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In this paper we studied the weakly nonlinear stage of stationary convective instability in a nonuniformly rotating layer of an
electrically conductive fluid in an axial uniform magnetic field under the influence of: a) temperature modulation of the layer
boundaries; b) gravitational modulation; c¢) modulation of the magnetic field; d) modulation of the angular velocity of rotation. To
describe the nonlinear convective phenomena the local Cartesian coordinate system was used, where the inhomogeneous rotation of

the fluid layer was represented as the rotation with a constant angular velocity QO and azimuthal shear UO(X ) with linear

dependence on the coordinate X . As a result of applying the method of perturbation theory for the small parameter
&=+/(Ra—Ra,)/ Ra, of supercriticality of the stationary Rayleigh number nonlinear non-autonomous Ginzburg-Landau equations

for the above types of modulation were obtaned. The amplitudes of the modulated fields were considered small, which having a

2 . . . Lo .
second order &, and the parametric effects influence to the development of stationary convection in the third order & ’
Numerical solutions of the Ginzburg-Landau equations for various types of modulation of the external parametric influence had
showed that: 1) by the nonuniform rotation with a positive Rossby number Ro >0 the heat transfer in the fluid increases; 2) the

increasing of modulation frequency @@, leads to suppression of heat transfer as with positive (Ro>0), so with negative

mod
(Ro < 0) rotation profiles; 3) the effect of increasing the modulation amplitude of 5m oq 18 to increase the heat transfer anyway of
the rotation profile. It is shown that the rotational modulation has the greatest influence on the change in heat flow in the system. At
the same time, gravity modulation slightly exceeds magnetic modulation, and thermal phase modulation has a lesser effect on heat
transfer in comparison with other types of modulations.

KEY WORDS: magnetorotational instability, Rayleigh-Benard convection, critical Rayleigh numbers, weakly nonlinear theory,
non-autonomous Ginzburg-Landau equation

As known, the instability of a horizontal fluid layer heated from below in the field of gravity (the Rayleigh-Benard
convection) is a classic problem of fluid dynamics [1-3]. The problems related to the effect of rotation and magnetic
field on the Rayleigh-Benard convection cause particular interest. These problems are of applied nature for
astrophysical, geophysical and for engineering-technological research [4]. The problem of rotating Rayleigh-Benard
convection was studied sufficiently detailed in [5-6], where it was found that the Coriolis force with the rotation vector

Q parallel to the gravity vector g inhibits the onset of convection and thus induces a stabilizing effect. Rayleigh-

Benard convection, in which the axis of rotation of the medium and the uniform magnetic field coincide with the
direction of the gravity vector, was well studied in [1-2]. The case is also interesting for astrophysical problems when
the directions of the axes of rotation and the magnetic field are perpendicular to each other, and the direction of the
magnetic field is perpendicular to the direction of the gravity vector. Such problem statement corresponds to convection
in fluid layers located in the equatorial region of a rotating object, where the azimuthal magnetic field plays a
significant role. The linear theory of such convection was first constructed in [7-8]. The linear theory of rotating
magnetic convection for a random deviation of the axes of rotation and the magnetic field from the vertical axis (gravity
field) was developed in [9]. A weakly nonlinear theory and stability analysis of azimuthal magnetic convection with

B,,(R) = const was performed in [10]. It proposes a model in which the centrifugal acceleration g, = (0% (R, +R,) can

play the role of gravitational acceleration g for free convection in the local Cartesian approximation. The weakly

nonlinear theory of centrifugal magnetoconvection considered in [10] was applied to the problem of a hydromagnetic
dynamo. In all works on rotating magnetic convection [1-10], the rotation of a horizontal fluid layer with a constant
angular velocity Q = const was considered.

However, it is known that the majority of various space objects consisting of dense gases or liquid (Jupiter, Saturn,
Sun, etc.) rotate non-uniformly, i.e. different parts of the object rotate around a common axis of rotation with different

© M.I. Kopp, A.V. Tur, V.V. Yanovsky, 2020



https://orcid.org/0000-0001-7457-3272
https://orcid.org/0000-0002-3889-8130
https://orcid.org/0000-0003-0461-749X
https://doi.org/10.26565/2312-4334-2020-2-01

6
EEJP. 2 (2020) Michael 1. Kopp, Anatoly V. Tur, Volodymyr V. Yanovsky

angular velocities. Differential (non-uniform) rotation is also observed in galaxies, accretion disks, and extended rings
of planets. Besides, such large-scale vortex structures as typhoons, cyclones and anticyclones, etc. also rotate non-
uniformly. This circumstance served as the motivation for a theoretical study of Rayleigh-Benard convection in a non-
uniformly rotating electrically conductive fluid in the axial uniform magnetic field [11-13], as well as in an external
spiral magnetic field [14] with the nontrivial topology B,rotB, # 0.

The problem of the stability of an electrically conducting fluid between two rotating cylinders (Couette flow)
and the Rayleigh-Benard problem in an external constant magnetic field were both considered in [11-12]. There was
also carried out a study of the chaotic regime based on the equations of nonlinear dynamics of a six-dimensional
(6D) phase space. The analysis of these equations has shown the existence of a complex chaotic structure - a strange

attractor. A convection mode in which a chaotic change in direction (inversion) and amplitude of the perturbed
magnetic field, taking into account the inhomogeneous rotation of the medium, occurs was found as well. A study of
the chaotic regime of magnetic convection of a nonuniformly rotating electrically conductive fluid in a spiral
magnetic field based on the equations of nonlinear dynamics of an eight-dimensional (8D) phase space was carried

out in [14]. There was also found a convection regime in which a chaotic change in direction (inversion) and
amplitude of the perturbed magnetic field occurs, taking into account the nonuniform rotation of the medium and the
nonuniform external azimuthal magnetic field. Earlier, a weakly nonlinear stage for rotating magnetoconvection (for
Q = const ), in which a chaotic regime occurs, was studied in rotating fluid layers [15-16], in conducting media with
a uniform magnetic field [17-20], and in conducting mediums rotating with a magnetic field [21]. However, the
dynamics of the magnetic field itself was not considered in these works, which corresponds to the non-inductive
approximation. Such tasks have great importance for technological applications: crystal growth, chemical processes
of solidification and centrifugal casting of metals, etc.

The study of the dynamics of a magnetic field generated by convective motions of a fluid is important for the
theory of magnetic dynamo [22]. A special role in this is played by issues related to the physical nature of inversions
and variations in the magnetic field of the Earth, the Sun, and other space objects. In [23] Rikitaki proposed an
electromechanical model of terrestrial magnetism. The study of the dynamic system of Rikitaki equations was also used
to explain the chaotic inversion of the geomagnetic field [24-27]. In recent works [28-29] was investigated a modified
system of Rikitaki equations taking into account friction and not reducing it to a three-dimensional form as for example
in [24]. This made it possible to more clearly show that at first the oscillations of the current (or magnetic) variable near
a certain stationary state with an increase in amplitude go into oscillations around an another stationary state, which
simulated inversions [29]. In [28] it is established that after chaotic behavior the system goes into stable mode.
According to the authors of [28], such a regime can describe superchrons in the inversion of the geomagnetic field. In
contrast to the works [23-29], in [11-12], [14] it is proposed to model the magnetic field inversion by a dynamic system
of equations of Lorentz type, respectively, for (6D) and (8D) - dimensional phase space.

In [13], the weakly nonlinear stage of stationary convective instability in a nonuniformly rotating layer of an
electrically conductive fluid in an axial uniform magnetic field was studied. As a result of applying the perturbation
theory method for a small parameter of supercriticality of the stationary Rayleigh number [30], the nonlinear
autonomous Ginzburg-Landau equation was obtained. This equation describes the evolution of the finite amplitude of
perturbations. A numerical analysis of this equation showed that the heat flux increases with rotation of the medium
with positive Rossby numbers Ro > 0. In [13] it is shown that the weakly nonlinear convection based on the equations
of the six-mode (6D) Lorentz model transforms into the identical Ginzburg-Landau equation. The weakly nonlinear

theory of convection was especially developed with regard to modulation of the parameters that control the convection
process, what is very important for solving many technological problems. Different types of modulation, such as
rotation [31-34], gravity [35-37], temperature [38-40] and magnetic field [41-42], were studied for stationary weakly
nonlinear convection in various media: porous media, nanofluids, and so on. In these papers [31-42] the effect of
modulation of the parameters (rotation, gravity, temperature, magnetic field) on the heat and mass transfer in convective
media was determined. A parametric effect on convection can lead to either an increase or a decrease in heat transfer. In
addition to technological problems, considering of the modulation of external fields plays an important role in modeling
convective processes on the Earth, the Sun, and other space objects [43-44].

