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The stability of a rotating and heated from below horizontal cylindrical layer of a viscous, incompressible liquid with free boundaries 
was theoretically investigated. Neglecting the centrifugal forces, the equations of motion, thermal conductivity and incompressibility 
of the liquid were written, from which the well-known dispersion equation was derived in the linear approximation. The stability of a 
rotating cylindrical volume of a liquid with no heating from below was considered, provided that the temperature difference between 
the horizontal boundaries of the liquid was fixed and equal to zero. It was demonstrated, that with no heating from below the 
temperature difference between the horizontal boundaries of the rotating liquid was not fixed and not maintained from the outside, 
the perturbed liquid temperature would increase, but its final value did not exceed the phase transition temperature. The obtained 
result was used to explain the heating of water in Ranque – Hilsch vortex tubes. It was concluded that the water heating in Ranque -
Hilsch tubes should be considered as the inverse Rayleigh problem, in which the temperature gradient can be determined from the 
known distribution of velocities inside the volume. The stability of a rotating cylindrical volume of a liquid when heated from below 
was analyzed. It was demonstrated, that the value of the specified temperature difference at cylinder boundaries, as well as the initial 
rate of its variation, determine the final heating temperature of the liquid. A comparison of the proposed theory and experimental data 
for water heating shows their good qualitative and quantitative agreement. 
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It is known that a periodic structure in the form of Benard cells [1] is formed in a horizontal layer of a viscous, 
incompressible, below-heated liquid. Rayleigh described in [2] the physical nature of the convection onset in such 
layers. He obtained analytical expressions for perturbed velocity and temperature in the Cartesian coordinate system. 
On the basis of this theory, it was possible to explain the threshold nature of the convective instability development, 
when the convection occurs only at a certain temperature difference. The obtained solutions describe the occurrence of 
convective rolls in a horizontal liquid layer, on the vertical common boundaries of which the velocity was directed 
periodically up / down and vice versa. However, these solutions did not describe the experimental fact of the 
availability of polygonal structures, the number of angles of which varied from four to seven, but with a predominance 
of six [1]. Therefore, to explain the appearance of hexagonal convective cells, geometric transformations of the found 
solutions were used. The description of cells with a different number of angles also means involving geometric 
manipulations. And if we continue the work and try to describe the entire set of polygonal convective cells, then this 
task turns out to be practically impossible. 

In contrast to the method of geometric transformations described above, the energy principle of the formation of 
Benard cells was proposed in the work [3]. The principle is based on the fact that cells in the nucleation phase are few 
in number and have a cylindrical form [3]. As the temperature of the lower boundary of the layer increases, their 
number increases. Ideally, all cells are tightly packed in a liquid layer, and create a polygonal (hexagonal or other) 
structure, i.e. Benard cells. 

As we see, initially the main element of Benard cells is an elementary cylindrical convective cell, whose perturbed 
parameters under free boundary conditions are described in the work [3]. At a uniform rotation of the liquid in the cell 
relative to the vertical axis, new possibilities of controlling the thermal convection described in [1 - 3] emerge. The 
control parameters under the new conditions will be Coriolis and centrifugal forces [4, 5]. 

In this work the onset of convection in a uniformly rotating and below-heated cylindrical tank with a viscous, 
incompressible liquid with free boundaries was investigated. 

THE INITIAL EQUATIONS OF CONVECTION IN A ROTATING VISCOUS, INCOMPRESSIBLE LIQUID 
OF A CYLINDRICAL FORM WITH FREE BOUNDARIES 

Let us consider a cylindrical volume of radius 0R  filled with a viscous, incompressible liquid, the lower and upper 

boundaries of which coincide with the planes 0z   and z h . The liquid rotates uniformly as a whole with an 

angular velocity    
 

ze , where ze


- the unit vector directed along the vertical, which coincides in direction with the 
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axis z  and is in the gravitational field, the direction of acceleration of which is zg g e  
 

 opposite to the direction 

of the axis z . In Fig. 1 vector g


 - gravitational acceleration, r


 - radial coordinate. 

