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In this paper we studied the weakly nonlinear stage of stationary convective instability in a nonuniformly rotating layer of an 
electrically conductive fluid in an axial uniform magnetic field under the influence of: a) temperature modulation of the layer 
boundaries; b) gravitational modulation; c) modulation of the magnetic field; d) modulation of the angular velocity of rotation. To 
describe the  nonlinear convective phenomena the local Cartesian coordinate system was used, where the inhomogeneous rotation of 

the fluid layer  was represented as the rotation with a constant angular velocity 0


 and azimuthal shear 0 ( )U X


 with linear 

dependence on the coordinate X . As a result of applying the method of perturbation theory for the small parameter  

( ) /c cRa Ra Ra    of supercriticality of the stationary Rayleigh number nonlinear non-autonomous Ginzburg-Landau equations 

for the above types of modulation were obtaned. The amplitudes of the modulated fields were considered small, which having a 

second order  
2 , and the parametric effects  influence to the development of stationary convection in the third order 

3 . 
Numerical solutions of the Ginzburg-Landau equations for various types of modulation of the external parametric influence had 
showed that: 1) by the nonuniform rotation with a positive Rossby number 0Ro   the heat transfer in the fluid increases; 2)  the 

increasing  of modulation frequency mod  leads to suppression of heat transfer as with positive ( > 0)Ro , so with negative 

( < 0)Ro  rotation profiles; 3) the effect of increasing the modulation amplitude of mod  is to increase the heat transfer anyway of 

the rotation profile.  It is shown that  the rotational modulation has the greatest influence on the change in heat flow in the system. At 
the same time, gravity modulation slightly exceeds magnetic modulation,  and thermal phase modulation  has a lesser effect on heat 
transfer in comparison with other types of modulations. 
KEY WORDS: magnetorotational instability, Rayleigh-Benard convection, critical Rayleigh numbers, weakly nonlinear theory, 
non-autonomous Ginzburg-Landau equation 
 

As known, the instability of a horizontal fluid layer heated from below in the field of gravity (the Rayleigh-Benard 
convection) is a classic problem of fluid dynamics [1-3]. The problems related to the effect of rotation and magnetic 
field on the Rayleigh-Benard convection cause particular interest. These problems are of applied nature for 
astrophysical, geophysical and for engineering-technological research [4]. The problem of rotating Rayleigh-Benard 
convection was studied sufficiently detailed in [5-6],  where it was found that the Coriolis force with the rotation vector 




 parallel to the gravity vector g


 inhibits the onset of convection and thus induces a stabilizing effect. Rayleigh-

Benard convection, in which the axis of rotation of the medium and the uniform magnetic field coincide with the 
direction of the gravity vector, was well studied in [1-2]. The case is also interesting for astrophysical problems when 
the directions of the axes of rotation and the magnetic field are perpendicular to each other, and the direction of the 
magnetic field is perpendicular to the direction of the gravity vector. Such problem statement corresponds to convection 
in fluid layers located in the equatorial region of a rotating object, where the azimuthal magnetic field plays a 
significant role. The linear theory of such convection was first constructed in [7-8]. The linear theory of rotating 
magnetic convection for a random deviation of the axes of rotation and the magnetic field from the vertical axis (gravity 
field) was developed in [9]. A weakly nonlinear theory and stability analysis of azimuthal magnetic convection with 

0 ( ) =B R const  was performed in [10]. It proposes a model in which the centrifugal acceleration 2
1 2= ( )cg R R   can 

play the role of gravitational acceleration g


 for free convection in the local Cartesian approximation. The weakly 

nonlinear theory of centrifugal magnetoconvection considered in [10] was applied to the problem of a hydromagnetic 
dynamo. In all works on rotating magnetic convection [1-10], the rotation of a horizontal fluid layer with a constant 
angular velocity = const  was considered. 

However, it is known that the majority of various space objects consisting of dense gases or liquid (Jupiter, Saturn, 
Sun, etc.) rotate non-uniformly, i.e. different parts of the object rotate around a common axis of rotation with different 
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angular velocities. Differential (non-uniform) rotation is also observed in galaxies, accretion disks, and extended rings 
of planets. Besides, such large-scale vortex structures as typhoons, cyclones and anticyclones, etc. also rotate non-
uniformly. This circumstance served as the motivation for a theoretical study of Rayleigh-Benard convection in a non-
uniformly rotating electrically conductive fluid in the axial uniform magnetic field [11-13], as well as in an external 
spiral magnetic field [14] with the nontrivial topology 0 0 0B rotB  . 

The problem of the stability of an electrically conducting fluid between two rotating cylinders (Couette flow) 
and the Rayleigh-Benard problem in an external constant magnetic field were both considered in [11-12]. There was 
also carried out a study of the chaotic regime based on the equations of nonlinear dynamics of a six-dimensional 
(6 )D  phase space. The analysis of these equations has shown the existence of a complex chaotic structure - a strange 

attractor. A convection mode in which a chaotic change in direction (inversion) and amplitude of the perturbed 
magnetic field, taking into account the inhomogeneous rotation of the medium, occurs was found as well. A study of 
the chaotic regime of magnetic convection of a nonuniformly rotating electrically conductive fluid in a spiral 
magnetic field based on the equations of nonlinear dynamics of an eight-dimensional (8 )D  phase space was carried 

out in [14]. There was also found a convection regime in which a chaotic change in direction (inversion) and 
amplitude of the perturbed magnetic field occurs, taking into account the nonuniform rotation of the medium and the 
nonuniform external azimuthal magnetic field. Earlier, a weakly nonlinear stage for rotating magnetoconvection (for 

= const ), in which a chaotic regime occurs, was studied in rotating fluid layers [15-16], in conducting media with 
a uniform magnetic field [17-20], and in conducting mediums rotating with a magnetic field [21]. However, the 
dynamics of the magnetic field itself was not considered in these works, which corresponds to the non-inductive 
approximation. Such tasks have great importance for technological applications: crystal growth, chemical processes 
of solidification and centrifugal casting of metals, etc. 

The study of the dynamics of a magnetic field generated by convective motions of a fluid is important for the 
theory of magnetic dynamo [22]. A special role in this is played by issues related to the physical nature of inversions 
and variations in the magnetic field of the Earth, the Sun, and other space objects. In [23] Rikitaki proposed an 
electromechanical model of terrestrial magnetism. The study of the dynamic system of Rikitaki equations was also used 
to explain the chaotic inversion of the geomagnetic field [24-27]. In recent works [28-29] was investigated a modified 
system of Rikitaki equations taking into account friction and not reducing it to a three-dimensional form as for example 
in [24]. This made it possible to more clearly show that at first the oscillations of the current (or magnetic) variable near 
a certain stationary state with an increase in amplitude go into oscillations around an another stationary state, which 
simulated inversions [29]. In [28] it is established that after chaotic behavior the system goes into stable mode. 
According to the authors of [28], such a regime can describe superchrons in the inversion of the geomagnetic field. In 
contrast to the works [23-29], in [11-12], [14] it is proposed to model the magnetic field inversion by a dynamic system 
of equations of Lorentz type, respectively, for (6 )D  and (8 )D - dimensional phase space. 