The aim of this work is to study a linear and weakly nonlinear theory of the stationary convection in a non-
uniformly rotating layer of the electrically conductive fluid in the axial uniform magnetic field under the influence of:
a) temperature modulation of the layer boundaries; b) gravitational modulation; c) modulation of the magnetic field;
d) modulation of the angular velocity of rotation. The content of the work is outlined in the following sections. The
basic equations for the evolution of small perturbations in the Boussinesq approximation, that describe non-uniformly
rotating convection in external periodic fields: a) temperature modulation of the layer boundaries, b) gravitational
modulation, c¢) modulation of the magnetic field, d) modulation of the angular velocity of rotation, are obtained in
Section PROBLEM STATEMENT AND BASIC EVOLUTION EQUATIONS. In Section EQUATIONS OF
EVOLUTION OF FINITE AMPLITUDE FOR DIFFERENT TYPES OF MODULATION we study the weakly
nonlinear stage of stationary convection in a nonuniformly rotating layer of an electrically conductive fluid under the
action of modulation of external fields. Using the method of perturbation theory with respect to the small parameter of
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supercriticality of the Rayleigh number & =./(Ra—Ra,)/ Ra, ) we obtained the nonlinear Ginzburg-Landau equation

with a periodic coefficient for each type of modulation. The results of numerical solutions of the non-autonomous
Ginzburg-Landau equation for each type of modulation show the dependence of the heat transfer (Nusselt number Nu )
on the amplitude o the frequency ®, , of the modulation and the profile of the nonuniformly rotation (number

mod m

Rossby Ro) are also presented in Section EQUATIONS OF EVOLUTION OF FINITE AMPLITUDE FOR
DIFFERENT TYPES OF MODULATION.

The results developed in this work can be applied to various astrophysical and geophysical problems that consider
magnetic convection in the rotating layers of the Sun, hot galactic clusters, accretion disks and other objects.

PROBLEM STATEMENT AND BASIC EVOLUTION EQUATIONS
Let us consider a nonuniformly rotating flow of an electrically conductive fluid located between two impermeable

horizontal planes z =0 and z = &, which are heated from below and cooled from above according to the periodic

law. The temperature of the lower and upper horizontal boundaries is modulated in accordance with a time-harmonic
law:

T1=75+A7T[1+5251cos(@t)] at z=0 )

TZZY})—A—zT[l—gzé‘lcos(d)Tt+¢)] at z=h,

where 7} = const is the temperature relative to which oscillations occur with a frequency of @, and a phase shift of

@, AT is the temperature difference between the lower and upper planes in the absence of modulation, O, is the
amplitude of thermal modulation, & is a small parameter. In a cylindrical coordinate system an electrically conductive
medium (plasma) rotates in the azimuthal direction with the speed v, = RQ(R,?). Here C(R,?) is the angular

velocity of rotation, which makes small oscillations in time according to the periodic law:
Q(R,t) = Q(R)(1+ £°8, cos(@t)), )

where c?)R is the frequency of rotation modulation, 52 is the amplitude of rotational modulation.

It is convenient to switch from a cylindrical coordinate system (R,,z) to a local Cartesian system (X,Y,Z)
in order to describe nonlinear convective phenomena in a nonuniformly rotating layer of an electrically conducting
fluid. If we consider a fixed region of a fluid layer with a radius R, and an angular velocity of rotation

Q. (1) = QR 1) = Qu (1+ &3, cos(@t)), Q, = const,
then the coordinates X = R— R, correspond to the radial direction, ¥ = R (¢ — @,) to the azimuth and Z =z - to

the vertical direction (see Fig.1).

Fig. 1. Scheme of the shear flow in rotating flows, the flow being approximated in the local Cartesian coordinate system
as a linear shift with velocity U, O(X ).

Then, nonuniform rotation of the fluid layer can be represented locally as a rotation with a constant angular velocity
Q,(¢) and azimuthal width [46], which velocity profile is locally linear: U, =-—g€d,(¢)Xe,, where

q=-dInQ/dInR is the dimensionless shear flow parameter defined using the profile of angular velocity of rotation
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_ R 0Q
Q(R)=Q(R/R,) ?. The parameter g is related to the hydrodynamic Rossby number Ro :Eﬁ_R by the

relation: ¢ =—2Ro0 . Note that the accretion disks with the shear flow parameter ¢ =3/2 (Ro =—-3/4) correspond
to the Keplerian disk, ¢ =2 (Ro=—1) corresponds to the disk with a constant angular momentum or Rayleigh
rotation profile. The case ¢ =1 (Ro=—1/2) corresponds to a system with a flat rotation curve, while ¢ =0
(Ro =0) corresponds to a uniform (or solid-body) rotation with a constant angular velocity.

We assume that the direction of the external magnetic field B, coincides with the axis of rotation of the fluid
Q|| OZ . In addition, the external magnetic field B, and the gravitational acceleration vector g = (0,0,—g) change

with time according to the harmonic law

B, = B,,(1+&°5, cos(@,t))e,, ?3)

_ 2
g=-gy(1+&75, cos(w,1))e,,
where 03,0, are small amplitudes of magnetic and gravitational modulation, By, = const, @,,®, are frequencies

modulation of magnetic and gravitational fields.
The influence of modulation of external fields will consider on the basis of the equations of
magnetohydrodynamics in the Boussinesq approximation [1-2]:

= 2
6—v+(\7V)\7 = —LV(P+B—)+ (BV)B + gfBTe, + WV )
ot £ 87 70,
‘Z—f +(¥V)B—(BV)v =nV*B )
o, (V)T = 4V°T (6)
ot
divB=0, divi =0, %

where €, is the unit vector directed vertically up the OZ axis, [ is the coefficient of thermal expansion,

P, = const is the density of the medium, v is the kinematic viscosity coefficient, 77 = c*lAno s the magnetic

viscosity coefficient, 0 is the conductivity coefficient, } is the coefficient thermal conductivity of the medium. Let us

represent all quantities in Eqgs. (4)-(7) as the sum of the stationary and perturbed components V = U, +1,

B= Eo +b, P= Po+ P, T =T, +0.The equations for the stationary state are:

dp,
d—Z‘) = poghI, ®)
—2gQ2X = 1 dp, ©)
Py dX
oT, d’T,
— = 10
ot dzZ? (10

The expressions (8)-(9) show that centrifugal equilibrium is established in the radial direction and hydrostatic in the
vertical direction. The solution of the equation (10) with boundary conditions (1) has the form [45]:

T,(z,0) = Ty(2) + &6, - f,(z,0)AT, (11)

AT 2z
T =T +—|1-——|,
S(Z) 0 2 ( hj

where
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i 2 i@, h g
—1
fi(z,t)=Res| a(A)e" +a(-A)e " |e T}, A7 =——L (l)—— —A ,
V4 2 e —e
where 7§ (z) is the stationary temperature, f,(z,¢) is the oscillating part of 1, , the symbol Re denotes the real part.

Subtracting the equations for the stationary state (8)-(10) from (4)-(7) we can find the evolution equations for small
perturbations:

6—”—qQ X6—+(uV)U +2Q), xii + (i V)ii = —ivp+ ! ((B,V)b+(bV)b)+ gple, + Wi
ot oY Po 47p,
ob ob
a——qQ Xa —(B,V)ii —(bV)U, + (V)b — (bV)ii = Vb (12)
%—qQ X%+(uV)T +(@V)0 = yV°6
ot oy

divb=0, divu=0

b> bB, .
Here the pressure p includes the disturbed magnetic pressure p, = 8_ + 4— p=p+p,.
T T

Let us consider the dynamics of axisymmetric perturbations, then all the perturbed quantities in the equations (11)
will depend only on two variables (X, Z):

i = (X, Z).W(X,2),mX,2)), b = (il(X,2),%(X,Z), WX, 2)), p= p(X.Z),0 = 0(X,Z)
The solenoidal equations for axisymmetric velocity and magnetic field perturbations will take the form

ou ow oiu  ow
—+—=0, —+—=0 (13)
oX oZ oX o7z

The remaining equations in the coordinate representation will take the following form:

(ﬁ_vv j“ f @=L 00 fye— Gy + Buln 9L (14)

ot P, 0X 4rp, 4rp, OZ
(g—vvzjv+(ﬁV)v=—ZQoofRu(l—g}- (EV)ﬁ+BLfma—v (15)

ot 2) 4np, 4rmp, OZ
(g—vvzjw+(ﬁV)w=—ia—p+g L ¢ W+—B°°fm o (16)

ot P, 0Z ¢ 47p, 4rp, OZ

0
(5—77 j oof + @V)i—(bVyu = (a7
0 2
E—UV 0Of +qQ oo foll + @V = (bV)v =0 (18)
(%_W jw B, f VY- (BV)W=0 (19)
(ﬁ_;(vzje—(jvwez&l-%ATwﬂﬁV)&:O,C:g, (20)
ot oz h

where fp =1+&°5,c08 @y, f,, =1+&°5,cos dyt, f, =1+°5, cos @t .
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In the equations (14)-(20) the nabla operators can be described as:

2 2
(aV) = aiJrai V2282+82.
oX  Coz’ oxX° oz

To eliminate the pressure P in the equations (14) and (16), we need to differentiate the equation (14) with respect to

Z . The equation (16) is required to be differentiated with respect to X and then by subtracting them from each other,
we can obtain the equation for ¥ - the components of the vortex rotu = €, @:

