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The stability of a rotating and heated from below horizontal cylindrical layer of a viscous, incompressible liquid with free boundaries
was theoretically investigated. Neglecting the centrifugal forces, the equations of motion, thermal conductivity and incompressibility
of the liquid were written, from which the well-known dispersion equation was derived in the linear approximation. The stability of a
rotating cylindrical volume of a liquid with no heating from below was considered, provided that the temperature difference between
the horizontal boundaries of the liquid was fixed and equal to zero. It was demonstrated, that with no heating from below the
temperature difference between the horizontal boundaries of the rotating liquid was not fixed and not maintained from the outside,
the perturbed liquid temperature would increase, but its final value did not exceed the phase transition temperature. The obtained
result was used to explain the heating of water in Ranque — Hilsch vortex tubes. It was concluded that the water heating in Ranque -
Hilsch tubes should be considered as the inverse Rayleigh problem, in which the temperature gradient can be determined from the
known distribution of velocities inside the volume. The stability of a rotating cylindrical volume of a liquid when heated from below
was analyzed. It was demonstrated, that the value of the specified temperature difference at cylinder boundaries, as well as the initial
rate of its variation, determine the final heating temperature of the liquid. A comparison of the proposed theory and experimental data
for water heating shows their good qualitative and quantitative agreement.
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It is known that a periodic structure in the form of Benard cells [1] is formed in a horizontal layer of a viscous,
incompressible, below-heated liquid. Rayleigh described in [2] the physical nature of the convection onset in such
layers. He obtained analytical expressions for perturbed velocity and temperature in the Cartesian coordinate system.
On the basis of this theory, it was possible to explain the threshold nature of the convective instability development,
when the convection occurs only at a certain temperature difference. The obtained solutions describe the occurrence of
convective rolls in a horizontal liquid layer, on the vertical common boundaries of which the velocity was directed
periodically up / down and vice versa. However, these solutions did not describe the experimental fact of the
availability of polygonal structures, the number of angles of which varied from four to seven, but with a predominance
of six [1]. Therefore, to explain the appearance of hexagonal convective cells, geometric transformations of the found
solutions were used. The description of cells with a different number of angles also means involving geometric
manipulations. And if we continue the work and try to describe the entire set of polygonal convective cells, then this
task turns out to be practically impossible.

In contrast to the method of geometric transformations described above, the energy principle of the formation of
Benard cells was proposed in the work [3]. The principle is based on the fact that cells in the nucleation phase are few
in number and have a cylindrical form [3]. As the temperature of the lower boundary of the layer increases, their
number increases. Ideally, all cells are tightly packed in a liquid layer, and create a polygonal (hexagonal or other)
structure, i.e. Benard cells.

As we see, initially the main element of Benard cells is an elementary cylindrical convective cell, whose perturbed
parameters under free boundary conditions are described in the work [3]. At a uniform rotation of the liquid in the cell
relative to the vertical axis, new possibilities of controlling the thermal convection described in [1 - 3] emerge. The
control parameters under the new conditions will be Coriolis and centrifugal forces [4, 5].

In this work the onset of convection in a uniformly rotating and below-heated cylindrical tank with a viscous,
incompressible liquid with free boundaries was investigated.

THE INITIAL EQUATIONS OF CONVECTION IN A ROTATING VISCOUS, INCOMPRESSIBLE LIQUID
OF A CYLINDRICAL FORM WITH FREE BOUNDARIES
Let us consider a cylindrical volume of radius R, filled with a viscous, incompressible liquid, the lower and upper

boundaries of which coincide with the planes z =0 and z = & . The liquid rotates uniformly as a whole with an
angular velocity Q =Q-é_, where éz - the unit vector directed along the vertical, which coincides in direction with the
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axis z and is in the gravitational field, the direction of acceleration of which is ¢ = —g - e_ opposite to the direction
of the axis z . In Fig. 1 vector @ - gravitational acceleration, 7 - radial coordinate.

The temperature distribution inside the cylinder T (z) is set so, that the temperature of the lower boundary is
higher than the temperature of the upper one: 7,(0)=T,,, T,(h)=T,,, (7?),2 > TOJ) . We suppose, that in equilibrium

the temperature distribution is described by a linear function in the coordinate z :
- o ._
VT, (z)= -

were, ©@ =T, — T, - the temperature difference between lower and upper plains.

-
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Fig. 1. Schematic representation of a cylindrical volume with a viscous incompressible
liquid rotating at an angular velocity Q in a gravitational field g .

Let us write the equations describing convection in a cylindrical volume heated from below and rotating as a
whole. These equations consist of the Navier — Stokes equation, with regard to inertial forces in a rotating coordinate
system — Coriolis and centrifugal [4], the heat conduction equation and the continuity equation:

%JF(W)V:—%ﬁprWg—zQXV—QX(QM), )
%+(W)T:AT, @
div(v) =0, Q)

where V - small perturbations of the liquid velocity in a rotating coordinate system, 7 - radius-vector of the liquid
element, p, p, T density, pressure and temperature of the liquid, V - gradient operator, A - Laplace operator.

From system (1-3) it is possible to obtain equations that describe the spatial-temporal dynamics of small
perturbations of pressure p and temperature 7 with respect to their equilibrium values po(r,z) and

C]
T, (Z) =T, _;Z :
p=p,+p,T=T,(z)+T. 4)
Small values of pressure and temperature perturbations meet the requirement: | f | << | f0| .

When analyzing the Navier — Stokes equation we assume that Boussinesq’s assumptions regarding the being
determind influence of the temperature compressibility of a liquid are met, i.e. we assume p = p, (1 - pT ) [4], where
B - the coefficient of a liquid temperature compressibility.

We assume, that the velocity perturbations are small, which allows us to neglect the quadratic in velocity
summands in (1). Taking into account the assumptions made, and after substitution (4) into equation (1) we have:

(1—ﬁf)%=—pi?(po + p)+vAV —(1- BT ) gé, —20xV —(1- BT ) Qx(Qx 7). (5)
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We suppose the diameter of the cylindrical tank is small: D << gQ™. This condition allows neglecting the

centrifugal convective force, as a result of which the last summand in (5) can be neglected [4].
Let us eliminate the unperturbed summands in the equation (5), setting:

VP =—poge.. (6)
The remaining summands give the force balance equation for perturbed values:
ov

1 = - —
= Vp+VAV + BTe8. —2QxV.
Py py P pTge. (7)

In units of layer thickness %, time 7 = h*v"'and temperature ® the equation (7) is converted to a dimensionless
form:

% =-Vp'+AV' +RTe, - E™'é, xV, ®)
t

where the “prime mark” denotes the corresponding dimensionless value, R =g ,Bh3®/ (v;() - the Rayleigh number, v

and y - the coefficients of liquid kinematic viscosity and thermometric conductivity, correspondingly, E = v/ ( 2Qh2) -

the Ekman number, which is very small in most experiments with rotating liquid [6].
In further calculations to simplify writing process the “prime mark™ notation is omitted.
Equation (8) should be supplemented by the equation of heat conduction (2), which, taking into account the linear
dependence of temperature on height, takes the dimensionless form:
por_ ve. = AT, 9)
ot ’
where P =v/y - the Prandtl number.