In [13], the weakly nonlinear stage of stationary convective instability in a nonuniformly rotating layer of an 
electrically conductive fluid in an axial uniform magnetic field was studied. As a result of applying the perturbation 
theory method for a small parameter of supercriticality of the stationary Rayleigh number [30], the nonlinear 
autonomous Ginzburg-Landau equation was obtained. This equation describes the evolution of the finite amplitude of 
perturbations. A numerical analysis of this equation showed that the heat flux increases with rotation of the medium 
with positive Rossby numbers > 0Ro . In [13] it is shown that the weakly nonlinear convection based on the equations 
of the six-mode (6 )D  Lorentz model transforms into the identical Ginzburg-Landau equation. The weakly nonlinear 

theory of convection was especially developed with regard to modulation of the parameters that control the convection 
process, what is very important for solving many technological problems. Different types of modulation, such as 
rotation [31-34], gravity [35-37], temperature [38-40] and magnetic field [41-42], were studied for stationary weakly 
nonlinear convection in various media: porous media, nanofluids, and so on. In these papers [31-42] the effect of 
modulation of the parameters (rotation, gravity, temperature, magnetic field) on the heat and mass transfer in convective 
media was determined. A parametric effect on convection can lead to either an increase or a decrease in heat transfer. In 
addition to technological problems, considering of the modulation of external fields plays an important role in modeling 
convective processes on the Earth, the Sun, and other space objects [43-44]. 

The aim of this work is to study a linear and weakly nonlinear theory of the stationary convection in a non-
uniformly rotating layer of the electrically conductive fluid in the axial uniform magnetic field under the influence of: 
a) temperature modulation of the layer boundaries; b) gravitational modulation; c) modulation of the magnetic field; 
d) modulation of the angular velocity of rotation. The content of the work is outlined in the following sections. The 
basic equations for the evolution of small perturbations in the Boussinesq approximation, that describe non-uniformly 
rotating convection in external periodic fields: a) temperature modulation of the layer boundaries, b) gravitational 
modulation, c) modulation of the magnetic field, d) modulation of the angular velocity of rotation, are obtained in 
Section PROBLEM STATEMENT AND BASIC EVOLUTION EQUATIONS. In Section EQUATIONS OF 
EVOLUTION OF FINITE AMPLITUDE FOR DIFFERENT TYPES OF MODULATION we study the weakly 
nonlinear stage of stationary convection in a nonuniformly rotating layer of an electrically conductive fluid under the 
action of modulation of external fields. Using the method of perturbation theory with respect to the small parameter of 
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supercriticality of the Rayleigh number = ( ) /c cRa Ra Ra  ) we obtained the nonlinear Ginzburg-Landau equation 

with a periodic coefficient for each type of modulation. The results of numerical solutions of the non-autonomous 
Ginzburg-Landau equation for each type of modulation show the dependence of the heat transfer (Nusselt number Nu ) 
on the amplitude mod , the frequency mod  of the modulation and the profile of the nonuniformly rotation (number 

Rossby Ro ) are also presented in Section EQUATIONS OF EVOLUTION OF FINITE AMPLITUDE FOR 
DIFFERENT TYPES OF MODULATION. 

The results developed in this work can be applied to various astrophysical and geophysical problems that consider 
magnetic convection in the rotating layers of the Sun, hot galactic clusters, accretion disks and other objects. 

 
PROBLEM STATEMENT AND BASIC EVOLUTION EQUATIONS 

Let us consider a nonuniformly rotating flow of an electrically conductive fluid located between two impermeable 
horizontal planes 0=z  and hz = , which are heated from below and cooled from above according to the periodic 
law. The temperature of the lower and upper horizontal boundaries is modulated in accordance with a time-harmonic 
law:  

 2
1 0 1= [1 cos( )] = 0

2 T

T
T T t at z  

    (1) 

 2
2 0 1= [1 cos( )] = ,

2 T

T
T T t at z h   

    

where constT =0  is the temperature relative to which oscillations occur with a frequency of T  and a phase shift of 

 , T  is the temperature difference between the lower and upper planes in the absence of modulation, 1  is the 

amplitude of thermal modulation,   is a small parameter. In a cylindrical coordinate system an electrically conductive 

medium (plasma) rotates in the azimuthal direction with the speed ),(= tRRv  . Here ),( tR  is the angular 

velocity of rotation, which makes small oscillations in time according to the periodic law:  

 2
2( , ) = ( )(1 cos( )),RR t R t       (2) 

where R  is the frequency of rotation modulation, 2  is the amplitude of rotational modulation. 

It is convenient to switch from a cylindrical coordinate system ),,( zR   to a local Cartesian system ),,( ZYX  

in order to describe nonlinear convective phenomena in a nonuniformly rotating layer of an electrically conducting 

fluid. If we consider a fixed region of a fluid layer with a radius 0R  and an angular velocity of rotation  

 2
0 0 00 2 00( ) = ( , ) = (1 cos( )), = ,Rt R t t const        

then the coordinates 0=X R R  correspond to the radial direction, )(= 00  RY  to the azimuth and zZ = - to 

the vertical direction (see Fig.1). 

 
Fig. 1. Scheme of the shear flow in rotating flows, the flow being approximated in the local Cartesian coordinate system 

as a linear shift with velocity )(0 XU . 

Then, nonuniform rotation of the fluid layer can be represented locally as a rotation with a constant angular velocity 

)(0 t  and azimuthal width [46], which velocity profile is locally linear: yXetqU )(= 00  , where 

Rddq ln/ln  is the dimensionless shear flow parameter defined using the profile of angular velocity of rotation 
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qRRR  )/(=)( 00 . The parameter q  is related to the hydrodynamic Rossby number 
R

R
Ro




2
=  by the 

relation: Roq 2=  . Note that the accretion disks with the shear flow parameter 3/2=q  3/4)=( Ro  correspond 

to the Keplerian disk, 2=q  1)=( Ro  corresponds to the disk with a constant angular momentum or Rayleigh 

rotation profile. The case 1=q  1/2)=( Ro  corresponds to a system with a flat rotation curve, while 0=q  

0)=(Ro  corresponds to a uniform (or solid-body) rotation with a constant angular velocity. 

We assume that the direction of the external magnetic field 0B  coincides with the axis of rotation of the fluid  

OZ  . In addition, the external magnetic field 0B  and the gravitational acceleration vector = (0,0, )g g  change 

with time according to the harmonic law  

 2
0 00 3= (1 cos( )) ,B ZB B t e     (3) 

  

 2
0 4= (1 cos( )) ,g Zg g t e     

where 43,  are small amplitudes of magnetic and gravitational modulation, constB =00 , ,B g    are frequencies 

modulation of magnetic and gravitational fields. 
The influence of modulation of external fields will consider on the basis of the equations of 

magnetohydrodynamics in the Boussinesq approximation [1-2]:  

 
2

2

0 0

1 1
( ) = ( ) ( )

8 4 Z

v B
v v P B B g Te v

t
 

  


         


     
 (4) 

  

 2( ) ( ) =
B

v B B v B
t


    



    
 (5) 

  

 2( ) =
T

v T T
t


  




 (6) 

  

 = 0, = 0,divB divv
 

 (7) 

where Ze


 is the unit vector directed vertically up the OZ  axis,   is the coefficient of thermal expansion, 

const=0  is the density of the medium,   is the kinematic viscosity coefficient,  /4= 2c  is the magnetic 

viscosity coefficient,   is the conductivity coefficient,   is the coefficient thermal conductivity of the medium. Let us 

represent all quantities in Eqs. (4)-(7) as the sum of the stationary and perturbed components 0=v U u
 

, 

0=B B b
 

, ppP 0= , bTT = . The equations for the stationary state are:  

 bTg
dZ

dp 0
0 =  (8) 

 

 
dX

dp
Xq 0

0

2
0

1
=2


  (9) 

 

 
2

2

=
dZ

Td

t

T bb




 (10) 

The expressions (8)-(9) show that centrifugal equilibrium is established in the radial direction and hydrostatic in the 
vertical direction. The solution of the equation (10) with boundary conditions (1) has the form [45]:  

 ,),()(=),( 11
2 TtzfzTtzT Sb    (11) 

where  

 ,
2

1
2

=)( 0 





 




h

zT
TzTS  
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2
2

1

1
( , ) = ( ) ( ) , = , ( ) = ,

2

z z i
i Th h T

i h e et
f z t Re a e a e e a

e e

   


 

   


  



             

 
 

where )(zTS  is the stationary temperature, ),(1 tzf  is the oscillating part of bT , the symbol Re  denotes the real part. 

