) with the experimental data shown in Fig. 1 as well as
with those given in the review [5]. Let us consider first the experimental data in Fig. 1. But first of all we note that the
excitation wavelengths prescribed in the experiment do not correspond to the wavelengths in Fig. 1. For example, an
excitation with a wavelength of 18.4 mm is prescribed for a lower jet and the excitation wavelength in the Fig. 1 is of
the order of 12 mm.

The same can be seen on the second and third jets. At the second jet the excitation wavelength is 50 mm and the
Fig. 1 shows the superposition of a prescribed wavelength and a wavelength close to the resonance one. At the third jet
the excitation wavelength is equal to 168 mm and the Fig. 1 shows an evidence of shorter wavelengths, so that the
prescribed wavelength does not have time to show itself. However, despite this we'll determine the comparative value
of increments of jet decomposition into droplets.

The distance of jet decomposition for all images, as follows from Fig. 1, we will determine by a distance including
several excitation wavelengths of the jet N . We assume that the instability increment of the lower jet decomposition in
Fig. 1 is equal to p,. Then the distance of the lower jet decomposition is determined by the expression

Al =NA =V,[]y,. The wavelength is A4 =46-4=184 mm and the corresponding wavenumber
X, ~27-2/4.6-4=0.68.
The distance of the second jet decomposition is determined by the expressionAl, = NA, = V,/y, . The excitation

wavelength is 4, =12.5-4=50 mm and the corresponding dimensionless wavenumber X, ~27-2/12.5-4=0.25.
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Then, on the basis of given estimates, the instability increment of the second jet decomposition is smaller than the
increment of the lower jet by a factor of Al /Al, 4.6/12.5~0.37, i.e. is equal to ¥, ~ »,Al, /AL, = 7,-0.37.

For the upper jet the instability increment of jet decomposition is less than the increment of the lower jet by a
factor of Al /AL, =4.6/42 =~ 0.11, i.e. it is equal to y, = »,Al, /AL, = ,-0.11 and the dimensionless wavenumber is of the

order X, ~27-2/42-4=0.08.
If we assume that the lower jet is close to the resonant decomposition into droplets, this means that the value of the
dimensionless increment is of the order of the maximum increment (24), which is realized at X,= 0.7. Numerical

calculations show that the maximum increment (24) is reached at G=2.24, which corresponds to the water velocity
Vi=12.6cm/s. Based on the above reasoning we determine from (24) the value of the maximum increment

Y =0.32479 .

Fig. 3 shows a dependence graph of the instability increment of jet decomposition (curve 1) obtained from the
expression for the Rayleigh-Plateau instability increment (3). Dark markers on this graph indicate the values of
instability increments obtained on the basis of the experimental data presented in Fig. 1. Light markers in Fig. 3 indicate
the experimentally measured points describing the dependence of the dimensionless instability increment ¥ (.X') on the

dimensionless wave number X for ideal liquids [5]. The dependence of the dimensionless increment on the
dimensionless wavenumber (curve 2) described by expression (24) is presented in Fig. 3 for comparison.

It follows from Fig. 3 that the theoretical model of jet decomposition described by formula (24) with no media
viscosity corresponds closely in quantitative sense to the experimental results. Taking account of media viscosity, as
follows from the solution of the Kelvin-Helmholtz problem in viscous media [11], can lead to a quantitatively different
result.

In the next section we present the solution of the Rayleigh-Plateau problem in the Kelvin-Helmholtz formulation
with allowance for the viscosity of both media.
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Figure 3. Dimensionless instability increment ¥ (.X') as a function of the dimensionless
wavenumber X for ideal liquids. Curve 1 corresponds to the dimensionless increment
of Rayleigh-Plateau instability (3), curve 2 is given by expression (24).

TAKING ACCOUNT OF MEDIA VISCOSITY EFFECT ON RAYLEIGH-PLATEAU
INSTABILITY IN THE FORMULATION OF THE KELVIN-HELMHOLTZ PROBLEM
Low viscosity media

o : R; o .
At dimensionless variables G = ﬁ, X =kR,),Y = oG Pl e dispersion equation (21) takes the form:
1 Pilty o

Y+ zl'ﬁﬂ[zl {1+XMJ—21' X Mﬁz (1—XMJ+X—2[1— GXﬂJ =0. (25)

VG 1,(X) k(X)) 7 G 1(x) L(x)) 6 I,(X)

M ;t _ M
9 2 =
R,pV, R,p V)

The relationship between the dynamic viscosities of air and water x4, >> u, and the relationship between velocities of

where, ;ll = - dimensionless coefficients of dynamic viscosity of the media 1 and 2, respectively.

media V;> >>V,’ are taken into account in the expression (25).