(6 2j 0 ( ou 8uJ 0 ( ow 8w) B, f, ol
W ot —| u—t w— | — | u e+ W | = I Q1)
Ot 0Z\ oX 0Z) oX\ oX 0Z) 4np, 0Z
+ 1 i[ﬁa_u_i_ auj i[ﬁ%_ﬁ.ﬁ;a_wj +2’QOOfR@_g0f>ﬂ%
4rnp,\ OZ\ ©0X 0Z) oX\ oX oz oz o oX
where @ = u_ow, is the ¥ - component of the vortex, / = di_ow - Y -current component I = roth = le,.
0Z oX 0Z o0X

According to the equations (13) it is convenient to introduce the stream function ¥ through which the components of
the perturbed velocity are expressed:

0 0
__v v
oz oX
Similarly, we can introduce the stream function ¢ for perturbations of the magnetic field:
. 0 .0
oz oX

As aresult, the equations (2) and (15) become more compact

0 2 Ju 0y 1 2 2
——W~* |V +2Q Buof Vo)-J(y,V 22
(at ) 14 oofRaZ 47p, aZ of:BaX 47p, p)—-Jw,Viy) (22)

0 oy Byf, ov 1 ~

——W 2Q 1+ Ro %0 = J(o,)-J(v, 23
(al‘ )V 00z ( ) oz arp, 7 47, (@, v)=J(y,v) (23)

The notation J(a,b) = Ga 0b _ Oa b - the Jacobian operator or the Poisson bracket J(a,b) = {a,b}.

0X 0Z 07 oX

Further, by differentiating the equation (17) with respect to Z and by differentiation the equation (19) with
respect to X, and then by subtracting them from each other, we can find the equation for the current [/ :

(a j 0 ( on _oi au ﬁuj
—nV [ I+—|u—+w (24)
ot oz\"ox "oz "oax Vaz

o ow ow _ow aw ow
U——tw—-u—- =By /.
oxX oz ox az

X oz
Equations (20) and (14) can also be written in a compact form using the definitions of the stream functions { and ¢ :
0 ) oy
—-nV -B —=-J(v, 25
(a 7 J(/’ win 7, v, 9) (25)
o op
5 oof 2 fyRo— = J(@.v) = Iy, V) (26)
The form of the equation (16) for temperature disturbances is simplified in a similar way:
0 2 oy .. O oy
—— V' 1 0-C—+¢"0, - ———AT =-J(yv,0 27
(az x ] ox N ez ex .0) @7

Equations (18), (19), (21), (22) and (23) together with the boundary conditions
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dv - d
w=viy=0, L=0 v=0, YL=0, 9=0 a z=0,h 28)
dZ dz

describe nonuniformly rotating convection under the action of modulation of external fields. For convenience, in

equations (22)-(27) we turn to the dimensionless variables, which we mark with an asterisk:
2

(X, Z)=h(x' 2 )t = = 0" o= hB,o VZ%V*, 5=B,5,0=Cho".
1%

Omitting the asterisk symbol, we will rewrite equations (22)-(27) in dimensionless variables:

o —2)en v R N 00
=V} |V +Ta- f,—-PrPm 'Qf, —V’p—Ra- f,—=
(az J v g Oy Vo—Rato g

=PrPm™'Q-J(¢,V@)-Pr - J(v,Vy)
[%—szv—m-fR(1+Ro)%—Z/—Per‘1Qfm % =
=PrPm'Q-J(p,v)—Pr"-J(w,v)
(g—Pm1V2j¢—Pr1 £ 66_12// =—Pr' J(v,p)) (29)

ot

(Q—Pm-lvzjﬁ -pPr'f, &\ RoTa - . 9P _ py-t (J(@,v)=J(w, 7))
Ot oz 0z

(Pr 0 vzja - a—”’(l — &%, %j = _J(w.0),
zZ

o ox
where the dimensionless parameters are: Pr=1v/ y ( Prandtl number), Pm =v /7 (magnetic Prandtl number),
4Q0h" By h’ ch*
Ta = % (Taylor number), QO = = (Chandrasekhar number), Ra = & ( Rayleigh number on
4mp,vn 14

scale h).
In the absence of the thermal phenomena Ra =0 and f, = f, = f, P 1, the system of equations (29) was used

to study the nonlinear saturation mechanism of the standard MRI [47]. In the case when the external field modulation is
absent 51523’4 =0 and Ra # 0, the system of equations (29) was used to study the weakly nonlinear and chaotic

modes of stationary convection in a nonuniformly rotating magnetoactive electrically conductive medium [11-13].

EQUATIONS OF EVOLUTION OF FINITE AMPLITUDE FOR DIFFERENT TYPES OF MODULATION

In this section, we analyze the nonlinear stage of stationary convection in a nonuniformly rotating electrically
conductive medium in a constant magnetic field under the influence of small oscillations: a) the temperature field at the
layer boundaries; b) gravitational field; c) external magnetic field; g) the angular velocity of rotation. We will consider
all these effects separately (see Fig. 2). Then we will compare the value of the heat transfer (Nusselt number) for each
type of modulation, i.e. quantify heat transfer in terms of finite amplitudes. These amplitudes arise when an interaction
occurs between several modes of perturbations. Such an interaction can be described only in the framework of a
nonlinear or weakly nonlinear theory based on the perturbation theory method. Here we will perform our research in the
framework of a weakly nonlinear theory. The small expansion parameter in this theory is the relative deviation of the

Rayleigh number Ra from the critical value Ra,. :

Ra,
Then all the perturbed quantities U in equations of the type LU =—N(U |U) (N(...) are nonlinear terms) are
represented as a series in the perturbation theory

U—-eU®+8U%+8U% +. ..
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The equations for the perturbations in various orders of & take the following form:
g LoUY =0,
g LU =-NU" [U")
e oy® = _dy® _N(U(l) |U(2)) _N(U(Z) |U(1))

The condition for solving this chain of nonlinear equations is known as Fredholm s alternative (see, for example [48] )

Z+G)8

Z4GylB,

0 TT) -‘% (1- €% Cos(w,t+0))

b)

T T, #8501 + &% Cos(o1)
B=E(1+ 6%, Cos(o,)

. ﬁo I §o=§m(l & 8253COS(G)Bt)) Z Eo [ ﬁo =§oo(1 T 325§°S(wat))
d)

Fig. 2. Cartesian approximation for a nonuniformly rotating magnetoconvection under parametric influence: a) temperature
modulation of the boundaries of the liquid layer; b) modulation of the gravity field; ¢) modulation of the external magnetic field;
d) modulation of the angular velocity of rotation. A nonuniformly rotation in the local Cartesian coordinate system consists of
rotation with a constant angular velocity Q, and shear velocity U || OY .

<UT,R.H.> =0. (30)

Here U is a non-trivial solution of the linear self-adjoint problem LU =0 , Where L isa self-adjoint operator,
which is determined from the following relation:

<U’f,/;U> = <ﬂU‘f,U>, 31)

where <,> is the inner product, which here has the following definition:
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| 27k,
(£.8)=[ [ 1 gz,
z=0 x=0

where R.H. are right sides of the perturbed equations with nonlinear terms. We represent all the variables in equations
(29) as an asymptotic expansion:

Ra=Ra,+ &R, +&'R, +...
— 2 3
W=y, +tEW, +EW; +...
V=ev eV, H e+ (32)
— 2 3
P=&Q+&EQ,+EQ+...
V=gV + TV, T+
0=:e0+50,+&60,+...
Here Ra, is the critical value of the Rayleigh number for convection without modulation. The amplitudes of the

perturbed quantities depend only on the slow time 7 = g’t. For simplicity we will take into account the nonlinear
terms in (29) only in the heat balance equation. As it is shown in [23], this approximation is equivalent to applying the
Galerkin approximation of the minimum order to the equations (29). In the lowest order, we get the equation:

M, =0, (33)
o
vl
where M|, =| ¢, |, L is the matrix operator of the form:
‘71
LG ]
-v* JTa 9 _pm PrQQV2 0 —Ra, 9
Oz Oz ox
—vTa(l+ Ro)2 -Vv? 0 —Pm’™! PrQi 0
Oz Oz
- pt 0 —Pm™'V? 0 0
L= 0z
1 8 a -1y72
0 ~Pr'=  RoJTa— ~Pm’'V 0
Oz Oz
' 2 0 0 0 -Pr'V?
ox

The solutions of the system of equations (33) with the boundary conditions of (28) have, respectively, the following
form:

w, = A(r)sink xsinnz, 6, = A(Tz)kc cosk xsinnz, ¢ = A(Tz)—gpmsin k.xcosz,
a r
2 —
5= A(t)m°~NTa(1+ Ro(1— Pm))Pm sink_xsin 7z, (34)

Pr(a* + 7°0)

_ A(t)zNTa (1+Ro)a* +7*°QPmRo
n a’ . a*+1°0

sink xcosnz, a’=k’+n’.