Subtracting the equations for the stationary state (8)-(10) from (4)-(7) we can find the evolution equations for small 
perturbations:  
 

  2
0 0 0 0

0 0

1 1
( ) 2 ( ) = ( ) ( )

4 Z

u u
q X u U u u u p B b b b g e u

t Y
 

 
 

                 
 

        

 

 2
0 0 0( ) ( ) ( ) ( ) =

b b
q X B u b U u b b u b

t Y
 

          
 

        
 (12) 

 

 2
0 ( ) ( ) =bq X u T u

t y

     
      

 
 

 

 
 0=0,= divudivb  

Here the pressure p  includes the disturbed magnetic pressure 
2

0=
8 4m

bBb
p

 

 

: = mp p p . 

Let us consider the dynamics of axisymmetric perturbations, then all the perturbed quantities in the equations (11) 
will depend only on two variables ),( ZX :  

= ( ( , ), ( , ), ( , )), = ( ( , ), ( , ), ( , )), = ( , ), = ( , )u u X Z v X Z w X Z b u X Z v X Z w X Z p p X Z X Z 
       

The solenoidal equations for axisymmetric velocity and magnetic field perturbations will take the form  

 = 0, = 0
u w u w

X Z X Z

   
 

   
 

 (13) 

 The remaining equations in the coordinate representation will take the following form:  

 2 00
00

0 0 0

1 1
( ) = 2 ( )

4 4
m

R

B fp u
u u u f v b u

t X Z


  
                

    (14) 

  

 2 00
00

0 0

1
( ) = 2 1 ( )

2 4 4
m

R

B fq v
v u v f u b v

t Z


 
                    

    (15) 

  

 2 00
0

0 0 0

1 1
( ) = ( )

4 4
m

g

B fp w
w u w g f b w

t Z Z
 

  
               

    (16) 

  

 2
00 ( ) ( ) = 0m

u
u B f u u b u

t Z
           

   (17) 

  

 2
00 00 ( ) ( ) = 0m R

v
v B f q f u u v b v

t Z
             

    (18) 

 2
00 ( ) ( ) = 0m

w
w B f u w b w

t Z
           

   (19) 

  

 2 2 1
1 ( ) = 0, = ,

f T
Сw Tw u С

t Z h
    

            


 (20) 

where 2 2 2
2 3 4= 1 cos , = 1 cos , = 1 cosR R m B g gf t f t f t             . 
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In the equations (14)-(20) the nabla operators can be described as:  

 
2 2

2
2 2

( ) = , = .x za a a
X Z X Z

   
   

   


 

To eliminate the pressure p  in the equations (14) and (16), we need to differentiate the equation (14) with respect to 

Z . The equation (16) is required to be differentiated with respect to X  and then by subtracting them from each other, 

we can obtain the equation for Y - the components of the vortex = Yrotu e  
:  

 













































 



Z

IfB

Z

w
w

X

w
u

XZ

u
w

X

u
u

Zt
m

0

002

4
=


  (21) 

  

 00 0
0

1
2

4 R g

u u w w v
u w u w f g f

Z X Z X X Z Z X




                                 

        

where 
X

w

Z

u








=  is the Y - component of the vortex, =
u w

I
Z X

 


 
 

 - Y -current component = = YI rotb Ie
 

. 

According to the equations (13) it is convenient to introduce the stream function   through which the components of 

the perturbed velocity are expressed:  

 
X

w
Z

u









=,=  

Similarly, we can introduce the stream function   for perturbations of the magnetic field:  

 = , =u w
Z X

  

 

   

As a result, the equations (2) and (15) become more compact  

 2 2 2 2 200
00 0

0 0

1
2 = ( , ) ( , )

4 4
m

R g

B fv
f g f J J

t Z Z X

       
 

                   
 (22) 

  

 2 00
00

0 0

1
2 (1 ) = ( , ) ( , )

4 4
m

R

B f v
v f Ro J v J v

t Z Z

  
 

             

   (23) 

The notation 
X

b

Z

a

Z

b

X

a
baJ














=),(  - the Jacobian operator or the Poisson bracket  babaJ ,),(  . 

Further, by differentiating the equation (17) with respect to Z  and by differentiation the equation (19) with 
respect to X, and then by subtracting them from each other, we can find the equation for the current I :  

 2 u u u u
I u w u w

t Z X Z X Z
                         

     (24) 

  

 00= m

w w w w
u w u w B f

X X Z X Z Z

                

     

Equations (20) and (14) can also be written in a compact form using the definitions of the stream functions   and  :  

 2
00 = ( , )mB f J

t Z

           
 (25) 

 2
00 002 = ( , ) ( , )m R

v
v B f f Ro J v J v

t Z Z

              
   (26) 

 The form of the equation (16) for temperature disturbances is simplified in a similar way:  

 2 2 1
1 = ( , )

f
С T J

t X Z X

      
              

 (27) 

Equations (18), (19), (21), (22) and (23) together with the boundary conditions  
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 2= = 0, = 0, = 0, = 0, = 0 = 0,
dv d

v at Z h
dZ dZ

     (28) 

describe nonuniformly rotating convection under the action of modulation of external fields. For convenience, in 
equations (22)-(27) we turn to the dimensionless variables, which we mark with an asterisk:  

 
2

* * * * * * * *
00 00( , ) = ( , ), = , = , = , = , = , = .

h
X Z h x z t t hB v v v B v Сh

h

     


   

Omitting the asterisk symbol, we will rewrite equations (22)-(27) in dimensionless variables: 

 2 2 1 2Pr =R m g

v
Ta f Pm Qf Ra f

t z z x

                 
 

 

 1 2 1 2= Pr ( , ) Pr ( , )Pm Q J J          

  

 2 1(1 ) Pr =R m

v
v Ta f Ro Pm Qf

t z z

            


 

 

 1 1= Pr ( , ) Pr ( , )Pm Q J v J v      

 

 1 2 1 1Pr = Pr ( , ))mPm f J
t z

            
 (29) 

 1 2 1 1Pr = Pr ( ( , ) ( , ))m R

v
Pm v f Ro Ta f J v J v

t z z

                
   

 

 ),,(=1Pr 1
1

22  J
z

f

xt






















 




 

where the dimensionless parameters are: = /Pr    ( Prandtl number), = /Pm    (magnetic Prandtl number), 

2

42
004

=


h
Ta


 (Taylor number), 

0

22
00

4
=

hB
Q  (Chandrasekhar number), 

4
0=

g Ch
Ra




 ( Rayleigh number on 

scale h ). 

In the absence of the thermal phenomena 0=Ra  and 1=== gmR fff , the system of equations (29) was used 

to study the nonlinear saturation mechanism of the standard MRI [47]. In the case when the external field modulation is 

absent 0=1,2,3,4  and 0Ra , the system of equations (29) was used to study the weakly nonlinear and chaotic 

modes of stationary convection in a nonuniformly rotating magnetoactive electrically conductive medium [11-13].   
 