The continuity equation 3) in dimensionless variables has the same form.
For a rotating viscous, incompressible liquid of a cylindrical form we will assume that the boundary conditions are free
[2, 4, 5]. These conditions mean that vertical projections of the velocity perturbations are equal to zero at the boundaries
of the liquid:

z=0, — 09
= (10)
and tangential stresses:

=0. (11)

z=0,
z=1

o = oyl e, OV
rz p 0 52 ar
The boundary conditions (11) taking into account the continuity equation (3) can be transformed to the form:
o’v

== =0
7 s (12)
z=1

We assume that the temperature at horizontal boundaries of the cylinder is fixed. It follows that the temperature
perturbations at the boundaries z = 0,z =1 are equal to zero:

T

0 =0. (13)

To the boundary conditions (10), (12), (13), we should add the condition for the perturbed velocity at the external
boundary: v, (r,z,t)=v,(r,z,t) =0atr =R, .

As an initial condition we assume, that at the time point # =0 all the perturbations are either missing:

v,f,[a| =0 (14)

t=0

or specified as:
I, p| | =¥(7,0),7(7,0), 5(7,0). (15)

Thus, the problem of studying the stability of a rotating, heated from below, viscous, incompressible liquid of a
cylindrical form with free boundaries is reduced to solving the eigen value problem for the system of equations (3), (8),
(9) with boundary conditions (10), (12), (13) [4] and with initial conditions (14), (15).
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SOLUTIONS OF THE ORIGINAL SYSTEM OF EQUATIONS
We write equations (3), (8), (9) in a cylindrical coordinate system r,@,z. We assume the perturbations are

axisymmetric, i.e. such that the perturbations do not depend on the angular coordinate ¢. This means that all the
perturbed values meet the condition 0.../d¢p =0. Rotation of the cylindrical volume of a liquid is a flow with an
equilibrium azimuthal velocity 7, (r) =Q-r [7, 8], which is obtained from the Couette flow, if we set the radius and
angular velocity of rotation of the inner cylinder to zero. Based on this we write the projections of the velocity vector in
the cylinder: v= (Vr Y, (r)+v,.v. ) .

The equations for the perturbed velocity projections follow from (8):

ov 0 . v 0
L=——DpD+AV ——L+E vV _, 16
ot or P T ¢ (16)
ov, \
2 =Av ——2_FEv , 17
ot v " 17
ov 0 ~
= =——p+Av,_+RT, 18
Py A E (18)
2
where A:li ri +a—.
ror\ or) oz’
In cylindrical coordinates the continuity equation (3) is converted to the form:
10 0
——(rv, )+—v_ =0 19
r ar( ) o0z °© (19)

Equations (16) (19) should be supplemented by the equation of heat balance (9).
We will seek solutions of the original task in the form:

v, (r,z,t)=—A-exp(-At)-nxk ' cos(nrxz)J, (k.r), a)
v, (r,z,t) = D-exp(—At)-cos(nzz)J, (k,r), b)

v_(r,z,t) = A-exp(—At)-sin(nxz)J, (kr), ©) (20
p(r,z,t)=C-exp(-At)-cos(nmz)J, (k.r). d)
T(r,z,t)=B-exp(-At)-sin(nzz)J, (k,r) = B(t)-sin(nzz)J, (kr), e)

where A - eigen values characterizing attenuation (A > 0), increase (A <0) or stationary state (4 =0) of
Anr

krE(kr2 +(nz)’ - ﬂ.)

perturbations (18); 4,B,C,D= - perturbation amplitudes; J (x), J, (x) - Bessel functions of the

first kind of zero and first order of the argument X respectively; k,, - radial wave number characterizing the

dependence of the perturbations on the transverse coordinate 7, n=1,2,3... - the mode number.
It is easy to see, that the boundary conditions on the external boundary are automatically satisfied, if we set
k = O'U/RO ,where o, - I - th zero of Bessel functions of the first kind of the first order (J, (0'1,1.) =0),i=1,2,3,.....
From (20) a), ¢), and e) it follows that the spatial distribution of perturbations of horizontal and vertical velocities

and temperature are similar to those implemented for a layer of heated from below, viscous, incompressible liquid
without rotation in a cylindrical coordinate system [3].

THE STABILITY ANALYSIS OF A ROTATING, VISCOUS, INCOMPRESSIBLE, HEATED FROM BELOW
LIQUID OF A CYLINDRICAL FORM
Substitution of solutions (20) into equations (9), (16) (18) gives a cubic characteristic equation for determining

eigen values A :

P +al* +bAl+c=0, (21)
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2P+1 P+2) P(nz) Te—k’R 2R—k® —(nz)' T
where, a=—kj( i ),b=kj( - )+ (mr)ze K ,c=k’ ki —(n7) e, ki=k2+(n7r)2,
P P kP P
Te=E” =4Q’h*/v* - Taylor number.

Let us consider the solutions of the characteristic equation (21), which describe a stable rotation of a viscous,
incompressible and heated from below liquid of a cylindrical form.

We determine the condition of a monotone instability of a rotating, viscous, incompressible and below-heated
liquid of a cylindrical form from (21), similarly to [5].

ﬁ@:“ﬁf+@@ﬁa, (22)

where R, - critical Rayleigh number of monotone instability.

It should be noted, that the expression (22) goes into the expression obtained in the Cartesian coordinate system by
Rayleigh, if we replace k~ by k* = k> +ky2 (4, 5].

The condition of monotone instability (22) in graphic form is shown in Fig. 2. Here the dependence of the lines of
the logarithm levels of the critical Rayleigh number ln(Rc)upon the wave number kr and the Taylor number 7e is
presented.

The level lines show, that the wave number kr,m (the abscissa of the maximum of the level line) corresponding to
the minimum critical Rayleigh number increases with increasing Taylor number, starting from the value of
k= 7r/ V2~2221 [5]. In this case, the critical Rayleigh number increases also from value R, = 27(n7r)4 /4 = 657.11
that corresponds to the case of no rotation, i.e. Q=0.