14
EEJP. 2 (2020) Michael 1. Kopp, Anatoly V. Tur, Volodymyr V. Yanovsky

The amplitude A(7) is still unknown. The critical value of the Rayleigh number Ra, for the stationary
magnetoconvection in a nonuniformly rotating electrically conducting medium is found from the first equation of the
system (34) and has the form of the formula obtained in the linear theory [11-12]:

(P +kY N 7 (7* + k)0 N (7’ +k2)Ta N 7’TaRo((” +k2)* + 7°QPm)
K K2 (T +k)+7°0) K@ +K) +7°0)

c c

Ra

(35)

It should be noted that for the absence of heating Ra = 0, the threshold value of the hydrodynamic Rossby number
Ro has the form:

Ro = a*(a* +71°0) +7’a’Ta
¢ 7’Ta(a* + 7°0Pm)
Passing to dimensional variables

0 o, 7°0Pm @, Ta 4Q° o’ )
. > T 220 s 2 0 2 ¢
a 0,0, a w, a ,

we obtain the expression for Ro,, [41]:

2 2 22 2
_(a)A+a)Va),7) +45° Q' w,

Ro,, =
cr 2 g2 2 2
4Q°¢ (0 + @)
where the following notation has been introduced: @, = vk * and w, = nk ® are the viscous and Ohmic frequencies,
22
respectively, and @, is the Alfven frequency, a)j = kz2 cf‘ = 42 O Therefore, in the limiting case of Ra=0,
7Py

magnetorotational instability appears in a nonuniformly rotating electroconducting fluid in a constant magnetic field.
The criterion for its appearance is the condition imposed on the angular velocity profile CX(R) of the rotating liquid,

i.e., Rossby number Ro > Ro,, . Figure 3 shows diagrams of the dependency of the critical Rayleigh number Ra,_ on
the wavenumbers for various angular velocity profiles (Rossby numbers Ro ). It can be seen that for negative Rossby
numbers Ro < 0 the critical Rayleigh number Ra;"m becomes smaller than in the case of uniform rotation Ro =0

and rotation with positive numbers Ro > 0.

Ra,
4000
3000
Ra?in
1000
— —— = Ro=1
0.0 0.5 1.0 1.5 20 25 n/k

Fig. 3. Dependences of critical Rayleigh number Ra, on wavenumbers 7/ k for different Rossby numbers Ro for constant
parameters O =50, 7a =100 and Pm=1.

According to the formula (31), it is necessary to find solutions of the linear self-adjoint problem fMJ =0,

+ ~f
where the matrix M| has the form: M IT = (l//;r , HIT , (of R v;r )Tr and L is a self-adjoint matrix operator:
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-v* Ra(ﬁi Pm™' Pr Qﬁﬁv2 Jrap L
Ox 0z 0z
Racﬁ2 ~Ra PV’ 0 0
Ox
rt ~ ~
L' =| pp' pr QP§V2 0 ~QPr* PmPV* 0 (36)
z
2
Jtap L 0 0 viop v
oz oz

The solutions of the system of equations (36) have the form:

w! = A(r)sink xsin z,

A(7)k, .
o =— ( 2) ¢ cosk,xsin rz, (37
a
A(r)mPm .
= —% sink_xcos 7z,
a” Pr
A(t)nTa (1+Ro)a* + 7°OPmRo .
v = ) - A )4 : Q sink_x cos 7zz.
a a +7°Q
For the second order of &, we have the following equation:

LM, =N,, (38)

v, N,,

v, N,,

where M,=|p,|, N,=|N,|
v, Ny,
L 0, i _st i
N, =N,,=N,;=N,, =0,
N :—PI'_I al//l a91 _%aWI
2 ox 0z Ox Oz
Using solutions of (34) and boundary conditions of (28), we can find solutions of equations (38):
A (D> .
=0, 0,=- LK Goomz), 9,0, (9)
8ra

v,=0, v,=0.
To analyze the intensity of the heat transfer, a horizontally-averaged heat flux is introduced at the boundary of the layer
of electrically conducting fluid (Nusselt number):

kT 06,) |
c .[ (zjdx
— —27[ 0 az dz=0 — kcz 2
Nu(z)=1+r— == =1+ —5A4(7) (40)
kc C(@%] 4q
I — % ldx
2z Oz y

The heat flow intensity (of Nusselt number Nu ) will be analyzed after the expression for the amplitude A(7) is

obtained. As can be seen from the an asymptotic expansion (32), modulation effects contribute only in the third order in
& , so we will consider these effects separately from each other in the third order in & .
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Temperature modulation of fluid layer boundaries
Let us consider only the temperature modulation of the layer boundaries, then in the equations (29) it is necessary

toput fr = f, = f, =1. At the third order, we have

LM, =N,, (41
_‘//3_ _N31_
V3 Ny,
Where My=|@;|, Ny;=| Ny |;
Vs Ny,
| 0, | | Nys |
2
N :_ivzw +Ra 96, _ a’ aA(T)—Ra ke A) sink_xsin 7z,
oo TN or s ‘
ov 7vTa (1+Ro)a* +7°OPmRo 0A(r) .
N32__8_rl:_ . 170 s sink_x cos 7z,
N,, = 0% _ —ﬂf—m- 0A(z) sink,xcosnz
or a Pr Or
~ 2
N, _ oy _ 7w NTa(l+Ro(1—Pm))Pm 0A(r) sink xsin 7z,

or Pr(a* + 7°0) ot

N, :—%—PI‘_151%%—PI'_I|:6W1 00, 00, oy, +a‘//2 06, 06 81//2}_

or Oz Ox Oox 0z Ox Oz ox E_E 1574

-173

__k 0A@) k,xsinzz—Pr' 6, %kc/l(r) cosk,xsin 7z + Z—Zk"/f(r) cosk,x sin 7z cos 27zz.
z a

2
a- Ot

The solvability condition (Fredholm alternative) for the third-order equations 0(6‘3) is found from the formula (30):
| 27lk,
[ | [Pvl R, +RaPO!-R,+OPr*Pm  PV’p! - Ry+v| Ry, |dxdz=0 (42)
z=0 x=0
where the notations are introduced
2

- 0
P=(1+Ro)V* —QPmRog,RN =N,,R,=N,,R,=N,,

2

R, =-V'N, + QPr@i V’N,, ++/ TaQPmPrRo%.
z z

By integrating into (42), we obtained a nonlinear equation for the amplitude A(7), which refers to the non-autonomous

Ginzburg-Landau (GL) equation for stationary convective instability, with a time-periodic coefficient in the following
form:

0A
Ay E — Ay (v)A+ A}TA3 =0 (43)

Here the coefficients AIT,ZT,3T have the following form:

2 2 7*Ta((1+ Ro)a* + 7*OQPm(RoPm —1 4 2
AIT:aerkj PrRaC—”—zQPm— (( ) y 2Q2 ( ))_7Z4Taﬁ?0QI;m ™
a a (a"+77°0) a'(a"+7°Q)
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k> k’Ra, k'Ra,
Ay () =—5Ra, ———%0,-1(7), Ay =—75,
a a 8a
where the integral /(7) is equal to:
1 2 -iopT . _jg ~
of.(r,z Te T (e -1 10)
I(T)=J-—f1( )sinzﬂzdz=Re > ( 5 ) , @p=—F.
Oz A" +4n g

0
In the limiting case, when there is no temperature modulation &, = 0, the equation (43) was obtained in [13]. In the

absence of modulation, the equation (43) has an analytical solution with the known initial condition Ao = A(0):

A(r)= 4 45)
T

1

In [23], the effect of different rotation profiles (Rossby numbers Ro ) on the heat transfer value (Nusselt number Nu )
using (45) was studied. The equation (43) will be solved numerically for different rotation profiles and modulation
types:

« In-phase modulation (IPM) ¢ =0,

* Out-phase modulation (OPM) ¢ =1,

* Only Lower boundary modulated (LBMQO) ¢ = —ioo, which means that the modulation effect will not be
considered in the upper boundary but only in the lower boundary.
Further, we will consider Ra2 R Rac , since the nonlinearity is considered near the critical state of convection.

The results of numerical solutions of the equation (43) for the case of in-phase modulation ¢ =0 for Rossby numbers
Ro =(2,0,-3/4,—1) are shown in Fig. 4.
Nu

3.0

25

2.0

1.0 L5 T
Fig. 4. Dependence of the Nusselt number Nu ontime 7 for Rossby numbers Ro = (2,0,—3/4,—1) in the case of in-phase
(IPM ,¢ =0) of temperature modulation for a frequency @, =2 and an amplitude 5, =0.5.

The fixed parameters of convection and temperature modulation are respectively equal to:
O/n*=0Q,=80,Ta/n* =T, =10°, Ra /x* = R, = 9500, Pm =1,
Pr=10,4,=0.5,0,=2,5 =0.5.

As can be seen from Fig. 4 the heat flow increases towards positive Rossby numbers (Ro > 0) in the time interval
7 €[0,1]. The heat flow reaches the final value for all rotation profiles.