EQUATIONS OF EVOLUTION OF FINITE AMPLITUDE FOR DIFFERENT TYPES OF MODULATION 
In this section, we analyze the nonlinear stage of stationary convection in a nonuniformly rotating electrically 

conductive medium in a constant magnetic field under the influence of small oscillations: a) the temperature field at the 
layer boundaries; b) gravitational field; c) external magnetic field; g) the angular velocity of rotation. We will consider 
all these effects separately (see Fig. 2). Then we will compare the value of the heat transfer (Nusselt number) for each 
type of modulation, i.e. quantify heat transfer in terms of finite amplitudes. These amplitudes arise when an interaction 
occurs between several modes of perturbations. Such an interaction can be described only in the framework of a 
nonlinear or weakly nonlinear theory based on the perturbation theory method. Here we will perform our research in the 
framework of a weakly nonlinear theory. The small expansion parameter in this theory is the relative deviation of the 

Rayleigh number Ra  from the critical value cRa :  

 1=2 
c

c

Ra

RaRa   

Then all the perturbed quantities U  in equations of the type )|(= UUNU   ( )(N  are nonlinear terms) are 

represented as a series in the perturbation theory  

  (3)3(2)2(1) UUUU   
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The equations for the perturbations in various orders of   take the following form:  

 0,=: (1)(0)1 U  

)|(=: (1)(1)(2)(0)2 UUNU   

)|()|(=: (1)(2)(2)(1)(0)(2)(3)(0)3 UUNUUNUU   

The condition for solving this chain of nonlinear equations is known as Fredholm , s alternative (see, for example [48] )  

 
Fig. 2. Cartesian approximation for a nonuniformly rotating magnetoconvection under parametric influence: a) temperature 
modulation of the boundaries of the liquid layer; b) modulation of the gravity field; c) modulation of the external magnetic field; 
d) modulation of the angular velocity of rotation. A nonuniformly rotation in the local Cartesian coordinate system consists of 
rotation with a constant angular velocity 0  and shear velocity 0U OY .  

 0.=..,† HRU  (30) 

Here †U  is a non-trivial solution of the linear self-adjoint problem 0=††U , where †  is a self-adjoint operator, 
which is determined from the following relation:  

 ,,, ††† UUUU    (31) 

where ,  is the inner product, which here has the following definition:  
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2 /1

=0 =0

, = ,
kc

z x

f g f gdxdz


   

where ..HR  are right sides of the perturbed equations with nonlinear terms. We represent all the variables in equations 
(29) as an asymptotic expansion:  

  4
4

2
2= RRRaRa c   

  3
3

2
2

1=   

  3
3

2
2

1= vvvv   (32) 

 2 3
1 2 3=         

 2 3
1 2 3=v v v v          

  3
3

2
2

1=   

Here cRa  is the critical value of the Rayleigh number for convection without modulation. The amplitudes of the 

perturbed quantities depend only on the slow time t2=  . For simplicity we will take into account the nonlinear 
terms in (29) only in the heat balance equation. As it is shown in [23], this approximation is equivalent to applying the 
Galerkin approximation of the minimum order to the equations (29). In the lowest order, we get the equation:  

 
1 = 0,LM  (33) 

   

where 

1

1

11

1

1

=

v

M

v







 
 
 
 
 
 
  


, L  is the matrix operator of the form:  

 

4 1 2

2 1

1 1 2

1 1 2

1 1 2

Pr 0

(1 ) 0 Pr 0

Pr 0 0 0
= .

0 Pr 0

Pr 0 0 0 Pr

cTa Pm Q Ra
z z x

Ta Ro Pm Q
z z

Pm
L z

Ro Ta Pm
z z

x





 

 

 

          
       

    
 
  
   

  
 

    
  

 

The solutions of the system of equations (33) with the boundary conditions of (28) have, respectively, the following 
form:  

 ,cossin
Pr

)(
=,sincos

)(
=,sinsin)(=

21211 zxk
a

PmA
zxk

a

kA
zxkA cc

c
c   

 

 
2

1 4 2

( ) (1 (1 ))
= sin sin ,

Pr( ) c

A Ta Ro Pm Pm
v k x z

a Q

  


 



  (34) 

  

 .=,cossin
)(1)(

= 222
24

24

21 







 cc kazxk
Qa

QPmRoaRo

a

TaA
v  



14
EEJP. 2 (2020)   Michael I. Kopp, Anatoly V. Tur, Volodymyr V. Yanovsky

The amplitude )(A  is still unknown. The critical value of the Rayleigh number cRa  for the stationary 

magnetoconvection in a nonuniformly rotating electrically conducting medium is found from the first equation of the 
system (34) and has the form of the formula obtained in the linear theory [11-12]:   

.
))((

))((

))((

)()()(
=

22222

22222

22222

2222

2

222

2

322

Qkk

QPmkTaRo

Qkk

Tak

k

Qk

k

k
Ra

cc

c

cc

c

c

c

c

c
c 


















 (35) 

It should be noted that for the absence of heating 0=Ra , the threshold value of the hydrodynamic Rossby number 
Ro  has the form:  
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Passing to dimensional variables  
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we obtain the expression for crRo [41]:  
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A
crRo  

where the following notation has been introduced: 2= k  and 2= k  are the viscous and Ohmic frequencies, 

respectively, and A  is the Alfven frequency, 
0

2
0

2
222

4
==


 Bk

ck z
AzA . Therefore, in the limiting case of 0=Ra , 

magnetorotational instability appears in a nonuniformly rotating electroconducting fluid in a constant magnetic field. 
The criterion for its appearance is the condition imposed on the angular velocity profile )(R  of the rotating liquid, 

i.e., Rossby number crRoRo > . Figure 3 shows diagrams of the dependency of the critical Rayleigh number cRa  on 

the wavenumbers for various angular velocity profiles (Rossby numbers Ro ). It can be seen that for negative Rossby 

numbers 0<Ro  the critical Rayleigh number min
cRa  becomes smaller than in the case of uniform rotation 0=Ro  

and rotation with positive numbers 0>Ro . 

 
Fig. 3. Dependences of critical Rayleigh number cRa  on wavenumbers / k  for different Rossby numbers Ro  for constant 

parameters = 50Q , = 100Ta  and = 1Pm . 

According to the formula (31), it is necessary to find solutions of the linear self-adjoint problem 
† †

1 = 0L M  , 

where the matrix †
1M  has the form: † † † † †

1 1 1 1 1= ( , , , )TrM v    and 
†

L  is a self-adjoint matrix operator:  



15
Weakly Nonlinear Magnetic Convection in a Nonuniformly Rotating Electrically Conductive...          EEJP. 2 (2020)

 

4 1 2

2

†
1 2 2 2 4

2
4 2

2

Pr

0 0

= Pr 0 Pr 0

0 0

c

c c

Ra P Pm QP TaP
x z z

Ra P Ra P
x

L Pm QP Q Pm P
z

TaP Q
z z



 

         
   

    
 
           
 
 

  

 

  



 (36) 

The solutions of the system of equations (36) have the form:  
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For the second order of  , we have the following equation:  
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Using solutions of (34) and boundary conditions of (28), we can find solutions of equations (38):  
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 2 2= 0, = 0.v v  

To analyze the intensity of the heat transfer, a horizontally-averaged heat flux is introduced at the boundary of the layer 
of electrically conducting fluid (Nusselt number):  
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 (40) 

The heat flow intensity (of Nusselt number Nu ) will be analyzed after the expression for the amplitude )(A  is 

obtained. As can be seen from the an asymptotic expansion (32), modulation effects contribute only in the third order in 
 , so we will consider these effects separately from each other in the third order in  . 