0 6.67 1333 20
Fig. 2. Lines of the logarithm level of the critical Rayleigh number
In(R,) versus the wave number &, and the Taylor number 7e .

Let us define the conditions for the equation fulfillment (22).

We rewrite the equation (22) relatively the unknown kf , and get an incomplete cubic equation:
(k) + pk? +q =0, (23)
where p=-R ;q=(nz) (Te+R,).

Since k2 = k> +(nx)’ > 0, then we will look only for real positive solutions of the equation (23).
It is known that the type of solutions (23) depends on the sign of the discriminant Q :

Q=(£I+(1T=[szfij{nip@( Ri+qﬂkf—%[ Rz—q} (24)
3 2 2 R R |\\R R R (\R.
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The discriminant Q is positive for Te/R’ >R, /R (\/RC /R —1) >0. The equation (23) in this case has one

negative real and two complex conjugate roots. Therefore, by the requirement of k; >0 the solutions (23) are not
considered for the case O > 0.

The discriminant Q is equal to zero forTe/R. =R /R’ («/RC /R —1) . The equation (23) has one negative and two

coincident positive roots. The negative root is equal to (kf)l =—2{/((n7z)2(Te+Rc)) /2 and positive roots -

k: ={/((nﬂ)2 (Te+RC))/2 )
The discriminant Q is negative for Taylor numbers 0 < Tt e/ R <R / R («/Rc / R —1). This condition is true for

Rayleigh numbers R, / R: >1 . Within these ranges of variation of the Rayleigh and Taylor numbers the equation (23)
has three different real roots. From them, by virtue of the requirement, we select positive root within the whole range of
variation 7e and R, :

(kf)3 z_[(’mf R:T{i/im_(YJrX)}H;EJFC'C” (25)

where Y =T e/ R, X=R / R’ , c.c. - denotes a complex conjugate value.

The lines of the logarithm level of the radial wave number /n (kr) versus the Rayleigh number (1< R, / R <10)
and the Taylor number (0 < 7e <100 ) for the case n=1 are presented in Fig. 3.

102

1 5 10
X

Fig. 3. Lines of the logarithm level of the radial wave number /n(k, ) versus

the Rayleigh number X = R, / R’ and the Taylor number ¥ = Te/ R

According to the level lines for the radial wave number, (k,)min differs in exponent from that given in [5] by a

factor of two

Thus, from the Fig. 3 it is seen that the minimum radial wave number (the inflection points of level lines) increases
nonlinearly with increasing the Taylor number and the Rayleigh number.

At large Taylor numbers Y >>1 the minimum critical Rayleigh number varies according to the law

(R). ~ (RZ)I/3 Te?? =(277z'4/4)1/3 T =3(7r2/2)2/3 Te® [5, 9] and the corresponding radial wave
number - (, ) (7[2/2)1/3 Te'” (Fig. 2).

It should be noted that the expression of monotone instability (22) is observed for the values of radial wave
numbers:

min
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o

K :#((m)z (Te+R))[2, & :_[%] \/z [ =(r+x) |-(r+x) “;ﬁ rec. (26)

To analyze the stability of perturbations of the boundary-value problem we turn to expressions (21), (22).
Further, when describing the stability of perturbations in a medium, we will consider only the perturbed
temperature, noting that the transition to other perturbed quantities is carried out in accordance with expressions (20),

a)-e).
The fulfillment of the monotone instability condition (22) gives the following eigen values of the problem:
, , 2P +1) (1-4P) P(nz)’ Te-k’R
‘=0, :kZ( + [k} - . 27
& ) & \/ to4p kP (0

The perturbed temperature (20), ) depends on time as a general solution of the characteristic equation (21),
consisting of the sum of partial perturbations:

3
B(1)=)_C, exp(—4,1), (28)
m=1
where C| - arbitrary constants determined by initial conditions, m =1;2;3.
For the case of the development of monotonous instability, the eigen value A, = A equal to zero corresponds to
the time-invariant amplitude of the partial perturbation and the eigen values 4, , = 47, describe the temporal dynamics

of the partial perturbations depended on the radicand value.
Below, we consider the solution (21) for the case with lack of external temperature effect (the lower boundary of
the layer is not heated), as well as for the case when this temperature effect occurs.

THE STABILITY ANALYSIS OF A ROTATING LIQUID CYLINDRICAL VOLUME
WITHOUT HEATING FROM BELOW
Let us determine the characteristic numbers of the equation (21) without heating the liquid from below. Despite
the fact that there is no heating of the liquid, the Rayleigh number is not equal to zero, but it is determined by the
temperature difference between the lower 7, ;, and upper 7] ;, boundaries at the fluctuation level: ©® , =7, , -T, ,.

The temperature fluctuation value of the upper boundary of the liquid cylindrical volume with radius R, and

thickness of several molecular layers #, is determined by a number of water molecules in it and the average temperature
1
of the medium 7" [10]: T,~N?T ", where N is the number of particles in the volume ¥ ~ 7R’ h, . For water the

fluctuation level of temperatures is sufficiently small and is of the order of ® , 107 +107 C.

Therefore, if the liquid is not heated from below, we assume that the Rayleigh number is equal to R = R;, where
R, = gpn’ 0, / (VZ) - the Rayleigh number for the fluctuation temperature difference between the lower and upper
boundaries of the tank. Here it should also be noted that the temperature unit in (8) is no longer ®as well® .

However, this value is clearly not included in the characteristic equation (21), and thus does not affect its solutions.

At the above fluctuation level of temperature difference, the Taylor number is a fairly large value:
Te>> R,k >>1

In this case, the discriminant of the equation (21) takes the value Q, ~ <7Z'2T e/3k’ )3 +(7rzT e(P-1) /3P)2 >0, that

1
N
. Te \?
corresponds to one real root and two complex conjugate roots 4, , = ki i (%)
L
Substituting the roots of the characteristic equation in (28) and assuming C; = —(C, +C;), C;=i(C;—C}) we
get:

B(1)=C| exp[—%t] —(Cy cos(a,t)—Cysin(ayt) ) exp(—ayt) (29)

1
where o, =k}, a, = (7z2Te/kj)2 ,Q >> 0.
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If we set in (29), for example, C; = C/ and, C; = 0then the amplitude B(7) will have the form:

B(r)=C! exp(—%tj[l - exp(—(%jaltjcos(azt)} (30)

Further everywhere, without loss of generality, we can set C/ =11n (30).