Using the reasoning of the previous section on ideal water-air jet decomposition we can determine the
characteristic parameters of the jet decomposition of viscous water-air media, provided that the ow velocity of water in
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the viscous case remains the same as in the ideal case. In numerical calculations of the increment in the expression (25)
the following parameter values were chosen: ;zl =2.17-107; ,212 =3.91-10", which correspond to the viscosity of
water and air under normal conditions. The numerical analysis (25) shows that taking account of water and air
viscosities does not significantly change the value of the instability increment compared with their ideal analogue and
the range of unstable wavenumbers remains as before.

Thus, when taking into account the viscosity of water and air, the jet decomposition into droplets is possible within
the range of wavenumbers 0 < X <1, which corresponds to the jet diameters. The obtained criterion corresponds to
Plato's experimental conclusion that the instability of the jet occurs when the length of the liquid column satisfies the
condition A4 >3.13-D . The maximum increment is equal to Y ( ) 0.32391, smaller in magnitude than for ideal

media Y (X ) <y and is achieved for perturbances with a wavelength X, =0.7.

Thus, the proposed model of decomposition of the viscous fluid jet into droplets corresponds to the experimental
data; makes it possible to take into account the effect of viscosity on the jet decomposition velocity and to estimate the
characteristic parameters of the process.

As we see, the instability increments in media with low viscosity differ slightly from increments for ideal media.
Let us consider the instability of jet decomposition in media with a finite viscosity.

The jet is characterized by a high viscosity and the ambient medium — by a low viscosity
Let us consider the jets whose viscosities are not small. The description of jet instability with the Ohnesorge

number  Oh = p;'\p,/(cR,)=0.58 [5] by expression (25) shows that the curve with parameters

;zl =0.39>> ;12 ~7.0-107 has the smallest departure from the experimental data. Based on the condition for the

development of instability 0 < X <1 an optimal value of the parameter G = 0.45 is calculated. Value of the increment
determined by the equation (25) relative to the experimental data (curve 2) is shown in Fig. 4.

0.3
*

1

2 N

Y(X) - \
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Figure 4. Dimensionless instability increment of decomposition of a viscous liquid jet in the
air Y(X) for Oh =0.58 as a function of the dimensionless wavenumber X (curve 1, [3]).

Curve 2 corresponds to the increment (25). Experimental points are shown by markers [5].

From the comparison of curves 1 and 2 in Fig. 4 it follows that taking account of the high viscosity of the jet in the
expression for the increment (25) makes it possible to describe the experimental results with a sufficiently high degree
of accuracy. For liquid densities p, << p, the relationship Oh, <<Oh, is satisfied. The interval of unstable

wavenumbers remains the same 0 < X <1.

The jet and the ambient medium are characterized by a high viscosity
In the case ,Zzl > ;12 ~1 the instability increment is determined by the expression (25), since we believe that
V> >>V; as before. The result of the numerical calculation of the instability increment of jet decomposition obtained
from equation (25) with allowance for viscosity in both media is shown in Fig. 5. The Ohnesorge number Ok =0.58
and the followmg parameter values are used for calculations:

o 1 =183 yz =1.64, G=10 - follows from the condition for instability development 0 < X <1 (curve 2,
Flg 5);
e 1, =183 yz =18, G=16 - follows from the condition for instability development 0< X <1 (curve 3,

Flg. 5).
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Figure 5. Dimensionless instability increment of viscous fluid jet decomposition in a viscous
medium as a function of the dimensionless wavenumber X for Oh =0.58 and parameters: curve

2- /AJI =1.83; /AJZ =1.64; curve 3 - /AJI =1.83; ,th =1.8. Curve 1 corresponds to curve 1 of Fig. 4.

From numerical calculations it follows that with the same Ohnesorge numbers for the jet Oh the instability

increment decreases with increasing viscosity of the ambient medium ;12. At a constant viscosity of the ambient

medium the instability increment is greater there, where the jet viscosity is greater. This conclusion is in contrast to the
theoretically obtained conclusion about decrease in the instability increment with increase in the jet viscosity [5]. This
contradiction is associated probably with the specificity of the boundary conditions used at derivation of the dispersion
equation.