16
EEJP. 2 (2020)   Michael I. Kopp, Anatoly V. Tur, Volodymyr V. Yanovsky

Temperature modulation of fluid layer boundaries 
Let us consider only the temperature modulation of the layer boundaries, then in the equations (29) it is necessary 

to put 1=== gmR fff . At the third order, we have  

 
3 3= ,LM N  (41) 
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The solvability condition (Fredholm alternative) for the third-order equations )( 3O  is found from the formula (30):  

 

2 /1
† † 2 1 2 † †
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where the notations are introduced  
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By integrating into (42), we obtained a nonlinear equation for the amplitude )(A , which refers to the non-autonomous 

Ginzburg-Landau (GL) equation for stationary convective instability, with a time-periodic coefficient in the following 
form:  

 3
1 2 3( ) = 0T T T

A
A A A A A




 


 (43) 

 Here the coefficients 1 ,2 ,3T T TA  have the following form:  
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In the limiting case, when there is no temperature modulation 0=1 , the equation (43) was obtained in [13]. In the 

absence of modulation, the equation (43) has an analytical solution with the known initial condition (0)=0 AA :  

 0

2 23 3 2
0 0

2 2 1

( ) =
2

1 exp

A
A

A A A
A A

A A A


   

     
   

 (45) 

In [23], the effect of different rotation profiles (Rossby numbers Ro ) on the heat transfer value (Nusselt number Nu ) 
using (45) was studied. The equation (43) will be solved numerically for different rotation profiles and modulation 
types:   

    • In-phase modulation )(IPM  0= ,  

    • Out-phase modulation )(OPM   = ,  

    • Only Lower boundary modulated )(LBMO  = i   , which means that the modulation effect will not be 

considered in the upper boundary but only in the lower boundary.  

Further, we will consider cRaRa 2 , since the nonlinearity is considered near the critical state of convection. 

The results of numerical solutions of the equation (43) for the case of in-phase modulation 0=  for Rossby numbers 

1)3/4,(2,0,= Ro  are shown in Fig. 4.  

 
Fig. 4. Dependence of the Nusselt number Nu  on time   for Rossby numbers = (2,0, 3 / 4, 1)Ro    in the case of in-phase 

( , = 0)IPM   of temperature modulation for a frequency = 2T  and an amplitude 1 = 0.5 . 

The fixed parameters of convection and temperature modulation are respectively equal to:  

 1,=9500,==/,10==/80,==/ 1
45

1
4

1
2 PmRRaTTaQQ c   

 0.5.=2,=0.5,=10,= 10 TAPr  

As can be seen from Fig. 4 the heat flow increases towards positive Rossby numbers 0)>(Ro  in the time interval 

[0,1] . The heat flow reaches the final value for all rotation profiles.  

Fig. 5 and Fig. 6 show the numerical solutions of the equation (43) respectively for the case of )(OPM  and 

)(LBMO . Here we also see an increase in heat flux towards positive Rossby numbers 0)>(Ro , then there is a 

periodic change in heat transfer for all rotation profiles. The comparison of results of in-phase modulation )(IPM , out 

of phase modulation )(OPM  and when only lower boundary temperature is modulated )(LBMO  for fixed 

parameters 2=Ro , 2=T , 0.5=1  is presented in Fig.7.  
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Comparing these graphs, we can conclude that the variations in the Nusselt number Nu  are greater for the case of 

out-phase modulation ( )(OPM ):      0=== |>|>|  NuNuNu i   . 

 
Fig. 5. Dependence of the Nusselt number Nu  on the time   for Rossby numbers = (2,0, 3 / 4, 1)Ro    for the case of phase 

( , = )OPM    of temperature modulation for frequency of = 2T  and amplitude of 1 = 0.5 . 

 
Fig. 6. Dependence of the Nusselt number Nu  on the time   for Rossby numbers = (2,0, 3 / 4, 1)Ro    

for the case of temperature modulation of only the lower boundary of the layer ( , = )LBMO i    

for frequency = 2T  and amplitude 1 = 0.5 . 

 

Fig. 7. Three types of temperature modulation: , ,IPM OPM LBMO  for fixed parameters = 2Ro , = 2T , 1 = 0.5 . 
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In Fig. 8, we have depicted the variation of )(Nu  with time   for different frequencies of the out-phase (  = ) 

modulation of 2,5,10,30=T  and for a fixed Rossby number 2=Ro  and amplitude 0.5=1 . Here it can be seen 

 

 
Fig. 8. Dependence of the Nusselt number Nu  on the time   for the case of phase ( = )   temperature modulation for frequency 

= (2,5,10,30)T , amplitude 1 = 0.5  and Rossby number = 2Ro . 

 
Fig. 9. Variations of the Nusselt number Nu  depending on the amplitude of the phase temperature modulation 1 = (0,0.1,0.3,0.5)  

for the Rossby number = 2Ro  and the frequency = 5T . 

 

that an increase in the modulation frequency T  leads to suppression of heat transfer, i.e. variations in the number Nu  

are reduced:  

 30=|>10=|>5=|>=2|
TTTT

NuNuNuNu


  

A similar phenomenon is observed for nonuniformly rotation with other profiles. In Fig. 9, we have presented the 

unmodulated ( 0=1 ) result of Eq. (43) and compared it with the present results of modulated case for different 

amplitudes 10.5,0.3,0.=1 . It can be seen from these graphs that modulation of the temperature boundaries of the 

layer leads to a periodic change in heat flow, i.e. the value of the number Nu  changes periodically in time   and 

increases with increasing amplitude 1 . 

 
Gravity field modulation 

We now turn to the next method of parametric action on stationary magnetoconvection in a nonuniformly rotating 

electrically conductive medium. Let a fluid layer carries out vertical harmonic oscillations with a frequency g  and a 

small amplitude  2 . Then, in the equations of motion written in the reference frame associated with the fluid layer, 
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the acceleration of gravity g  should be replaced by 2
0 4(1 cos( ))gg t     (see formula (3)). In the equations (29) 

we set 0=1  and 1== mR ff . As a result, the equations of the asymptotic expansion in the third order take the 

following form:  
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We substituted the values of the elements of the matrix 3N  into the solvability condition (42) for the third-order 

equations )( 3O . After completing the integration in (42), we have obtained the equation for the evolution of the finite 

amplitude )(A  in the form of a non-autonomous GL equation:  

 3
1 2 3( ) = 0,G G G

A
A A A A A




 


 (47) 

where the coefficients 1 ,2 ,3G G GA  have the form  
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Using the numerical solution of the equation (47) and the formula (40), we have determined the change in the heat 
transfer (Nusselt number Nu ) from time  . We chose the parameters of the convective medium and the initial 
amplitude as in the previous section:  

 0.5.=10,=1,=9500,==/,10==/80,==/ 01
45

1
4

1
2 APrPmRRaTTaQQ c   

Fig. 10 shows the time dependence of the Nusselt number Nu    for different rotation profiles of 
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1)3/4,(2,0,= Ro  of the electrically conductive medium (plasma) in an oscillating gravitational field with a 

frequency of 10=g  and an amplitude of 0.3=4 . From Fig. 10 it is clear that the heat transfer in the plasma 

increases for a nonuniformly rotation with a positive Rossby number 0)>(Ro . This process is well depicted in 

Fig.10. 