The temperature difference between the horizontal boundaries of the liquid is fixed and equal to zero
As noted above, in case with no heating from below the temperature difference between the horizontal boundaries

of the liquid is not equal to zero, but it is determined by the fluctuation level® , =T, , -1} ;.

From (30) it follows, that the amplitude of the perturbed temperature as a result of action of viscous forces
increases from zero at # =0 to a maximum value at # =¢__ . After reaching a maximum it decreases to zero, oscillating

with exponentially decreasing amplitude of oscillations. The law of decreasing the average amplitude value B(t) is
determined by the expression (30) averaged over the period of fast oscillations.

T

dB P-1
(3
t 2 '

The temperature variation rate of the liquid (30) at the initial time (zero time) is equal to

where B, - the liquid temperature in °C.

The temperature dependence upon the time for different values ¢, is presented in Fig. 4.

Fig. 4. Temperature B(t) versus time without water heating from below

for different valuesar,: 1 - @, =10-¢,;2 - @, =15-;3 - a, =20-¢,.

From Fig. 4 it follows that with increasing «, and, consequently, the Taylor number, the amplitude of the first
temperature maximum increases and the time of the maximum reaching decreases.

Thus, in rotating liquid cylindrical volume with free horizontal boundaries at a temperature difference between the
lower and upper boundaries at the fluctuation level, increasing the perturbed temperature from zero is observed. Then it
reaches a maximum B(t) ~1.5,...,2.0 = k', and after it again decreases to zero with exponentially decreasing amplitude

of oscillations. In the final state at large times the water will rotate as a whole without perturbation of velocity, pressure
and temperature.

However, it should be noted, that the value of the first maximum of the liquid temperature exceeds the fluctuation
level by a factor of x=1.5,...,2.0. This indicates that the liquid is being heated within the time interval 0<7<¢__ .
The temperature difference between the horizontal boundaries of the liquid
is not fixed and not supported from the outside

If the temperature difference between the horizontal boundaries of the liquid cylindrical volume © is specified at
the fluctuation level and is not supported from the outside, then the system can be considered as isolated. In such a
system according to (30) the temperature B(t) will increase from zero to the maximum value x within the time

interval 0<¢<¢__ (refer to Fig. 4)

max

According to (30) a point in time ¢ =¢__, when the temperature should decrease with time increasing, comes in

max ?

the system. However, this cannot be realized, since the entropy of an isolated system S, (t) is a non-decreasing
function of time [11], i.e. the condition dS, / dt >0 should be met.



26
EEJP. 4 (2019) Oksana L. Andreeva, Leonid A. Bulavin et al.

Based on the principle of entropy increasing we will describe the dynamics of temperature variation in the system
within the time interval £ > _ .

The law of variation of the system entropy can be written using (30) in the form:

ds ® - ds
U K—exp —ﬂt 1—-exp —(ujalt cos(azt) ) 3D
a  «T,,T, , P P dt

where, S, =S, ,+S, ;, =const - the sum of entropies of microvolumes on the lower and upper boundaries of the liquid,

as, , / dt >0 - the entropy of the upper boundary increased with time.
From (31) it follows that the entropy increases for the time interval 0 <z <¢_ . At times ¢ >¢ _the inequation

(31) is violated, i.e. the entropy decreases. Therefore, the system has one way out: at the point of time ¢ =1¢_, it passes

from the first stage of instability to the second. At this stage of instability the cylindrical volume of a liquid is described
by the original system of equations (9), (16) - (19), but with the temperature difference at the boundaries of the volume
increased by a factor x compared with the first stage: ® ; — x© ;. Increasing the temperature difference at the liquid

boundaries by a factor x leads to the same increase of the Rayleigh number: R, — xR,

The overall increase of the liquid temperature at the second stage will be equal to (1 + K) . Increasing the Rayleigh

number does not violate the applicability of the characteristic equation (21) and the expression (30), since the condition
Te>> kR, is still met.

At the third stage, the process of increasing the temperature will repeat, and the maximum temperature will now be
equal to x°. The overall increase of the temperature will be equal to (1 +K+ K ) .

With multiple repeating of temperature rise stages, the liquid temperature will increase in increasing geometric

progression to the value Z k'™, where n >>1 - the number of stages of the temperature rise.

i=1

N
However, with a certain number of rise stagesn = N >> 1, the Rayleigh number R =R ﬂZK"‘ may increase to a

i=1

value R =R . In this case the characteristic equation (21) will have another eigen values and, consequently, another
expression for the temperature B(t) I, At that, the liquid temperature will increase, but its final value should not exceed

the temperature of the phase transition. Otherwise, the original system of equations is not applicable.
As an example of heating a uniformly rotating cylindrical volume of a viscous, incompressible liquid can be used
the heating of water in the Ranque — Hilsch vortex tubes [12, 13].

For a pure water with an initial fluctuation level of the temperature difference © , ~ 107 °C [10] and x~1.8,

heating to a temperature difference of the order of (8-9)-102°C (temperature difference at which the Rayleigh number
increases to a value R = R ) corresponds to the number of temperature rise stages n = 23.

Further increase of the difference in the water temperature from (8-9)-102 C to a given temperature is a continuation of
the previous multistage rise and will be described in the next Section (Stationary temperature perturbations at large
Rayleigh numbers (R = R)).

As follows from the above analysis, heating of the rotating volume of water in Ranque — Hilsch tubes is due to the
action of viscous forces. The spatial distribution of the vertical and horizontal velocity of water coincides with a similar
distribution in the Rayleigh problem on convection in a layer of a viscous, incompressible liquid heated from below.
Therefore, the problem of occurrence of a temperature gradient in a rotating volume of water, as well as the problem of
heating water in Ranque -Hilsch tubes should be considered as the inverse Rayleigh problem.

Rayleigh's inverse problem involves searching the temperature difference between the boundaries of a viscous,
incompressible liquid of a cylindrical form according to a given distribution of its vertical and horizontal velocities.

Analysis of the stability of a rotating cylindrical volume of liquid when heated from below
The expression for the perturbed temperature (30) will change if the rotating cylindrical volume of the liquid is
heated from below with a certain rate. To show this, let us set a dependence of the perturbed temperature amplitude
upon the time at heating in the form:

B, (1)=B(t)a, exp(4,1) (32)

! The solution of the characteristic equation (21) and the expression for the perturbed temperature for large Rayleigh numbers are
given in Section 5.
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where o, A, - constants determining the parameters of water heating.