CONCLUSIONS

In this paper the theoretical solution of the Rayleigh-Plateau problem about the instability of a freely falling uid jet
is compared with the available experimental results. The mismatch of the theory with the experiment was revealed. In
this case taking account of the jet viscosity does not significantly improve the agreement of the theory with the
experiment. Therefore, it was proposed to investigate the Rayleigh-Plateau instability in the formulation of the Kelvin-
Helmbholtz problem with percolation boundary conditions with allowance for the viscosity of the contacting media. A
dispersion equation was obtained taking account of the viscosity of both media for percolation boundary conditions. It
was shown that for viscous jets and a weakly viscous ambient medium the instability increment describes the
experimental results with a sufficiently high degree of accuracy. Numerical calculations show that for jets with the same
viscosity the instability increment decreases with increasing viscosity of the ambient medium. If the viscosity of the
ambient medium is constant, then the instability increment will be greater where the viscosity of the jet is greater.
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JACUITIATABHA HECTIMKICTD PEJIES-IIJIATO
Oxcana JI. Anapeesa™”, Jleonin A. Bynasin®, Bikrop L. Tkauenko™”
“HHI] "Xapxkiscoruii (izuxo-mexniunutl incmumym"
eyn. Akaoemiuna, 1, 61108, Xapkis, Ykpaina
thpKiGCbKud Hayionanvnuii ynieepcumem imeni B.H. Kapaszina, Xapkis, Ykpaina
ni. Ceoboou, 4, 61022, Xapxis, Yrpaina
‘Kuiscokuii Hayionanvnuii ynieepcumem imeni Tapaca [lesuenka
8yn. Bonooumupcera 64/13, 01601, Kuis, Ykpaina
Po3risiHyTO HECTIlKICTh CTPYMEHS PIAMHH, 10 BUTBHO Iaja€, B HOBITPI IPK BpaXyBaHHI B'SI3KOCTI CEPEIOBUII, 110 KOHTAKTYIOTh. Y
HEXTyBaHHsI B'SI3KOCTI 000X CepeloBHII HecTiiikicTh mocmimkeHa B pobortax Pemes i Ilnmaro. Bonu moxaszanu, 1o HecTifKicTh
PO3BUBAETHCSI B PE3YJIbTATi Aii MOBEPXHEBHX CHJI, 1 BUPAXAETHCSA B 3MiHI IMIIHAPUYHOI (OPMHU TpaHUI CTPyMEHs DPIAMHHM, LIO
BUIBHO Mafae, 3 MOBITPSM Ha MOCTIIOBHICTh C(HEPUIHUX Kparesb. Y HACTYIMHHX poOOTaxX, IUIIXOM (PEHOMEHOIOTIHHOTO BPaXyBaHHS
B'SI3KOCTI 3a gomomororo uncia OH3arepa, NOKa3aHo, IO Ha TMOKa3HUKH HECTIMKOCTI BIUIMBAE B'S3KICTh KOXKHOI 3 KOHTAKTYHOUHX
cepenoBunl. OpHaK Takui MeToJ OOJIKY B'SI3KOCTI € He 30BCIM KOPEKTHUM, TOMY IO HE BPaxOBYE CIENU(IKy TPaHHIHUX YMOB,
ICHyIo4y Ha KOpJOHI pO3Iily cepemoBuil. B poOOTI 3ampoNnOHOBaHO BHKOPHUCTOBYBATH IEPKOJAIIMHI TpaHWYIHI YMOBH,
MIPABOMIPHICTh SIKMX [OBEJCHA HA INPUKIAAI TOYHOTO BU3HAYEHHS ITOPOroBOi HIBHAKOCTI BMHHMKHEHHs Hectiiikocti KenbBiHa-
Tensmronbua. s 3anaui Penes-ITnaro 3 nepkoysiiiHUMHU IpaHUYHMMH YMOBaMH OTPHMAHO JMCIEPCiiiHe pIBHSHHS, K€ OIHCYE
HECTIHKiCTh IpU BpaxyBaHHI B's3KocTi 000X cepenoBuil. OOGIPYHTOBAHO MUCHIIATHBHHN XapakTep PO3BUTKY TaKMX HECTIHKOCTEH.
Bu3Ha4yeHO iHKPEMEHT PO3BUTKY HECTIMKOCTI y BHIAKax, KOJIU: CTPYMiHb 1 CEPEIOBHUILE MAIOTh Mally B'S3KiCTh (ieasbHi pianHK);
CTPYMiHb XapaKTEPU3YETHCS BEIUKOIO B'S3KICTIO, a HABKOJMINHE CEPEOOBHUINE - MAJOI0; CTPYMiHb 1 HABKOJHIIHE CEPEIOBHILE
XapaKTepH3yIOThCS BEJIMKOI B'si3KicTio. II0Ka3aHO, 1O TEOpeTHYHA MOAENb KPAIUIMHHOTO PO3Iady CTPYMEHS Y BiICYTHICTBH
B'I3KOCTI 000X cepefoBHIl MJOCUTH m00pe, B KIUIbKICHOMY BIIHOIICHHI, BIATIOBIZA€ EKCIEPUMEHTAIFHUM pe3yJIbTaTaM.