 
Fig. 10. Dependency of the Nusselt number Nu  on the time   for Rossby numbers = (2,0, 3 / 4, 1)Ro    in an oscillating 

gravitational field with a frequency =g  10 and an amplitude 4 = 0.3 . 

 
Fig. 11. Dependency of the Nusselt number Nu  on the time   for positive Rossby numbers = (2,0)Ro  in an oscillating 

gravitational field with a frequency = (10,25,50,100)g  and an amplitude 0.3=4 .     
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Fig. 12. Dependency of the Nusselt number Nu  on time   for negative Rossby numbers = ( 3 / 4, 1)Ro    in an oscillating 

gravitational field with a frequency = (10,25,50,100)g  and an amplitude 4 = 0.3 . 

 
From Fig. 11 and Fig. 12, we can see the effect the variation of )(Nu  with time   for different frequencies 

modulation frequencies 0010,25,50,1=g  and for different rotation profiles 1)3/4,(2,0,= Ro  of the 

electrically conductive medium (plasma). 

 
Fig. 13. Variations of the Nusselt number Nu  depending on the amplitude of the oscillating gravitational field 4 = (0,0.1,0.3,0.5)  

for the Rossby number = 2Ro  and the frequency = 10g .   
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As the frequency increases from 10 to 100, the magnitude of )(Nu  decreases, and the effect of modulation on 

heat transport diminishes. Therefore, the effect of g  stabilizes the system:  

 100=|>50=|>=25|>10=|
gggg

NuNuNuNu


  

Now let us compare the heat transfer in the absence of 0=4  and in the presence of modulation 10)=( g  for 

different amplitudes 10.5,0.3,0.=4  of the gravitational field. This process is shown in Fig. 13.  

 
Fig. 14. Variations of the Nusselt number Nu  depending on the Taylor number 3 4 4 5

1 = (10 ,10 ,5 10 ,10 )T   for the amplitude 

parameters of the oscillating gravitational field 4 = 0.5 , frequencies = 50g  for positive Rossby numbers = (2,0)Ro .     

 

Here, the dashed line shows the mode of establishing the final value of )(Nu  for the case 0=4 . Here, the 

dashed line demonstrates the regime of establishing the final value of )(Nu  for the case 0=4 . Obviously, the 

excess of number )(Nu  over the unit is caused by the convection occurrence. From Fig. 13 we can see that 

modulation of the gravitational field leads to a periodic change in heat flow, i.e. the value of the number Nu  changes 

periodically in time   and increases with increasing amplitude 4 . 
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Fig. 15. Variations of the Nusselt number Nu  depending on the Taylor number 3 4 4 5

1 = (10 ,10 ,5 10 ,10 )T   for the amplitude 

parameters of the oscillating gravitational field 4 = 0.5 , frequencies = 50g  

for negative Rossby numbers = ( 3 / 4, 1)Ro   . 

In Fig. 14 and Fig. 15 we have depicted the effect of Taylor numbers ),1010,5,10(10=/= 54434
1 TaT  on 

Nusselt number Nu  for fixed values of the modulation frequency of the gravitational field 50=B , amplitude 

0.5=4  and Rossby numbers 1)3/4,(2,0,= Ro . From Fig. 14 it can be seen that for the Rossby number 

2=Ro , with an increase in the Taylor number 1T  the heat transfer (the Nusselt number Nu ) in the system also 

increases:  

 5
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4
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4
1

3
1 10=|<105=|<10=|<10=|

TTTT
NuNuNuNu   

Increasing of the Taylor number for solid-state rotation 0=Ro  has almost no effect on heat transfer. However, for 

negative rotation profiles 3/4= Ro  and 1= Ro  (see Fig. 15) with increasing Taylor number 1T  heat transfer in 

the system decreases:  
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Modulation of an external magnetic field 
In this section, we will study the stationary regime of nonlinear magnetoconvection under the influence of a time-

dependent magnetic field. We represent the magnetic field as the sum of the constant (stationary) and oscillating parts. 

The oscillating part has the second order 3
2    with respect to the expansion parameter (the supercriticality parameter 

of the Rayleigh number  ) (see formula (3)). Assuming in the equations (29) 0=1  and 1== gR ff , the equations 

of the asymptotic expansion in the third order in   will take the following form:  
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Using the solvability condition (42) and the values of the elements of the matrix 3N , we can obtain the equation for the 

evolution of the finite amplitude )(A  in the form of a non-autonomous GL equation:  

 3
1 2 3( ) = 0,M M M

A
A A A A A




 


 (50) 

where the coefficients 1 ,2 ,3M M MA  have the form  
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In the limiting case, when there is no rotation ( 0=0,= RoTa ), the equation (50) coincides with the result of  [41]. 

Then, let us perform a numerical analysis of the equation (50) for different rotation profiles 1)3/4,(2,0,= Ro  for 

fixed convection parameters ==/ 1
2 QQ   80, 

5
1

4 10==/ TTa  , 9500==/ 1
4 RRac  , 1=Pm , 10=Pr , 

0.5=0A  and magnetic field modulation 10=B , 0.3=3 .  

 
Fig. 16. Dependency of the Nusselt number Nu  on the time   for Rossby numbers = (2,0, 3 / 4, 1)Ro    in an oscillating magnetic 

field with a frequency of =B  10 and with an amplitude of 3 = 0.3 . 

From Fig. 16 it can be seen that for nonuniformly rotation with a positive Rossby number 0)>(Ro , the 

variations of the heat flux in the plasma increase:   2=0=3/4=1= |<|<|| RoRoRoRo NuNuNuNu   . 

In Fig. (17) and Fig.(18), the Nusselt number )(Nu  with respect to time   has been plotted for different 

modulation frequencies 0010,25,50,1=B  and for different rotation profiles 1)3/4,(2,0,= Ro  of the 

electrically conductive medium (plasma). Here we see that an increase of the modulation frequency B  leads to 

suppression of heat transfer for the different Rossby numbers Ro , i.e. variations in the number Nu  are reduced:  

 100=|>50=|>=25|>10=|
gggg

NuNuNuNu
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Fig. 17. Dependency of the Nusselt number Nu  on the time   for positive Rossby numbers = (2,0)Ro  in an oscillating magnetic 

field with a frequency of = (10,25,50,100)B  and with an amplitude of 3 = 0.3 . 

 
Fig. 18. Dependency of the Nusselt number Nu  on the time   for negative Rossby numbers = ( 3 / 4, 1)Ro    in an oscillating 

magnetic field with a frequency = (10,25,50,100)B  and with an amplitude of 3 = 0.3 . 
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Fig. 19. Variations of the Nusselt number Nu  depending on the amplitude of the oscillating magnetic field 3 = (0,0.1,0.3,0.5)  for 

the Rossby number = 2Ro  and frequency = 10B . 

Fig. (19) shows the dependency of the heat transfer value Nu  on   in the absence of 0=3  and in the presence 

of modulation of the magnetic field 10)=( B  for different amplitudes 10.5,0.3,0.=3 . The dashed line shows the 

regime of establishing the final value of )(Nu  for the case 0=3 . In Fig. (19) we can see that the modulation of the 

magnetic field leads to a periodic change of the heat flux, which increases with increasing amplitude 3 . 

 
Fig. 20. Variations of the Nusselt number Nu  depending on the Chandrasekhar number 1 = (80,750,2000,5000)Q  for the amplitude 

parameters of the oscillating magnetic field 3 = 0.5 , frequency = 50B  with positive Rossby numbers = (2,0)Ro . 