Such a representation is similar to introduction to the characteristic equation (22) a number with a shift 1 -4,
instead of an eigen value A, where the shift value A4, is selected so that to reduce the free term ¢ to zero.

From (32) it follows, that there is no heating for the parameter valuesa, =1 and A, =0.

If we set A, = ¢, /P, we will get the expression for the temperature of the rotating liquid with heating:

B, ()= C{’(l —exp [—(%) altj cos(azt)], (33)

e Lo Br, -liquid temperature - in °C, 7,7, -

where B, (t)=B,,/0,, is measured in units O, =T, —T,

temperatures of the lower and upper boundaries of the liquid layer, respectively.
We will assume C'=1 in (33), as before.

The dependence of the perturbed temperature amplitude upon the time (33) for different values ¢, is presented in
Fig.4.

Fig. 5. Temperature B,(7) versus time at heating from below for

different values «,: 1- a,=10-¢,;2- a,=15-2,;3- a,=20-q,.

From Fig. 5 it follows, that the liquid temperature increases from zero with time at ¢ =0, reaches the first
maximum B, (t) ~ k and oscillating with an exponentially decreasing amplitude tends to unity.
From this we can conclude, that in experiments with heating a rotating cylindrical volume of liquid, the value ©

determines the final temperature of the liquid heating, as well as the initial rate of temperature variation, i.e.
dB, ,

dt

of a non-heated one.

P-1 e S
=0, (Tj o, . It follows that the rate of variation in the temperature of a heated liquid is greater than that
=0

STATIONARY TEMPERATURE PERTURBATIONS AT LARGE RAYLEIGH NUMBERS (R=R))

As follows from the previous presentation, the temperature difference between the horizontal boundaries of the
rotating cylindrical volume of a liquid increases. This leads to an increase in the Rayleigh number, which may possess
eventually a value R=R . In this case, the characteristic equation (22) has solutions in the form of stationary
perturbations, which differ from solutions (33).

Let us consider these stationary perturbations.

The eigen values of the characteristic equation at R = R, are as follows:

2(2P+1) .
A=0;4,, =k 7 tio, (34)
‘(2p-1)’ P-1)k
where n=1, R ACEDE a)zzuké(Rc—Rw).

YAk (P-1)P’ Pk
We will set the dependence of temperature on time in (20), e) for eigen values (34) in the form
D(t) = Bexp(—At). Then the overall solution can be represented as:
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D(t)= iDm exp(—4,t) = D, (D, cos(art)— D, sin (o) )exp(-5t), (35)

m=1

where D, - arbitrary constants determined by initial conditions.
From (35) it follows, that in a stationary state the general solution for the liquid perturbed temperature consists of
the sum of three particular solutions. One summand with an eigen value ﬂ,‘ =0 is a constant number. The other two

summands with eigen values 123 describe either exponentially damped temperature variation with a damping

(2P+1)
2P

decrement Re(4,;) =" =k and oscillation frequency

R.>R (P _1) k; s . P .
Im(/l2 5 ) =a, " =% ~(R.—R,)atR >R, or damped variation without oscillations with decrements
' P ki

2
Re(4,,)=a5™ =k} (22+1) + \/ k"z (P-1) (R,—R.) at R_ <R, .Moreover, in the latter case o< > &, >0.
’ ’ 2P KP

We use the expressions (33), (35) to describe the experimental data on the stability of a rotating cylindrical volume
of water heated from below [5, 9].

In some experiments (let's designate them as experiments I) the water was placed in glass cylinders with an outer
diameter of 29.4 cm. An electric heating element was attached to the horizontal bottom of the cylinder, which provided
controllable temperature variation. Heating was carried out at a low rate (heater power - 1 W), medium rate (heater
power - 3 W) and high rate (heater power - 10 W). The cylinder with water rotated around its axis using special tools.
The layer of water with a depth of 3 cm and the rotation velocity of 10 rpm was studied in the experiments.

For experiments I) in (34), the relation R, >> R is satisfied and, thus, the instability with the parameters o™
is realized.

In other experiments (experiments II) [4, 9] in water layers of 18 cm depth at a temperature difference of lower
and upper boundaries - 0.7 ° C and a rotation velocity of 5 rpm we have found by visual observations using a rotoscope,
that for a heating rate of more definite value in a cylindrical volume of water rotating as a whole the convective cells
with a diameter of 4.6 cm arose. The motion inside the cells becomes visible as a result of dispersing a small amount of
aluminum powder over the surface of the water.

We will analyze the described experiments on the basis of the performed analytical calculations below.

Stationary temperature perturbation at a low rate of liquid heating
At a low rate of heating the bottom of the tank, the process of water heating will take place in two stages. These
stages, due to the low rate of liquid heating and the low level of saturation temperature, will not go into one another, but
overlap, i.e. to the first stage of temperature variation, valid within the entire time interval, one should add the second
stage of its variation, valid after the temperature is established of the order of (8 - 9)-102°C (when the equality R = R,

is satisfied).
At the first stage the water temperature increases as a result of multi-stage rise, reaches values of the order of
8-9:102°C and the Rayleigh number increases to a value R = R, . This stage of the multistage temperature rise will be

approximated by the expression:
B,(t)=4, (1-exp(-B))0(t, —1), (36)

where A4 ,B, - constants describing the first stage of water heating, ¢, - the time of transition of water temperature rise
from the first stage to the second.
At the second stage, when R = R, the temperature variation is described by the sum of two temperatures, where

the first temperature from this sum B, (t)is set by the sum of the summands of the solution (36) with arbitrary

coefficients

B, (I)ZA;_DSI exp(—BSt), (37)

and the secondD(t) is the sum of particular solutions of the characteristic equation at R =R, :
D(1)= H(t—t”){Dl —(D2 cos(al 1)~ D, Sin(%ze(>Rut))exp(_al&>&t)} _

(3%)
=0(r-t, )(Ag +B, cos(C, (t-1,))exp(-D, (t—1, ))),
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where A/,D!,A4,,B,,C,,D,,t, - constants describing the second stage of water heating.

After summing up the solutions (37), (38) we obtain an expression for water temperature variation at the second
stage of instability:

1 _-Bit,
Dz<r>=<A;+Ae>e(r—r,r>(1—Dse (1—%8*"%s(@(r—re))je’*(”f’]» (9)

A+ 4,

where 6(x) - Heaviside unit function.

Constants in (39) can be determined by combining the theoretical dependencies (36), (39) with experimental data
[4,9].