MakcumanbHuil iHkpemenT gopisuioe ¥ = 0.32, nporu nukpemenra Penes-Ilnato ¥, =~ 0.34, nns 36ypens 3 ogHakoBUM

xBiiboBuM uuctoM X~ 0.7. ITokasaHO TaKOX, IO JUIA BY3bKHX CTPYMEHIB i CIIaGOB'I3KOTO HABKONHIIHBOIO CEPEJOBHIIA

IHKpEMEHT HECTiHKOCTI 3 JOCHTh BHCOKHM CTYIICHEM TOYHOCTI OMHUCY€ EKCIIEPHMEHTalbHI pe3yibTaTH. UHCIOBI po3paxyHKH
MMOKa3yI0Th, 110 JJIsl CTPYMEHIB 3 TIOPIBHSHHOIO B'SI3KICTIO IHKPEMEHT HECTIHKOCTI 3MEHIIYETHCS 3 POCTOM B'SI3KOCTi HABKOJIMIITHBOTO
cepenoBuma. Y pasi, SKIIO B'S3KICTh HAaBKOJHMIIHBOTO CEPENOBHINA IOCTiiiHA, TO IHKPEMEHT HECTIMKOCTI Oyae Oinmbime Tam, e
Oimpime B'S3KICTH CTpyMeHs. IlokazaHO, MO pe3ydbTaTH TEOPETUYHHX PO3PaxXyHKIB JOOpEe VY3TOMKYIOTbCS 3 HAasBHUMH
eKCHEPUMCHTAIbHUMH JaHUMH.

KJIFOUYOBI CJIOBA: wmectilikicts Penes-IInaro, moBepxHeBHil HATAr, B'S3KICTh, MEPKOJLMINAHI IPaHWYHI yMOBH, AWUCHIATHBHA
HECTIHKICTh, IHKDEMEHT HECTIMKOCTI, XBUIILOBE YUCIIO, IHTEPBAT HECTIHKOCTI.