Fig. 5 and Fig. 6 show the numerical solutions of the equation (43) respectively for the case of (OPM ) and
(LBMO) . Here we also see an increase in heat flux towards positive Rossby numbers (Ro > 0), then there is a
periodic change in heat transfer for all rotation profiles. The comparison of results of in-phase modulation (/PM ), out
of phase modulation (OPM) and when only lower boundary temperature is modulated (LBMO) for fixed
parameters Ro =2, w, =2, 0, = 0.5 is presented in Fig.7.
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Comparing these graphs, we can conclude that the variations in the Nusselt number ANu are greater for the case of

out-phase modulation ((OPM')):  ANu|, > ANu|,_ . > ANu]|,,.
Nu
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3.0

29
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2.7

2.6

2.5

wn

0 1 2 3 4 T

Fig. 5. Dependence of the Nusselt number Nu on the time 7 for Rossby numbers Ro = (2,0,-3/4,—1) for the case of phase
(OPM ,¢ = 7r) of temperature modulation for frequency of @, =2 and amplitude of 6, =0.5.

Nu
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3.0
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25

w

0 1 2 3 4 T

Fig. 6. Dependence of the Nusselt number Nu on the time 7 for Rossby numbers Ro = (2,0,-3/4,-1)
for the case of temperature modulation of only the lower boundary of the layer (LBMO, ¢ = —i)
for frequency @, =2 and amplitude 5, =0.5.

Nu
oy 1 " LBMO
OPM
2.0
1.5
1.0
0 2 4 6 8 T

Fig. 7. Three types of temperature modulation: I/PM,OPM ,LBMO for fixed parameters Ro=2, w, =2, 6, =0.5.
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In Fig. 8, we have depicted the variation of Nu(7) with time 7 for different frequencies of the out-phase (¢ = )
modulation of @, =2,5,10,30 and for a fixed Rossby number Ro =2 and amplitude 8, = 0.5 . Here it can be seen

Nu

32

3.0

28

2.6

24

e
=

(S R

22

gee
G

2.0

0 2 4 6 8 T

Fig. 8. Dependence of the Nusselt number Nu on the time 7 for the case of phase (¢ = 7) temperature modulation for frequency
o, =(2,5,10,30) , amplitude &, = 0.5 and Rossby number Ro=2.

Nu
3.0
28

28 —5=0l

9,=103

8,=105

"""" 8,=10
24
0 2 4 6 8 T

Fig. 9. Variations of the Nusselt number Nu depending on the amplitude of the phase temperature modulation &, = (0,0.1,0.3,0.5)
for the Rossby number Ro =2 and the frequency @, =5.

that an increase in the modulation frequency @, leads to suppression of heat transfer, i.e. variations in the number Nu
are reduced:

ANu |

=2 AN, s> ANu| _jo>ANu|, _3

A similar phenomenon is observed for nonuniformly rotation with other profiles. In Fig. 9, we have presented the
unmodulated (51 =0) result of Eq. (43) and compared it with the present results of modulated case for different
amplitudes 6, = 0.5,0.3,0.1. It can be seen from these graphs that modulation of the temperature boundaries of the
layer leads to a periodic change in heat flow, i.e. the value of the number Nu changes periodically in time 7 and

increases with increasing amplitude 0, .

Gravity field modulation
We now turn to the next method of parametric action on stationary magnetoconvection in a nonuniformly rotating

electrically conductive medium. Let a fluid layer carries out vertical harmonic oscillations with a frequency cf)g and a

small amplitude 82§ . Then, in the equations of motion written in the reference frame associated with the fluid layer,
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the acceleration of gravity g should be replaced by g,(1+&°5, cos(@,1)) (see formula (3)). In the equations (29)

we set 0, =0 and fa =1 . = 1. As a result, the equations of the asymptotic expansion in the third order take the
following form:

LM, =N,, (46)
_W3_ _N31_
Vs N,
where M, =| @, |, N;=| Ny |,
Vs Ny,
| 6, | | Ny |
0 o 00 00,
N, = _EV v, +Raza—x‘+RaC54 cos(a)gr)a—x‘—
2 2
= (az @) _ Ra, 2 AZ(T) — Ra S, cos(w,7) ke A(T)jsink xsin 7z,
ot a ‘ ¢ a’ ‘
4 2
N, = _%: oz 2Ta _(1+R0)cj +7§ OPmRo _ OA(T) sink x cos 7z,
ot a a +rn°Q or
N, =- P __ 7[2Pm 2A@) sink_xcoszz
ot a"Pr Or
~ 2 .
N, = _ oy, _ ' ~NTa(1+Ro(1-Pm))Pm OA(7) sink xsinzz,

or Pr(a* +7°Q) or
N =—%—Pr‘{a% 06, 006, oy, +8l//2 06, _ 96, al//z}:
» ox 0z Ox 0z dx &z Ox Oz
__k, 04(7) Pr 'k’

5 cosk xsinzz + —26A3(r) cosk, xsin 7z cos 27z.
a- Ot 4a

We substituted the values of the elements of the matrix N; into the solvability condition (42) for the third-order

equations 0(83) . After completing the integration in (42), we have obtained the equation for the evolution of the finite

amplitude A(7) in the form of a non-autonomous GL equation:

A %—AZG(T)A + A, 47 =0, @
where the coefficients 4, , 3, have the form
2 4 2
A, =d+ 1; PrRa, —Z—jQPm K Ta((1+Rozz4 :r_i;zgfzm(RoPm —1)) B Zzzfig:g)z .
A1) = ];_SR"C (22 +9, cos(a)gr)], A = %’ w, = %

Using the numerical solution of the equation (47) and the formula (40), we have determined the change in the heat
transfer (Nusselt number Nu ) from time 7. We chose the parameters of the convective medium and the initial
amplitude as in the previous section:

Q/n*=Q,=80,Taln" =T, =10°,Ra /x* = R, =9500,Pm=1,Pr=10,4,=0.5.

Fig. 10 shows the time dependence of the Nusselt number Nu 7 for different rotation profiles of
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Ro =(2,0,-3/4,—1) of the electrically conductive medium (plasma) in an oscillating gravitational field with a
frequency of w, = 10 and an amplitude of &, =0.3. From Fig. 10 it is clear that the heat transfer in the plasma

increases for a nonuniformly rotation with a positive Rossby number (Ro > 0). This process is well depicted in
Fig.10.

Nu

35

3.0

1.5

1.0

0.0 0.2 04 0.6 08 1.0 12 14 T

Fig. 10. Dependency of the Nusselt number Nu on the time 7 for Rossby numbers Ro =(2,0,-3/4,-1) in an oscillating
gravitational field with a frequency @, = 10 and an amplitude 5, =0.3.

Nu

35
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Fig. 11. Dependency of the Nusselt number Nu on the time 7 for positive Rossby numbers Ro=(2,0) in an oscillating

gravitational field with a frequency @, =(10,25,50,100) and an amplitude 54 =0.3.
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Ro=-3/4

Nu

0 1 2 3 4 T

Fig. 12. Dependency of the Nusselt number Nu on time 7 for negative Rossby numbers Ro =(-3/4,—1) in an oscillating
gravitational field with a frequency @, =(10,25,50,100) and an amplitude 5, =0.3.

From Fig. 11 and Fig. 12, we can see the effect the variation of Nu(7) with time 7 for different frequencies
modulation frequencies @, =10,25,50,100 and for different rotation profiles Ro=(2,0,-3/4,—1) of the

electrically conductive medium (plasma).

0 1 2 3 4 T

Fig. 13. Variations of the Nusselt number Nu depending on the amplitude of the oscillating gravitational field &, =(0,0.1,0.3,0.5)
for the Rossby number Ro =2 and the frequency @, =10.
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As the frequency increases from 10 to 100, the magnitude of Nu(7) decreases, and the effect of modulation on

heat transport diminishes. Therefore, the effect of @, stabilizes the system:

ANu| _jo>ANu| _p5> ANu| _50>ANu| _jg
g g g g

Now let us compare the heat transfer in the absence of &, =0 and in the presence of modulation (@, =10) for

different amplitudes J, = 0.5,0.3,0.1 of the gravitational field. This process is shown in Fig. 13.

Ro=2
Nu 0
35
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2:5
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1.0
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0.0 0.2 0.4 0.6 0.8 T

Fig. 14. Variations of the Nusselt number Nu depending on the Taylor number 7; =(10°,10%,5-10%,10°) for the amplitude

parameters of the oscillating gravitational field 0, = 0.5, frequencies @, =50 for positive Rossby numbers Ro = (2,0).

Here, the dashed line shows the mode of establishing the final value of Nu(7) for the case O, = 0. Here, the
dashed line demonstrates the regime of establishing the final value of Nu(z) for the case J, = 0. Obviously, the
excess of number Nu(7) over the unit is caused by the convection occurrence. From Fig. 13 we can see that
modulation of the gravitational field leads to a periodic change in heat flow, i.e. the value of the number Nu changes

periodically in time 7 and increases with increasing amplitude 54 .
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Ro = -3/4
Nu

3.8

0.0 0.2 0.4 0.6 0.8 T

Fig. 15. Variations of the Nusselt number Nu depending on the Taylor number 7, = (10°,10*,5-10%,10°) for the amplitude
parameters of the oscillating gravitational field o, = 0.5, frequencies @, =50

for negative Rossby numbers Ro = (-3/4,-1) .