Graphs of temperature versus time for the rotating cylindrical volume of water heated from below, obtained
experimentally, and calculated by formulas (36), (39) are presented in Fig. 6. The experimental dependence of
temperature upon time (solid line) was obtained as a result of digitization and graphic transformation to the Cartesian
coordinate system. The beginning of the obtained experimental curve was brought into coincidence with the beginning
of the Cartesian coordinate system.

As a result of approximation of formulas (36), (39) with experimental data the following values of the constants
were obtained: 4, =36.4,B =0.055, 4/ =D =8.86,4,=0,B, =1.92,C,=0.5,D, =B, =0.08, t, =—1,7, =15.8.

10

A \
T,,uI/4 \
/
/

0 15 30 45 60 75 90
f, min
Fig. 6. Temperature versus time of a rotating cylindrical volume of water with a low

[ ]

0

heating rate: solid line - experiment [4, 9]; o - formula (36), <> - formula (39)

In Fig. 6 the water heating rate at the initial time is determined by the quantity: % =0.676, it is a fairly small
t=0

quantity.

From Fig. 6 it follows, that the experimental data and theoretical dependences are quantitatively consistent. The
data show, that in a rotating cylindrical volume of water with a low heating rate, a monotonic rise in temperature to a
certain level and its stabilization at a slightly higher level are observed. Lack of convective vortices in the experiment
indicates that temperature stabilization in a cylindrical volume of water occurs, apparently, due to mechanical heat and
mass transfer, which occurs as a result of the liquid rotation.

The radial and vertical spatial distribution of the velocity of mechanical heat and mass transfer of a rotating liquid,
as follows from (20), is determined by the same expressions as for convective heat and mass transfer in the below
heated water layer with free boundaries [3].

Stationary temperature perturbation at high heating rate
At the tank heating rate of more than a definite value the process of water heating can be divided also into two
stages. However, the second stage of temperature variation, due to the high rate of water heating and rapid
establishment of the equality R =R , will be described only by the sum of particular solutions of the characteristic

¢

equation.
Thus, at the first stage in the time interval) <7 <7 __ the water will be heated to the value (1.5 + 2)T&r according
to the law (36).

At the second stage, when? > ¢ the temperature variation is described by the expression:

max °

D'(1)=0(t-t,) {D{ - (D; cos(af“ >R“‘t) —D;sin (af“>R“‘ t)) exp (—alR‘ > t)} =

(40)
=0(t~1, )(Ae’ +B!sin(C.(t-1.))exp(~D,(t —t;))).
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The constants in (36), (40) can be determined by combining theoretical dependences with experimental data.

Graphs of temperature versus time of a rotating cylindrical volume of water heated from below, obtained
experimentally and calculated by formulas (36), (40) are presented in Fig. 7. The experimental temperature dependence
on time was taken from [4, 9], digitized, and graphically transformed to the Cartesian coordinate system. The beginning
of the experimental curve thus obtained was brought into coincidence with the beginning of the Cartesian coordinate
system.

As a result of approximation of the experimental data using formulas (36), (40) the following values of the
constants were obtained: 4, =36.4,B, =0.055, 4’ =15.45,B, =27.245,C! =0.557,D. =0.197, ¢ =8.3411,t, =15.57.

5

20 R,

o " A
VTN
10

o

15 30 45 60 75 90
f, min
Fig. 7. Temperature versus time of a rotating cylindrical volume of water heated from below

with a high heating rate: solid line - experiment [4, 9]; o - formula (36), <* - formula (40).

. . P . dB, .
In Fig. 7 the water heating rate at the initial time is determined by the value: —*| =2.0. It can be seen that in

t=0
the case under consideration the water heating rate at the initial time is higher than the heating rate in the experiment
described above.

From Fig. 7 it follows, that at the first stage within the time interval 0<¢<¢__ the temperature increases

according to the exponential law (36) to a certain level. Then, at ¢ = ¢__ the first stage goes into the second, where the

perturbed temperature variation is described by the expression (40). At that, the perturbed temperature experiences
oscillations damped in time with respect to temperature 7 =15.45 .

It should be noted, that in Fig. 6, 7 and below, the part of the experimental curve, not marked with markers,
describes the water temperature variation after the heater is turned off.

Let us consider another experiment in which the water heating rate was higher than the heating rate used in the
experiment in Fig. 7.

Fig. 8 shows experimentally obtained and calculated by formulas (36), (40) graphs of dependence of the disturbed
temperature upon the time of a cylindrical volume of water heated from below at rate exceeding the heating rate in the
experiment in Fig. 7.

As before, the experimental dependence of temperature difference on time [4, 9] is digitized, and graphically
transformed to the Cartesian coordinate system. The beginning of the experimental curve thus obtained was brought
into coincidence with the beginning of the Cartesian coordinate system.

As a result of approximation of the experimental data using formulas (36), (40) the following values of the
constants were obtained: 4 =52.5,B, =0.055, A =14.817,B, =3.592,C. =0.772,D. =0.2, ¢, =11.451,t, =8.44.

In Fig. 8 the water heating rate at the initial time is higher than the heating rate in two previous experiments

Bl s,
dt|_,

From Fig. 8 it follows that increasing the water heating rate compared with the data in Fig. 7 changes the temporal
dynamics of the perturbed temperature: the first stage of heating exists for a shorter period of time, and the damped
vibrations at the second stage have a shorter period and larger amplitude of oscillations. As to the rest, the amplitude
dynamics of the perturbed temperature in Fig. 8 corresponds to the dynamics in Fig. 7: the amplitude of the first
maximum and the saturation level are almost the same.

The discrepancy between the experimental data and the theoretical curve in Fig. 8 at £ > ¢ is, apparently, due

to the fact that with a high heating rate it is necessary to take into account the contribution of nonlinear summands in the
initial equations (9), (16) - (19).
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Fig. 8. Temperature versus time of a rotating cylindrical volume of water with a

high heating rate: solid line - experiment [4, 9]; o - curve (36), < - curve (40).

CONCLUSION

In this work, in neglect of the centrifugal convective force, the equations of heat and mass transfer in a rotating,
viscous, incompressible liquid of a cylindrical form with free boundaries are analyzed. Solutions of the linearized
original system of equations in cylindrical geometry are obtained that satisfy the boundary conditions of the problem.
The spatial distributions of the projections of the perturbed velocity and the perturbed temperature of the liquid are
determined with the accuracy to constants.

It is shown, that the spatial distribution of horizontal and vertical velocities and the temperature of a rotating,
viscous, incompressible liquid of a cylindrical form with free boundaries are similar to those implemented for a layer of
a viscous, incompressible liquid heated from below without rotation, which correspond to solutions of the Rayleigh
problem in the cylindrical coordinate system.