JACCUITATUBHAS HEYCTOMYUBOCTD PIAJIEA-TIIATO
Oxcana JI. Annpeesa™”, Jleounn A. Bynasun®, Buxrop U. Tkauenxo™
“HHI] "Xapvkosckuil uzuxo-mexunuyeckuil unemunmym'"
ya. Akademuyeckas, 1, 61108, Xapvkos, Yxpauna
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PaccmoTpeHa HEYCTOHYHMBOCTD CBOOOJHO IMAJaroLIel CTPYH JKHIKOCTH B BO3AyXe IPU YUeTe BSI3KOCTH KOHTAaKTHPYIOLIMX cpex. B
MpeHeOpeKEHUN BI3KOCTEH 00eux cpel HEyCTOHYMBOCTH HccienoBaHa B paborax Panmes u Ilnmaro. OHM mokasamu, YTO
HEYCTOMYMBOCTh PAa3BUBAETCSA B Pe3yJIbTaTe ACHCTBHS MOBEPXHOCTHBIX CHII, U BBIPAXKAETCSl B U3MEHEHUH ILIMINHIPUYECKOH (OpPMBI
TPaHUNBI CBOOOIHO TMANAIOIIEH CTPYH JKHIKOCTH C BO3LYXOM Ha IIOCIEAOBATEIBHOCTH CEpPHUECKHX Kameldb. B mocmemyrommx
pabortax, myTeM ()CHOMEHOJIOTMYECKOTO ydeTa BSI3KOCTH mocpeacTBoM umciaa OH3arepa, MHOKa3aHO, 4YTO Ha XapakTep
HEYCTOWYMBOCTHU BIUSET BA3KOCTH KaXKIOU M3 KOHTAaKTUPYIOMUX cpex. OMHAKO TaKOH METOJ| ydeTa BSI3KOCTU SIBJISIETCS HE COBCEM
KOPPeKTHBIM, T.K. HE YUYHUTBHIBAe€T CHEHU(MKY TpaHWYHBIX YCIIOBHH, CYyIIECTBYIOUIyI0 Ha TpaHMIE pasmena cpex. B pabore
MIPE/UIOKEHO HCIIOJIb30BaTh IMEPKOJSLHOHHBIE I'DAHUYHBIC YCIOBHS, NPABOMEPHOCTh KOTOPBIX JIOKA3aHAa Ha IPHUMEpPE TOYHOTO
OIpEe/eNICHHs] OPOTOBOH CKOPOCTH BO3HHKHOBeHHsl HeycroiumBoctd KenbBuna-I'enpmronsua. s 3amaum Panes-Ilmato ¢
MEPKOAMOHHBIMA TPAHUYHBIMU YCJIOBUSIMU TOJyYEHO IHUCTIIEPCHOHHOE YPaBHEHHE, KOTOPOE ONHUCHIBAET HEYCTOWYMBOCTH MPHU
yueTe BA3KOoCcTH o0enx cpesi. OG0CHOBAaH AMCCUIATHBHBIN XapakTep pa3sBUTHA TaKHX HeycToHumBocTel. OmpeeneHbl HHKPEMEHTHI
pa3BUTHA HEYCTOMYMBOCTEH B CIydasx, KOrJa: CTIpysl M cCpela HMEIOT Malylo BSI3KOCTh (WACalbHBIC XXHUAKOCTH); CTPYs
XapaKTepHu3yeTcs OONBIIOI BA3KOCTBIO, @ OKPYXKAIOIIAsi Cpefia - MAJOH; CTPYs M OKPY’Karomlasi cpefa XapaKTepHu3yloTcs OONIbIIOi
Bs3KocThIO. [IoKa3zaHo, YTO TeopeTHUYecKas MOJENb KaIelbHOTO pacliajia CTPyH B OTCYTCTBHE BSI3KOCTH OOCHMX Cpell JOCTaTOYHO

X0pouo, B KOJUYECTBEHHOM OTHOMICHUHU, COOTBETCTBYET JSKCIICPUMCHTAJIBHBIM PE3YyJIbTaTaM. MakcumanbHBIN HWHKPEMEHT paBCH

Ve = 0.32, nporus nukpementa Pones-Ilnato yy, ~ 0.34, 1ns Bo3MyIieHnit ¢ 0QMHAKOBBIM BONHOBBIM unciom X, =~ 0.7.

[TokazaHo TakXke, 4TO JUIS BSIBKHX CTPYH M C1a00BS3KOH OKpYIKalOIiei cpeibl HHKPEMEHT HEYCTOHYMBOCTH C JIOCTAaTOYHO BBICOKOM
CTENEHbI0 TOYHOCTH OIUCHIBAET HKCIIEPUMEHTAIbHBIC Pe3ybTaTbl. UNCIIEHHbIE pacueThl II0Ka3bIBAOT, YTO JUI CTPYH ¢ cpaBHUMOMH
BA3KOCTBIO HMHKPEMEHT HEYCTOMYMBOCTH YMEHBIIAETCS C POCTOM BSI3KOCTH OKpYy)Karomle cpeapl. B ciyuae, eciam BS3KOCTh
OKpY>Karolllel Ccpe/ibl MOCTOSIHHA, TO MHKPEMEHT HEeyCTOHYMBOCTH OyzeT Ooblie TaM, rae Oomblie BA3kocTh cTpyd. Ilokasano, 4ro
PEe3yNbTaThl TEOPETUIECKHUX PACUETOB XOPOIIO COTIACYIOTCS C UMEIOIIUMUCS IKCIEPUMEHTATbHBIMH JaHHBIMH.

KJIFOYEBBIE CJIOBA: neycroitunBocts Pames-Ilnaro, moBepXHOCTHOE HATSKEHHE, BAZKOCTh, MEPKOJISIMOHHBIE TPAaHUYHBIC
YCIIOBHS, TUCCUNIATUBHAS HEYCTOIMYNBOCTD, HHKPEMEHT HEYCTOMUUBOCTH, BOJIHOBOE YHCJIO0, HHTEPBAJ HEY CTOMUYUBOCTH.