In Fig. (20)-Fig. (21) we have depicted the effect of the external magnetic field (Chandrasekhar number 1Q ) on 

the heat transfer with an oscillating magnetic field of frequency 10=B  and amplitude 0.3=3  for different 

profiles of nonuniform rotation of 1)3/4,2,0,=( Ro . Increasing the external magnetic field, i.e. Chandrasekhar 
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numbers from =1Q  80 to =1Q  750 for 2=Ro  leads to a decrease of the heat flow, which is almost stabilized at a 

certain level. 
 
The Nusselt number Nu increases with the increasing the value of the magnetic field  

 5000=|<=2000|<80=|
111 QQQ

NuNuNu   

Similar picture can be obtained for other rotation profiles 1)3/4,0,=( Ro :  

 .5000=|<80=|
11 QQ

NuNu   

 
Fig. 21. Variations of the Nusselt number Nu  depending on the Chandrasekhar number 1 = (80,750,2000,5000)Q  for the amplitude 

parameters of the oscillating magnetic field 3 = 0.5 , frequency = 50B  with negative Rossby numbers = ( 3 / 4, 1)Ro   . 

 
Rotational speed modulation 

One of the important ways of parametric influence on convective instability is the modulation of the angular 
velocity of rotation. The first experiments on rotation modulation were carried out in [50]. It was also found there the 
onset of instability in Couette flow can be inhibited by modulating the rate of rotation of the inner cylinder. Later, 
numerical [43] and laboratory experiments [51] were carried out for the effect of rotation modulation on Rayleigh-
Benard convection. In [43] it is shown that the modulation of the rotation of 0( ) = sin( )t t    causes a periodic 

change in the Coriolis force, and therefore has an effect on the onset of convection. In [51], the experiments were 
carried out with a periodic dependency of the angular velocity 0( ) = (1 cos( ))t t     ( 0 = 0.104  /rad s , 

2= 0.21 ) for modeling large-scale atmospheric flow dynamics in order to create a longer-term weather forecast. 

Here we also assume that the oscillating part is of the second order of smallness 3
2    in the expansion 

parameter (the supercriticality of the Rayleigh number  ) (see the formula (2)). Assuming in the equations (29) 0=1  

and 1== gm ff , the equations of the asymptotic expansion in the third order ( 3 ) take the form  

 
3 3= ,LM N  (52) 
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Fig. 22.  Dependency of the Nusselt number Nu  on the time   for Rossby numbers = (2,0, 3 / 4, 1)Ro    when modulating rotation 

with a frequency of = 10R  and amplitude = 0.3 . 
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By substituting the values of the elements of the matrix 3N  into the solvability condition (42) for the third-order 

equations )( 3O , we can obtain the equation for the evolution of the finite amplitude )(A  in the form of a non-

autonomous GL equation:  

 3
1 2 3( ) = 0,R R R

A
A A A A A




 


 (53) 

where the coefficients 1 ,2 ,3R R RA  have the following form  

 2 4 22 2 4 2
2

1 4 2 4 2 2 4 4 2

(1 ) ( 1)
= Pr ,

( ) ( )
c

R c

Ta Ro a QPm RoPmk TaRoQPm
A a Ra QPm

a a a Q a a Q

  
 

  
   

 
 (54) 

  
2 42 4 2

2 2 2 32 2 4 2 2 4

2 ((1 ) )
( ) = cos( ) , = , = .

( ) 8
c c cR

R R R R

k k RaTa Ro a QRoPm
A Ra A

a a a Q a

     
 

 
 




 

Here we carry out a numerical analysis of the equation (50) for different rotation profiles 1)3/4,2,0,=( Ro  and 

we also present the results of the dependence of the heat transfer (Nusselt number Nu ) from the time   (see Fig. 22). 

We consider the convection parameters to be fixed ==/ 1
2 QQ   80, 

5
1

4 10==/ TTa  , 9500==/ 1
4 RRac  , 

1=Pm , 10=Pr , 0.5=0A  and rotation speed modulation has a frequency and an amplitude: 10=R  and 

0.3=3 . From Fig. 22, we can observe that for nonuniform rotation with a positive Rossby number 2)=(Ro  the 

variations of heat flow are greater than for nonuniform rotation with negative Rossby numbers 1)3/4,=( Ro  and 

0)=(Ro :  

 2=1=3/4=0= |<|<|<| RoRoRoRo NuNuNuNu    

 
Fig. 23.  Dependency of the Nusselt number Nu  on time   for positive Rossby numbers = (2,0)Ro  for modulation of rotation 

with a frequency = (10,25,50,100)R  and the amplitude = 0.3 . 
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Fig. 24.  Dependency of the Nusselt number Nu  on time   for negative Rossby numbers = ( 3 / 4, 1)Ro    when modulating 

rotation with a frequency of = (10,25,50,100)R  and the amplitude = 0.3 . 

In Fig. 23-Fig. 24, we have depicted that for higher value of the modulation frequency R  for different Rossby 

numbers 1)3/4,(2,0,= Ro  leads to suppression of heat transfer, i.e. the magnitude of Nu  decreases:  

 100=|>50=|>=25|>10=|
RRRR

NuNuNuNu


  

 
Fig. 25. Variations of the Nusselt number Nu  depending on the amplitude of the modulation of rotation 4 = (0,0.1,0.3,0.5)  for the 

Rossby number = 2Ro  and the frequency = 10R . 

In Fig. 25, we have defined the dependency of the heat transfer Nu  on   in the absence of 0=2  and in the 

presence of rotational speed modulation 10)=( R  for different amplitudes 10.5,0.3,0.=2 . 

Here, the dashed line depicts the regime of establishing the final value of )(Nu  for the case 0=2 . In Fig. 25, 

we can see that modulation of rotation leads to a periodic change of the heat flow, which increases with increasing 

amplitude 2 . 
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Fig. 26. Variations of the Nusselt number Nu  depending on the Taylor number 3 4 4 5

1 = (10 ,10 ,5 10 ,10 )T   for rotation modulation 

parameters ( 2 = 0.5 , = 50R ) with positive Rossby numbers = (2,0)Ro . 

 
Fig. 27. Variations of the Nusselt number Nu  depending on the Taylor number 3 4 4 5

1 = (10 ,10 ,5 10 ,10 )T   for rotation modulation 

parameters ( 2 = 0.5 , = 50R ) for negative Rossby numbers = ( 3 / 4, 1)Ro   . 
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From Fig. 26 and Fig. 27, we can determine the change of heat transfer Nu  for different Taylor numbers 
4 3 4 4 5

1 = / = (10 ,10 ,5 10 ,10 )T Ta    for a fixed value of the rotation modulation frequency = 50R , amplitude 

0.5=2  and Rossby numbers 1)3/4,(2,0,= Ro . It can be seen from these graphs that for different Rossby 

numbers 1)3/4,(2,0,= Ro , with an increase in the Taylor number 1T  heat transfer (Nusselt number Nu ) in the 

system also increases:  

 .10=|<105=|<10=|<10=| 5
1

4
1

4
1

3
1 TTTT

NuNuNuNu   

 
CONCLUSION 

A weakly nonlinear theory of stationary convection in a nonuniformly rotating electrically conductive fluid with a 
vertical constant magnetic field under the parametric action of: a) temperature modulation of the layer boundaries, 
b) modulation of gravity, c) modulation of an external magnetic field, d) modulation of the angular velocity of rotation 
is developed. We studied the influence of time-periodic modulation on stationary Rayleigh-Benard convection using the 
perturbation theory method for the small parameter of supercriticality of the Rayleigh number 

cc RaRaRa )/(=  . Furthermore, we considered the amplitudes of the modulated fields to be small, which 

having a second order )( 2O . In the first order  , the parametric effect does not influence to the development of 

convection and we obtained the result of the linear theory [11]. In the third order 3 , the nonlinear Ginzburg-Landau 
equation with time-periodic coefficients for four types of modulation are obtained. A numerical analysis of these 
equations have shown a number of general laws: 

• The heat transfer increases for nonuniform rotation with a positive Rossby number 0)>(Ro .  