The analysis of stability of a rotating, viscous, incompressible liquid of a cylindrical form heated from below was
carried out. A stability condition for the rotating, viscous, incompressible liquid of a cylindrical form heated from below
in the cylindrical coordinate system was obtained. For the case of its stable rotation the graphs of dependence of the

logarithm of the critical Rayleigh number ln(RL,)on the wave number £, and the Taylor number 7e, as well as the
logarithm of the radial wave number In(k,)on the Rayleigh number X =R, / R’ and the Taylor number

Y=Te/ R: were plotted. The obtained dependences, except for the minimum radial wave number

(k) . ~ (72'2 / 2)]/3 Te'” , fully match the previous studies by other authors.

The stability analysis of a rotating cylindrical volume of a liquid without heating from below was carried out. It
has been shown that at a fixed, zero temperature difference between the horizontal boundaries of the cylindrical tank of
a liquid, an increase in its temperature is observed starting from zero. Then it reaches a maximum value of the
orderx =1.5,...,2.0, and after, oscillating with exponentially decreasing amplitude of oscillations, again decreases to
zero. In the final state at large times the liquid will rotate as a whole without perturbations of velocity, pressure and
temperature.

If the temperature difference between the horizontal boundaries of the cylindrical volume of the liquid ® is set at a
fluctuation level and is not supported from the outside, then the system can be considered as isolated. In this case,
according to the law of entropy increasing in isolated systems, the liquid will successively go through only the stages of
temperature rise with the rise coefficient at each stage of the order K so, that its temperature eventually will increase in

i-1

increasing geometric progression up to the value ZK‘ , where n >>1 - the number of stages of the temperature rise.

i=1

N
However, at a certain number of rise stagesn = N, the Rayleigh number R =R /IZK'H may increase to a value

i=1
R =R, . In this case, the characteristic equation will have another eigen values and, consequently, another expression

for increasing the liquid temperature. The water temperature will increase, but its final value should not exceed the
phase transition temperature, since in this case the original system of equations is not applicable.

Based on performed calculations an example of heating a rotating cylindrical volume of water without heating
from below is considered. This example shows that the problem of the occurrence of a temperature gradient in the
volume of water, as well as its heating in Ranque-Hilsch tubes, should be considered as an inverse Rayleigh problem. In
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the Rayleigh inverse problem it is required to find the temperature difference between the horizontal boundaries of a
viscous, incompressible liquid of a cylindrical form according to a given distribution of its horizontal and vertical
velocities.

The stability analysis of a rotating cylindrical volume of a liquid at heating from below has shown, that over time
the temperature difference of the liquid increases from zero at ¢ =0, reaches the first maximum value of the order K
and tends to unity oscillating with exponentially decreasing oscillation amplitude. In experiments with heating the
rotating cylindrical volume of a liquid, the value of the temperature difference set from outside determines the final
heating temperature of the liquid, as well as the initial rate of its variation. It is shown that the rate of temperature
variation of a heated liquid is greater than that of a similar one without heating.

Stationary temperature perturbations are considered for different rates of water heating.

In all cases it was proposed to consider two stages of the development of stationary perturbations.

At the first stage the water, as a result of a multistage heating at a rate set from outside, acquires a temperature at
which the Rayleigh number is small, but increases from the value R << R . toR= R, .

At the second stage of heating, when R =R_, the eigen values of the characteristic equation and the type of

particular solutions, of which the general solution for a temperature consists, change. The temperature of the system is
described either by a superposition of general solutions for the first and second stages of the temperature rise (at a low
heating rate), or only by a general solution for the case R = R, (at a high heating rate).

Comparison of theory and experimental data for heating water shows a qualitative and quantitative agreement.
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CTIAKICTb TOPU3OHTAJILHOT'O IUJITHAPUYHOI'O IAPY B'SI3KOi, HECTHUCJIHUBOI PITWHM 3 BUIbHUMHA
MEXAMM, IO OBEPTAETHCS TA HIAIT'PIBAETHCS 3HU3Y
0.JI. Angpeesal?, JLLA. Byaagin®, B.I. Tkauenko'?
!Hayionanshuii nayxosuii yenmp «XapriecoKuti (isuko-mexuiunuti incmumymy
syn. Axademiuna, 1, 61108, Xapxis, Yrpaina
?Xapriecoruil nayionanbhuil ynicepcumem imeni B.H. Kapasina
matioan Ceoboou, 4, 61022, Xapxie, Yrpaina
3Kuiscokuii nayionanvhuii ynieepcumem iveni Tapaca Illeeuenka
8y1. Bonooumupcwra, 60, 01033, Kuis, Yxpaina
TeopeTHuHO AOCTIHKEHO CTIMKICTh LMTIHAPUYHOIO TOPU30HTAIBHOTO APy B'SI3KO1, HECTUCIMBOI PiIHHU 3 BIIbHUMH MEXKaMH, 110
obepraeTscs 1 MiAIrpiBa€ThCs 3HU3Y. Y HEXTYBaHHI BiALCHTPOBUMH CHJIAMH{ 3allMCaHi PIBHAHHS PyXy, TEIUIONPOBITHOCTI i
HECTHUCIIMBOCTI PiAWHM, 3 SKUX B JiHIHHOMY HaONIKEHHI OTPUMAaHO BioMe AWcHepciiiHe piBHSHHSA. PO3risiHYyTO CTilKicTh
00epTOBOTO IMIIIHAPUIHOTO 00'€eMy PIIMHM y BiACYTHICTH MIJIrpiBY 3HM3Y 3a YMOBH, IIO Pi3HUIS TEMIEPaTyp TOPU3OHTATBHHX
rpaHunb piguHU (ikcoBaHa, i JopiBHIOE Hymo. [lokazaHo, IO y BiJCYTHICTh MiAIrpiBy 3HM3Y 1 SIKIIO PI3HHUI TEMIIEpaTyp
TOPU30HTAIBHUX KOPJIOHIB pinuHM, 0 00epTacThes, He (GiKcoBaHa, 1 HE MIATPUMYETHCS 330BHI, TO 30ypeHa TeMIepaTrypa piluHu
Oyne 30ubIIyBaTHCS, aje ii KiHIEBE 3HAYCHHS He NEepeBHINyBaTHMe Temmeparypy (aszoBoro mepexony. OTpuMaHuil pesyinbTaT
BUKOPHUCTaHUH JUISl MOSCHEHHS HArpiBy BOJIM Y BHXpOBUX TpyOkax Panka-Xinmma. 3po0ieHO BHCHOBOK IPO Te€, IO HArpiB BOJAM B
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TpyOkax Tumy Panka-Ximma ciig po3risaaTH sIK 3BOPOTHY 3aaady Penes, B siKiif 3a BiJOMHM pO3IOALIOM IIBHIAKOCTEH BCepeauHi
00'eMy piIMHM MOXXHAa BH3HAYMTH TPaJi€HT TEMIEPaTypu, W0 BuHUKae. HaBeneHo aHani3 cTilikocTi 06€pTOBOrO LHIiHAPUYIHOTO
o0'eMy piguuu mpu migirpii 3uu3y. Ilokas3aHo, 10 B eKCIEpHMEHTaX BEIHYHMHA PI3HMII TeMIepaTyp Ha KOpIOHAX LMIIHApA,
3aJa€ThCS, a TAaKOXK II0YAaTKOBA IIBUIKICTH i 3MiHM BH3HAYa€ KIHIEBY TEMIIEpaTypy HarpiBaHHS pinuHd. [lopiBHSIHHS
3aIpPONIOHOBAHOT TEOPii Ta eKCIIEPUMEHTAIBHUX JaHUX JJIsI HATPiBy BOAM MOKA3ye€ iX TapHY SAKICHY 1 KUTBKICHY BiAIOBIAHICTb.
KJIFOYOBI CJIOBA: Tteopisi, CTiiiKicTb, B'S3KHH, HECTHUCIUBHUMA, pPiHHA, TOPU3OHTAIGHUNA IWIIHIPUYHUN [Iap, obepTaeThes,
HarpiBaeThesl, BUIBHI TPaHUII