In Fig. 14 and Fig. 15 we have depicted the effect of Taylor numbers 7, = Ta/z* = (10°,10%,5-10%,10°) on
Nusselt number Nu for fixed values of the modulation frequency of the gravitational field @, = 50, amplitude
0, =0.5 and Rossby numbers Ro =(2,0,—3/4,—1). From Fig. 14 it can be seen that for the Rossby number

Ro =2, with an increase in the Taylor number 7| the heat transfer (the Nusselt number Nu ) in the system also
increases:

ANu |

;< ANu |T1:1 0 < ANu |T1:5'1 0

=10 <ANul 08

Increasing of the Taylor number for solid-state rotation Ro =0 has almost no effect on heat transfer. However, for

negative rotation profiles Ro =-3/4 and Ro = —1 (see Fig. 15) with increasing Taylor number 7| heat transfer in
the system decreases:

ANu |T1:103 > ANu |T1:104> ANu |T1:5_104> ANu |T1:105
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Modulation of an external magnetic field
In this section, we will study the stationary regime of nonlinear magnetoconvection under the influence of a time-
dependent magnetic field. We represent the magnetic field as the sum of the constant (stationary) and oscillating parts.

The oscillating part has the second order g 53 with respect to the expansion parameter (the supercriticality parameter
of the Rayleigh number &) (see formula (3)). Assuming in the equations (29) 51 =0 and f, R= f P 1, the equations

of the asymptotic expansion in the third order in & will take the following form:

LM, =N,, (49)
_'//3_ _N31_
V3 N,
where M,=|¢;|, Ny=| Ny |,
Vs Ny,
_‘93_ | Nss |

N, = _ivzl/ﬁ + Ra, %4' o, COS(WBT)QNgvzﬂ -
a,z. ax 52

_ (az 0A(T) _ 4, KoAR)

2
or a

+7°Q6, cos(a)Br)j sink_xsin 7z, Q = Pr Pm™'Q,

N,, = —%+ 8, cos(w,7)0 M _
or Oz

Ta

7 8A(r)
a’*(a* +71°0)

[((1+R0)a +7 QPmR )———

+ 7°a’Q(1+ Ro(1— Pm))3, cos(w,7) A(r) [sink x cos 2z,

N, =—%+Pr '8, cos(w,r)—+ oy, _
or 0z

_ [_ Pm OA(7)

7A(7) | .
+ 0, cos(w,T sink xcoszz,
a’Pr or (@) =5 Pr ‘

Ny, = M, Pr's, cos(a)Br)% =
or Oz

Ta

_ aA(r)
a’Pr(a* + 7°Q)

{ *Pm(1+ Ro(1 - Pm))——=

— &, cos(w,7)((1+ Ro)a” + ﬂzQPmRo)A(r)]sin k.xsinnz,

_ 06, -1[5!//1 06, 06,0y, Jy, 06, 06 al//2:|_
Nyy=——="-Pr - + e e
or Oox 0z Ox Oz Oox 0z Ox Oz
_k, 2A(x) . Pr'k’

5 cosk,xsinzz + ——< 4°(r) cosk xsin 7z cos 2 7z.
4a

a- Ot
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Using the solvability condition (42) and the values of the elements of the matrix /N, we can obtain the equation for the

evolution of the finite amplitude A(7) in the form of a non-autonomous GL equation:

0A
A, P A, (T)A+ 4,4’ =0, (50)

where the coefficients A1 M 2M3M have the form

2 2 7°Ta((1+ Ro)a* + 7*OQPm(RoPm —1 4 2
ty K prg 7 g T\ RO+ TOPM(ROPM D) ' TuRoQP
a a (a"+77°0) a*(a*+7°0Q)

(51

2
4, ()= k—;Raz —207°8, cos(w,7) +
a

7Z'4QTa 1 4 21 4N)
+ 2@+ 70) Lﬁ 70 (2(1 + Ro)a" + RoPm(n"Q —a )) PmRo}é'3 cos(w,7),

~ 4

@y, _kRa,
s 3IM N

g’ 8a*

In the limiting case, when there is no rotation (7a = 0, Ro = 0), the equation (50) coincides with the result of [41].

Wy =

Then, let us perform a numerical analysis of the equation (50) for different rotation profiles Ro = (2,0,—-3/4,—1) for

fixed convection parameters Q/7° =0, = 80, Ta/z* =T =10, Ra/zn* =R =9500, Pm=1, Pr=10,
A4, =0.5 and magnetic field modulation @, =10, 6; =0.3.
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Fig. 16. Dependency of the Nusselt number Nu on the time 7 for Rossby numbers Ro =(2,0,—-3/4,—1) in an oscillating magnetic
field with a frequency of @, = 10 and with an amplitude of &, =0.3.
From Fig. 16 it can be seen that for nonuniformly rotation with a positive Rossby number (Ro >0), the
variations of the heat flux in the plasma increase: ANu |, < ANu |, 3, < ANu |, < ANu |, , .
In Fig. (17) and Fig.(18), the Nusselt number Nu(7) with respect to time 7 has been plotted for different
modulation frequencies @, =10,25,50,100 and for different rotation profiles Ro =(2,0,—3/4,—1) of the

electrically conductive medium (plasma). Here we see that an increase of the modulation frequency @, leads to

suppression of heat transfer for the different Rossby numbers Ro , i.e. variations in the number Nu are reduced:

ANu| _1o> ANu| _ns> ANu| _s0>ANu| _jgq
g g g g
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Fig. 17. Dependency of the Nusselt number Nu on the time 7 for positive Rossby numbers Ro =(2,0) in an oscillating magnetic

field with a frequency of @, = (10,25,50,100) and with an amplitude of 6, =10.3.
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Fig. 18. Dependency of the Nusselt number Nu on the time 7 for negative Rossby numbers Ro =(-3/4,-1) in an oscillating

magnetic field with a frequency @, =(10,25,50,100) and with an amplitude of &, =0.3.
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Fig. 19. Variations of the Nusselt number Nu depending on the amplitude of the oscillating magnetic field J; =(0,0.1,0.3,0.5) for
the Rossby number Ro =2 and frequency @, =10 .

Fig. (19) shows the dependency of the heat transfer value Nu on 7 in the absence of 53 =0 and in the presence
of modulation of the magnetic field (@, =10) for different amplitudes 0, = 0.5,0.3,0.1. The dashed line shows the
regime of establishing the final value of Nu(7) for the case d; =0. In Fig. (19) we can see that the modulation of the

magnetic field leads to a periodic change of the heat flux, which increases with increasing amplitude 53 .
Ro =2

Nu

335

0.8 1.0

Ro=0

0.0 0.2 0.4 0.6

Nu

35

0.6 0.8 1.0

00 02 0.4

Fig. 20. Variations of the Nusselt number Nu depending on the Chandrasekhar number Q, = (80,750,2000,5000) for the amplitude

parameters of the oscillating magnetic field &, =0.5, frequency @, =50 with positive Rossby numbers Ro =(2,0) .
In Fig. (20)-Fig. (21) we have depicted the effect of the external magnetic field (Chandrasekhar number (J,) on

the heat transfer with an oscillating magnetic field of frequency @, =10 and amplitude 53 =0.3 for different
profiles of nonuniform rotation of (Ro = 2,0,—3/4,—1). Increasing the external magnetic field, i.e. Chandrasekhar
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numbers from O, = 80 to O, = 750 for Ro =2 leads to a decrease of the heat flow, which is almost stabilized at a
certain level.

The Nusselt number Nu increases with the increasing the value of the magnetic field

ANu| _on<ANu | < ANu |
0,=80 o o

=2000 =5000

Similar picture can be obtained for other rotation profiles (Ro = 0,—-3/4,—1):

ANu | < ANu |

0,=80 0,=5000 °

Ro =-3/4

Nu

35

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 T

Fig. 21. Variations of the Nusselt number Nu depending on the Chandrasekhar number Q, = (80,750,2000,5000) for the amplitude

parameters of the oscillating magnetic field 8, = 0.5, frequency @, =50 with negative Rossby numbers Ro =(-3/4,-1).

Rotational speed modulation
One of the important ways of parametric influence on convective instability is the modulation of the angular
velocity of rotation. The first experiments on rotation modulation were carried out in [50]. It was also found there the
onset of instability in Couette flow can be inhibited by modulating the rate of rotation of the inner cylinder. Later,
numerical [43] and laboratory experiments [51] were carried out for the effect of rotation modulation on Rayleigh-
Benard convection. In [43] it is shown that the modulation of the rotation of Q(z) =€, + AQsin(et) causes a periodic

change in the Coriolis force, and therefore has an effect on the onset of convection. In [51], the experiments were
carried out with a periodic dependency of the angular velocity Q(#)=Q,(1+ SBcos(wr)) (Q,=0.104 rad /s,

£ =0.212) for modeling large-scale atmospheric flow dynamics in order to create a longer-term weather forecast.