• With increasing the modulation frequency of mod  the Nusselt number Nu  decreases, which leads to 

suppression of heat transfer as with positive 0)>(Ro , so with negative 0)<(Ro  rotation profiles. 

 
Fig. 28. Dependency of the Nusselt number Nu  on   for various types of modulation for positive = 2Ro  

and negative = 3 / 4Ro   Rossby numbers 
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• The effect of increasing the modulation amplitude of mod  is to increase the heat transfer anyway of the rotation 

profile.  

For the case of gravitational modulation, an increase the Taylor number 1T  leads to a decrease in the variations of 

the Nusselt number Nu  (Fig. 14-Fig. 15). However, the heat flux increases (Fig. 26-Fig. 27) for large numbers 1T  in 

the case of rotation modulation. With increasing the Chandrasekhar number 1Q , heat transfer is at first suppresses and 

then increases (Fig. 20- Fig. 21) for the case of modulation of the magnetic field. 
Finally let us compare the different types of parametric effects on a stationary nonuniformly rotating 

magnetoconvection among themselves. In Fig. 28 we have depicted the results of numerical solutions of the equations 

(43), (47), (50), (54) for fixed convection parameters: ==/ 1
2 QQ   80, 5

1
4 10==/ TTa  , ==/ 1

4 RRac   9500, 

1=Pm , 10=Pr , 0.5=0A . The frequencies and amplitudes of four types of modulation were considered equal: 

10==== RBgT   and 0.3==== 4321  , phase  = . In Fig. 28 we can observe that the 

rotational modulation has the greatest influence on the change in heat flow in the system for positive 2)=(Ro  and 

negative 3/4)=( Ro  rotation profiles. Gravity modulation slightly exceeds magnetic modulation: 

modmagmodgrav NuNu .. ||  . Thermal phase modulation has a lesser effect on heat transfer in comparison with other 

types of modulations: .|<||<| .... modrotmodgravmodmagmodtemp NuNuNuNu   
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СЛАБОНЕЛІНІЙНА МАГНІТНА КОНВЕКЦІЯ В ЕЛЕКТРОПРОВІДНОМУ СЕРЕДОВИЩІ, 
ЩО НЕОДНОРІДНО ОБЕРТАЄТЬСЯ, ПІД ДІЄЮ МОДУЛЯЦІЇ ЗОВНІШНІХ ПОЛІВ 

Михайло Й. Коппa, Анатолій В. Турc, Володимир В. Яновськийa,b 
aІнститут монокристалiв, Національна Академія Наук України 

пр. Науки 60, 61001 Харків, Україна 
bХарківський національний університет імені В.Н. Каразина 

майдан Свободи, 4, 61022, Харків, Україна 
Університет Тулузи [UPS], CNRS, Інститут досліджень астрофізики та планетології 

9 проспект полковника Роше, BP 44346, 31028 Тулуза Седекс 4, Франція 
Досліджується слабонелінійна стадія стаціонарної конвективної нестійкості в шарі електропровідної рідини, що 
неоднорідно обертається в аксіальному однорідному магнітному полі під дією: а) температурної модуляції меж шару; 
б) гравітаційної модуляції; в) модуляції магнітного поля; г) модуляції кутової швидкості обертання. Для опису нелінійних 
конвективних явищ використовувалася локальна декартова система координат, в якій неоднорідне обертання шару рідини 

представляється у вигляді обертання з постійною кутовою швидкістю 0


 
і азимутальним широм 0 ( )U x


, профіль швидкості 

якого є локально лінійним. В результаті застосування методу теорії збурень за малим параметром надкритичності 
стаціонарного числа Релея отримані неавтономні нелінійні рівняння типу Гінзбурга-Ландау для перелічених вище випадків. 
Амплітуди модульованих полів вважалися малими, які мають другий порядок 2 , а параметричний вплив діє на 

стаціонарну конвекцію в третьому порядку 3 . Чисельні рішення рівнянь Гінзбурга-Ландау для різних типів модуляції 
зовнішнього параметричного впливу показали, що: 1) при неоднорідному обертанні з позитивним числом Росбі 0Ro   
теплоперенос в рідині збільшується; 2) збільшення частоти модуляції mod  призводить до подавлення теплопереносу як при 

позитивних 0Ro  , так і при негативних профілях обертання; 3) збільшення амплітуди модуляції mod  призводить до 

підвищення теплообміну для довільного профілю обертання. Показано, що найбільший вплив на зміну теплопотока в 
системі оказує обертальна модуляція. При цьому гравітаційна модуляція трохи перевищує магнітну модуляцію, а теплова 
фазова модуляція, в порівнянні з іншими типами модуляцій, оказує менший вплив на теплоперенос. 
КЛЮЧОВІ СЛОВА: конвекція Релея-Бенара, магнітообертальна нестійкість, критичні числа Релея, слабонелінійна теорія, 
неавтономне рівняння Гінзбурга-Ландау 
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9 Авеню Полковника Роше, BP 44346, 31028 Тулуза Cedex 4, Франция 
Исследуется слабонелинейная стадия стационарной конвективной неустойчивости в неоднородно вращающемся слое 
электропроводящей жидкости в аксиальном однородном магнитном поле под действием: а) температурной модуляции 
границ слоя; б) гравитационной модуляции; в) модуляции магнитного поля; г) модуляции угловой скорости вращения. Для 
описания нелинейных конвективных явлений использовалась локальная декартовая система координат, в которой 
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неоднородное вращение слоя жидкости представляется в виде вращения с постоянной угловой скоростью 0


 и 

азимутальным широм 0 ( )U x


, профиль скорости которого локально линеен. В результате применения метода теории 

возмущений по малому параметру надкритичности стационарного числа Рэлея ( ) /c cRa Ra Ra    получены 

неавтономные нелинейные уравнения типа Гинзбурга-Ландау для перечисленных выше случаев. Амплитуды модулируемых 
полей считались малыми, имеющих второй порядок 2 , а параметрическое воздействие оказывает влияние на 

стационарную конвекцию в третьем порядке 3 . Численные решения уравнений Гинзбурга-Ландау для различных типов 
модуляции внешнего параметрического воздействия показали, что: 1) при неоднородном вращении с положительным 
числом Россби 0Ro   теплоперенос в жидкости увеличивается; 2) увеличение частоты модуляции mod  приводит к 

подавлению теплопереноса как при положительных 0Ro  , так и при отрицательных 0Ro   профилях вращения; 
3) увеличение амплитуды модуляции mod  приводит к повышению теплообмена для произвольного профиля вращения. 

Показано, что наибольшее влияние на изменение теплопотока в системе оказывает вращательная модуляция. При этом 
гравитационная модуляция немного превышает магнитную модуляцию, а тепловая фазовая модуляция, по сравнению с 
другими типами модуляций, оказывает меньшее влияние на теплоперенос. 
КЛЮЧЕВЫЕ СЛОВА: конвекция Рэлея-Бенара, магнитовращательная неустойчивость, критические числа Рэлея, 
слабонелинейная теория, неавтономное уравнение Гинзбурга-Ландау. 