YCTOMUYHUBOCTH BPAIIAIOIIETOCA M TIOJOTPEBAEMOI'O CHU3Y T'OPU30HTAJIBHOI'O
IUJINHAPAYECKOI'O CJO0SI BA3KOM, HECXKUMAEMOM )KUJKOCTH CO CBOBOJJHbIMU I'PAHULIAMHA
O.JI. Anapeesal?, JI.A. Byaasun’, B.W. Tkauenko!*

' Hayuonanonuiii nayunotii yenmp «XapoKo6ckutl (ousuko-mexuudeckuti uncmunmymy
ya. Akademuyeckas, 1, 61108, Xapvkos, Yxpauna
2Xapwrosckutl Hayuonanvubitl yrusepcumem umenu B.H. Kapasuna
nn. Ceo600wi, 4, 61022, Xapvros, Yrkpauna
3Kueeckuii nayuonanvuwiii ynusepcumem umenu Tapaca Illesuenko
ya. Braoumupckas, 60, 01033, Kues, Yxpauna
Teopernuecku ucciaeoBaHa yCTOWYMBOCTH BPAILAIOIIErOCS U MOJOIPEBAEMOr0 CHHU3Y TOPH30HTAIBHOTO IMIMHIAPHYECKOTO CIIOS
BSI3KOH, HECXKMMAaEeMOM >KUAKOCTH CO CBOOOJHBIMU IpaHULIAaMH. B mpeHeOpexeHnn HeHTpoOeKHBIMU CHIIAMH 3aIIMCaHbl ypaBHEHUS
IBIDKCHHS, TEIUIONPOBOJHOCTH M HEC)KUMAEMOCTH JKHAKOCTH, M3 KOTOPBIX B JMHEHHOM NPHONIKEHUH IIONyYeHO H3BECTHOE
IICTIEPCHOHHOE ypaBHEHHE. PaccMOTpeHa yCTOWYMBOCTH BpAINAIOIIETOCS MIIMHAPUYIECKOTO 00beMa KXHIKOCTH B OTCYTCTBHE
MOJIOTPEBa CHU3Y TIPH YCIIOBHHU, YTO PAa3HOCTh TEMIIEPATYp TOPH30HTAIBHBIX TPAHUI] JKUAKOCTH (UKCHPOBaHA, W PaBHA HYIIO.
[TokazaHo, 4TO B OTCYTCTBHE IOAOTPEBA CHU3Y W, €CIH PA3HOCTh TEMIIEPATYP TOPH30HTAIBHBIX TPAHUIl BPALIAONICHCS KUIKOCTH HE
(uKcHpoBaHa, U HE TOJEPKUBACTCS W3BHE, TO BO3MYIICHHAS TEMIIEpaTypa >KHIKOCTH OyJIeT yBEIMYMBATHCS, HO €¢ KOHCYHOE
3HAYCHHUE HE MPEBBIIIACT TEMIIEPaTypy (pa3oBoro nepexona. [lonydeHHbIH pe3ynbTaT UCIOJIB30BaH /s O0BICHEHHS HArpeBa BOJIBI B
BUXpPEBbIX TpyOkax Panka-Xwunma. Crenad BBIBOJ O TOM, YTO HarpeB BOZbI B TpyOkax Tuna Panka-Xwuima ciemyer paccMaTpuBaTh
Kak oOpaTHylo 3anmady Poames, B KOTOpPOH IO H3BECTHOMY pPACHpPEAEICHHIO CKOPOCTeH BHYTpH 0OBbEeMa MOXKHO OIPEAETHThH
BO3HHKAIOUINHA TPaTUCHT TeMIeparypsl. [IpuBeneH aHaaW3 yCTOMYMBOCTH BPAIIAIOMIECIOCS LMIMHIPUYIECKOTO 00BhEeMa JKHUAKOCTH
mpu mojorpeBe cHu3y. [loka3aHo, 9TO B SKCIIEPUMEHTAaX BEIMYMHA 3aaBACMOW Pa3HOCTH TEMIIEpaTyp Ha TPaHUIAX IWIMHApPA, a
TaK)Ke HayallbHas CKOPOCTh €€ M3MEHEHHs ONpeAeisIeT KOHCUHYIO TEMIIeparypy HarpeBa KHIAKOCTH. CpaBHEHHE MPEIIOKCHHON
TEOPHHM W OSKCICPUMCHTAIBHBIX JAaHHBIX JUIi HarpeBa BOJBI ITIOKA3bIBa€T HMX XOPOIIEC KAUYECTBEHHOE M KOJUYECTBCHHOE

COOTBETCTBHE.
KJIIOYEBBIE CJIOBA: Teopusi, yCTOWYMBOCTD, BSI3KHM, HEC)KHUMAEMbIH, )KMIKOCTb, TOPU3OHTAIBHBIN LMIMHIPUUECKUIN CIIOMH,
BpalIaeTcsl, HarpeBaeTCsl, CBOOOIHbIE TPAHULIBI