Here we also assume that the oscillating part is of the second order of smallness g 53 in the expansion
parameter (the supercriticality of the Rayleigh number &) (see the formula (2)). Assuming in the equations (29) 51 =0
and f, = f. ¢ = 1, the equations of the asymptotic expansion in the third order (83 ) take the form

LM, =N,, (52)
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Fig. 22. Dependency of the Nusselt number Nu on the time 7 for Rossby numbers Ro =(2,0,-3/4,—1) when modulating rotation
with a frequency of w, =10 and amplitude § =0.3.
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k. 0A(r) Prl i

< cosk, xsinzz + ——< 4’ (r) cosk xsin 7z cos 2 7z.
' 4a

a- Ot

By substituting the values of the elements of the matrix /N, into the solvability condition (42) for the third-order

equations 0(6‘3), we can obtain the equation for the evolution of the finite amplitude A(7) in the form of a non-
autonomous GL equation:

04

AlRE_AZR(T)A+A3RA3 =0, (53)
where the coefficients A1 R2RAR have the following form
k2 2 7°Ta((1+ Ro)a* + 7> OPm(RoPm —1) ‘TaRoOPm?
A1R=a2+ ZPrRac—”—zQPm— ( TR )—7[4 a40Q2m , (54)
a a (a"+770Q) a(a+rn°Q)
k> 27°Ta((1+ Ro)a" + x*ORoPm) @ k'Ra,
AZR(T)=?Ra2—52 COS(CORT)' az(a4+7[2Q) > Dp =_§; ASR =v.

Here we carry out a numerical analysis of the equation (50) for different rotation profiles (Ro = 2,0,—3/4,—1) and
we also present the results of the dependence of the heat transfer (Nusselt number Nu ) from the time 7 (see Fig. 22).

We consider the convection parameters to be fixed Q/7° =Q, = 80, Ta/z* =T, =10, Ra /z* = R =9500,
Pm=1, Pr=10, Ao =0.5 and rotation speed modulation has a frequency and an amplitude: @, =10 and
0, = 0.3 . From Fig. 22, we can observe that for nonuniform rotation with a positive Rossby number (Ro =2) the
variations of heat flow are greater than for nonuniform rotation with negative Rossby numbers (Ro = —3/4,—1) and
(Ro=0):

ANU [gpeg< ANU [, 34 < ANU |, < ANU 5.,

0.0 0.5 1.0 1.5 T

Fig. 23. Dependency of the Nusselt number Nu ontime 7 for positive Rossby numbers Ro = (2,0) for modulation of rotation
with a frequency w, =(10,25,50,100) and the amplitude 6 =0.3 .
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Ro = -3/4

Nu

0.0 0.5 1.0 1:5 T

Fig. 24. Dependency of the Nusselt number Nu ontime T for negative Rossby numbers Ro = (-3/4,-1) when modulating
rotation with a frequency of @, =(10,25,50,100) and the amplitude 6 =0.3 .

In Fig. 23-Fig. 24, we have depicted that for higher value of the modulation frequency @ for different Rossby
numbers Ro = (2,0,—3/4,—1) leads to suppression of heat transfer, i.e. the magnitude of Nu decreases:

ANu > ANu > ANu > ANu
=10 =25 lby=50 ;=100

Nu

i —

cco o

Z’J __________________________

0.0 0.5 1.0 L5 T

Fig. 25. Variations of the Nusselt number Nu depending on the amplitude of the modulation of rotation &, =(0,0.1,0.3,0.5) for the
Rossby number Ro =2 and the frequency @, =10 .
In Fig. 25, we have defined the dependency of the heat transfer Nu on 7 in the absence of 52 =0 and in the
presence of rotational speed modulation (@, =10) for different amplitudes 0, =0.5,0.3,0.1.

Here, the dashed line depicts the regime of establishing the final value of Nu(7) for the case 0, =0. In Fig. 25,
we can see that modulation of rotation leads to a periodic change of the heat flow, which increases with increasing
amplitude 0, .
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0.0 0.5 1.0 15 T

Fig. 26. Variations of the Nusselt number Nu depending on the Taylor number 7, = (10°,10*,5-10*,10%) for rotation modulation
parameters (5, = 0.5, @, =50 ) with positive Rossby numbers Ro = (2,0) .

Ro =-3/4

Nu

3.0

0.0 0.5 1.0 1S T

Fig. 27. Variations of the Nusselt number Nu depending on the Taylor number 7, = (10°,10*,5-10*,10%) for rotation modulation
parameters (5, = 0.5, @, =50) for negative Rossby numbers Ro =(-3/4,-1) .
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From Fig. 26 and Fig. 27, we can determine the change of heat transfer Nu for different Taylor numbers
T =Ta/z* =(10°,10*,5-10*,10°) for a fixed value of the rotation modulation frequency @, =50, amplitude

0, =0.5 and Rossby numbers Ro = (2,0,—3/4,—1). It can be seen from these graphs that for different Rossby

numbers Ro = (2,0,-3/4,—1), with an increase in the Taylor number 7| heat transfer (Nusselt number Nu ) in the
system also increases:

ANu |T1:103< ANu |T1:1 s < ANu |T1:5_104< ANu |T1:105 .

CONCLUSION
A weakly nonlinear theory of stationary convection in a nonuniformly rotating electrically conductive fluid with a
vertical constant magnetic field under the parametric action of: a) temperature modulation of the layer boundaries,
b) modulation of gravity, ¢) modulation of an external magnetic field, d) modulation of the angular velocity of rotation
is developed. We studied the influence of time-periodic modulation on stationary Rayleigh-Benard convection using the
perturbation theory method for the small parameter of supercriticality of the Rayleigh number

&= \/ (Ra—Ra,)/Ra, . Furthermore, we considered the amplitudes of the modulated fields to be small, which

having a second order 0(82). In the first order &, the parametric effect does not influence to the development of
convection and we obtained the result of the linear theory [11]. In the third order &’ , the nonlinear Ginzburg-Landau
equation with time-periodic coefficients for four types of modulation are obtained. A numerical analysis of these
equations have shown a number of general laws:

* The heat transfer increases for nonuniform rotation with a positive Rossby number (Ro > 0).

+ With increasing the modulation frequency of @, , the Nusselt number ANu decreases, which leads to
suppression of heat transfer as with positive (Ro > 0), so with negative (Ro < 0) rotation profiles.

Ro =2
Nu
O A T R
I'E 1 rot.mod ll ",‘ ."‘ l'.l
6 L
| gravmad | ‘: ‘: : ‘.
: IR A
2 ; ! l".rnag.n’«ad | i =. H i
0
0 1 2 3

2 3 4 T
Fig. 28. Dependency of the Nusselt number Nu on 7 for various types of modulation for positive Ro =2
and negative Ro =-3/4 Rossby numbers
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* The effect of increasing the modulation amplitude of 8, , is to increase the heat transfer anyway of the rotation
profile.
For the case of gravitational modulation, an increase the Taylor number 7| leads to a decrease in the variations of

the Nusselt number ANu (Fig. 14-Fig. 15). However, the heat flux increases (Fig. 26-Fig. 27) for large numbers 7] in

the case of rotation modulation. With increasing the Chandrasekhar number Ql, heat transfer is at first suppresses and

then increases (Fig. 20- Fig. 21) for the case of modulation of the magnetic field.
Finally let us compare the different types of parametric effects on a stationary nonuniformly rotating
magnetoconvection among themselves. In Fig. 28 we have depicted the results of numerical solutions of the equations

(43), (47), (50), (54) for fixed convection parameters: Q/7° = Q, = 80, Ta/z* =T, =10, Ra /x* = R, = 9500,
Pm=1, Pr=10, A4,=0.5. The frequencies and amplitudes of four types of modulation were considered equal:
o, =0, =0, =w, =10 and 6,=6,=0,=0,=0.3, phase ¢ =7 . In Fig. 28 we can observe that the
rotational modulation has the greatest influence on the change in heat flow in the system for positive (Ro =2) and
negative (Ro =-3/4) rotation profiles. Gravity modulation slightly exceeds magnetic modulation:

AN” |grav.mod 2 AN” |
types of modulations: ANu |

. Thermal phase modulation has a lesser effect on heat transfer in comparison with other

< ANu | < ANu | < ANu |

mag .mod

temp.mod mag .mo grav.mod rot.mod *
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CJIABOHEJITHIMHA MATHITHA KOHBEKIISI B EJEKTPOITPOBIZTHOMY CEPEJIOBHIII],
IO HEOJHOPITHO OBEPTAETHCA, IIJI AI€FO MOAYJIALII 30BHILIHIX TOJIIB
Muxaiiso M. Konn®, Anaroiii B. Typ®, Booxumup B. SInoBcskuii™”
“Incmumym monoxkpucmanis, Hayionanvna Axademis Hayx Yrpainu
np. Hayxu 60, 61001 Xapxis, Yxpaina
bXapKiSCbKuﬁ HayionanbHuu yHieepcumem imeni B.H. Kapazuna
matioan Ceoboou, 4, 61022, Xapxie, Yrpaina
VYuisepcumem Tynysu [UPS], CNRS, [ncmumym docniodcenv acmpoghizuku ma nianemonozii
9 npocnexm nonxosnuxa Powe, BP 44346, 31028 Tynyza Cedexc 4, @panyis
HocmipkyeTbest  cnaboHemiHiifiHa CTajis CTAl[iOHApHOI KOHBEKTHBHOI HECTIMKOCTI B IIapi eJNEKTPONMPOBIAHOI piAWHH, IO
HEOJHOPIAHO 00epTAEThCS B aKCiaJbHOMY OIHOPIJHOMY MATHITHOMY IIOJI IiJ [i€l0: a) TeMIepaTypHOi MOAYJSILIT MeX MIiapy;
0) rpaBiTamiifHOl MOIYJISMLIi; B) MOIYJIALIT MarHiTHOTO IOJIS; T') MOAYJIALIT KyTOBOi MBHAKOCTI oOepTanHs. [ onmcy HemiHIHHUX
KOHBEKTHBHHMX SIBUI BUKOPHCTOBYBAJIACs JIOKaJbHA JIEKapTOBa CHCTEMa KOOPAMHAT, B sKiil HeOAHOpinHe oOepTaHHs LIapy pilvHH

[39]
(40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]

MIPEJICTABIIAETCS y BUIIISAI 00EPTaHHA 3 HOCTIHHOIO KYTOBOIO IIBUAKICTIO € 1 asuMyTansHuM 1mupoM U, (X) , npodias MBUAKOCTI

SIKOTO € JIOKAJbHO JiHIHHMM. B pe3ymbTari 3acTocyBaHHS METOAY Teopii 30ypeHb 3a MaluM IapaMeTpoM HaIKPUTHYHOCTI
cTamioHapHOro yncia Penes oTpuMaHi HEaBTOHOMHI HeMiHiMHI piBHAHHA TUITy ['iH30ypra-Jlannay ans mepeniueHuX BHIIE BUMAIKIB.

AMIUIITYId MO/ TOBAHMX TMOJiB BBAKANMCS MATHMH, SKi MAIOTh APYTHil TOPSAOK &£, a TApaMeTPHUYHMil BIUTMB Ji€ Ha
CTalliOHapHy KOHBEKIIiIO B TPETLOMY NOPAAKY & . UncenbHi pimenHs pisHsub [iH36ypra-Jlanmay 1jist pisHHX THIIB MOMYJSLIi
30BHIIIHBOTO MAapaMETPUYHOTO BIUIMBY MOKa3ald, mI0: 1) Ipu HEOAHOpiAHOMY OOepTaHHI 3 MO3UTUBHUM ducioM Pocbi Ro >0
TEIUIONEPEHOC B PifMHI 30UIBIIYE€ThCS; 2) 301IbIIEHHS YaCTOTH MOAYJIALI] @, MPU3BOIUTH A0 MOAABIECHHS TEILIONEPEHOCY K IPH

MO3UTHBHUX Ro >0, Tak i mpu HeraTUBHUX Hpodinax oOepraHHA; 3) 30UIbLICHHS aMIULTYIM MORYIAUii O, , HPU3BOAUTH IO

MiABUIICHHS TEIUIOOOMiHY AJsl AOBiTBHOTO mpodimo obGepranHs. [lokazaHo, mo HaHOIMBIINI BILUIMB HA 3MiHY TEIUIOIIOTOKa B
cucTeMi oKasye obepraibHa MOy, [Ipyn mpoMy TpaBiTariiiHa MOIYJISLisS TPOXH HEPEBHUIYE MAarHiTHY MOJYJISIIIO, a TEIUIOBa
(ha3oBa MOIyIALis, B TIOPIBHSHHI 3 IHIIMMH THUITAMH MOJYJIALIH, OKa3y€e MEHIINH BIUIMB Ha TEIIONEPEHOC.

KJIFOUOBI CJIOBA: xonBekuis Penes-benapa, marnitroobepranbHa HECTIHKICTh, KpUTHYHI uncia Penes, ciaboneniHiliHa Teopis,
HEaBTOHOMHE piBHsHHS [ 1H30ypra-Jlannay

CJIABOHEJIMHEWHASI MATHUTHASI KOHBEKIUSI B HEOJJHOPOTHO BPAILIAIOIIENACS
SJEKTPOMMPOBOJANIEN CPEJE MO AEMCTBUEM MOJIYJISIAY BHEITHUX MOJER
Muxaua H. Konn’, Auaroanii B. Typ®, Baaanvup B. Sluosckmii™
“Uncmumym monoxkpucmannos, Hayuonanenas Axademust Hayk Yrpaunol
np. Hayxu 60, 61001 Xapvkos, Yxpauna
bXapbKosc;cmZ HayuoHanvuslll yHueepcumem umenu B.H. Kapaszuna
ni. Ceoboowl, 4, 61022, Xapvros, Yrkpauna
“Vnusepcumem Tynysoir [UPS], CNRS, Hncmumym ucciedoeanuti acmpo@usuxi i nianemonouu

9 Agenio Ionkosnuxa Powe, BP 44346, 31028 Tynysa Cedex 4, @panyus
HUccnenyercs cnaboHenuHeiHas CTaaus CTAalMOHAPHOW KOHBEKTHBHOW HEYCTOHYMBOCTH B HEOAHOPOAHO BPAIIAOIIEMCS CIIOE
NIEKTPONPOBOAAIIEH JKUIKOCTH B aKCHAIBHOM OJHOPOJHOM MAarHUTHOM IIOJIE TIOJ AEHCTBHEM: a) TeMIEpaTypHOH MOIyINSIHU
TpaHUIl c10sT; 0) TPAaBUTAMOHHON MOIYJISINH; B) MOIYJIAIIMNA MarHUTHOTO TIOJIS; T) MOJYJISAIMN YTJIOBON CKOPOCTH BparmeHus. Jis
OIMCAHMS] HENMHEHHBIX KOHBEKTHBHBIX SIBICHHH HCIIONIb30Bajach JIOKaJbHAs JEKapToOBas CHCTEMa KOOPAWMHAT, B KOTOPOM
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HEOJHOPOJHOE BPAILCHUE CIIOS KUAKOCTU IPEJACTaBIACTCS B BHJIE BpALIEHUS C IIOCTOSIHHOW YIVIOBOH cKopocTblo )
a3uMyTalbHbIM 1IMpoM U (X), mpoduip CKOPOCTH KOTOPOTrO JIOKaIbHO JIMHEEH. B pesynprare NmpHMEHEHHs METOJa TEOpHU

BO3MYIICHHI 1O MajoMy IapaMeTpy HaJKpMTUYHOCTH CTallMOHAapHOro uucna Pames ¢=./(Ra—Ra,)/ Ra, moIyYeHsI

HEaBTOHOMHbIEC HEJIMHEHHbIE ypaBHEeHUs THIa [ MH30ypra-Jlanaay juis nepedynciIeHHbIX BhIIIE CIIy4aeB. AMIUIMTY (bl MOIYJIUPYEMBIX
HoNei CcuMTaNMCh MalbIMH, HMMEIOIIMX BTOPOH TNOPANOK &°, a NapaMeTpUUeckoe BO3JEHCTBUHE OKasblBaeT BIUAHHME HA
CTALMOHAPHYIO KOHBEKIIMIO B TPEThEM TMOpsiake & . UnclienHble pelienust ypapHenuii [un30ypra-Jlangay juis pasiuuHbIX THIIOB
MOJIYJISIIUY BHELIHEro MapaMeTPHYECKOro BO3JICHCTBUS MOKa3ajiH, 4To: 1) IPH HEOJHOPOJHOM BpAIIEHHH C HOJOXKHTEIHHBIM
gnucioM PoccObu Ro >0 TemnomepeHOC B JKHAKOCTH YBEIHYMBAETCS; 2) YBEIMYCHHE YacCTOTHl MOIYJSIHMH @, , HPUBOIUT K

MOJAABJICHUIO TEIUIONEPEHOCA KaK IMNPHU ITOJOXKUTEIIbHBIX R0>0, TaKk U HOPpU OTPULATCIIbHBIX Ro<0 HpO(l)I/IHSIX BpalliCHUsI;
3) YBCJIUMYCHUE aMIUIUTY/Abl MOAYJISAIIUN é‘mod NPUBOAUT K ITOBBINICHUIO TerioooOMeHa JJI1 IPOU3BOJIBHOI'O HpO(i)I/IJISI BpalllCHUA.

INokazano, uTo Hambonbllee BIUSHIE Ha M3MEHEHHE TEIIONOTOKAa B CHCTEME OKa3bIBaeT BpamiaTenbHas Momyisnus. Ilpm stom
TPaBHUTAIMOHHAS MOMYJISIIUSI HEMHOTO IPEBBIIIAET MATHUTHYIO MOJYJIIMIO, a TeIUIoBas (a3oBas MOIYJSIMS, O CPABHEHHUIO C
JpYTUMH TUIIAMU MOZYJIALUM, OKa3bIBACT MEHbIICE BIUSHUE HAa TEILIONEPEHOC.

K/IIOYEBBIE CJIOBA: xonBekuus Pones-benapa, marnuroBpamarenbHas HEyCTOMYMBOCTb, KpUTHUUYECKHE uuciaa Panes,
ciaboHeJIMHEeHHas TeOpHUs, HeaBTOHOMHOE ypaBHeHHe ' un30ypra-Jlannay.