The temperature distribution inside the cylinder  0T z is set so, that the temperature of the lower boundary is 

higher than the temperature of the upper one: 0 0,2(0) T T , 0 0,1( ) T h T ,  0,2 0,1T T . We suppose, that in equilibrium 

the temperature distribution is described by a linear function in the coordinate z :  

 0


  
 

zT z e
h

  

were, 0,2 0,1  T T  - the temperature difference between lower and upper plains.  

Fig. 1. Schematic representation of a cylindrical volume with a viscous incompressible 
liquid rotating at an angular velocity   in a gravitational field 


g . 

Let us write the equations describing convection in a cylindrical volume heated from below and rotating as a 
whole. These equations consist of the Navier – Stokes equation, with regard to inertial forces in a rotating coordinate 
system – Coriolis and centrifugal [4], the heat conduction equation and the continuity equation: 

    v 1
v v v+ 2 v ,




          


          
p g r

t
 (1) 

  v ,


   


T
T T

t
 (2) 

  div v 0,


 (3) 

where v


 - small perturbations of the liquid velocity in a rotating coordinate system, r


 - radius-vector of the liquid 

element,  , p , T  density, pressure and temperature of the liquid, 


 - gradient operator,   - Laplace operator.  
From system (1-3) it is possible to obtain equations that describe the spatial-temporal dynamics of small 

perturbations of pressure p  and temperature T  with respect to their equilibrium values  0 ,p r z  and 

 0 0,2


 T z T z

h
: 

  0 0, .    p p p T T z T  (4) 

Small values of pressure and temperature perturbations meet the requirement: 0f f .  

When analyzing the Navier – Stokes equation we assume that Boussinesq’s assumptions regarding the being 

determind influence of the temperature compressibility of a liquid are met, i.e. we assume  0 1    T  [4], where 

  - the coefficient of a liquid temperature compressibility. 

We assume, that the velocity perturbations are small, which allows us to neglect the quadratic in velocity 
summands in (1). Taking into account the assumptions made, and after substitution (4) into equation (1) we have:  

          0
0

v 1
1 v 1 2 v 1 .   




              


          zT p p T ge T r
t

 (5) 
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We suppose the diameter of the cylindrical tank is small: 
2 D g . This condition allows neglecting the 

centrifugal convective force, as a result of which the last summand in (5) can be neglected [4]. 
Let us eliminate the unperturbed summands in the equation (5), setting:  

0 0 .  
 

zp ge  (6) 

The remaining summands give the force balance equation for perturbed values: 

0

v 1
v 2 v. 




       


     zp Tge
t

 (7) 

In units of layer thickness h , time 2 1   h and temperature   the equation (7) is converted to a dimensionless 
form:  

1v
v v ,z zp RT e E e

t
          



       (8) 

where the “prime mark” denotes the corresponding dimensionless value,  3  R g h  - the Rayleigh number,   

and   - the coefficients of liquid kinematic viscosity and thermometric conductivity, correspondingly,  22 E h  - 

the Ekman number, which is very small in most experiments with rotating liquid [6]. 
In further calculations to simplify writing process the “prime mark” notation is omitted.  
Equation (8) should be supplemented by the equation of heat conduction (2), which, taking into account the linear 

dependence of temperature on height, takes the dimensionless form:  

v ,z

T
P e T

t


  



     (9) 

where  P  - the Prandtl number. 

The continuity equation (3) in dimensionless variables has the same form. 
For a rotating viscous, incompressible liquid of a cylindrical form we will assume that the boundary conditions are free 
[2, 4, 5]. These conditions mean that vertical projections of the velocity perturbations are equal to zero at the boundaries 
of the liquid:  

0,
1

v 0,


zz
z

 (10) 

and tangential stresses: 

0
0,
1

v v
0.  




       
r z

rz
z
z

z r
 (11) 

The boundary conditions (11) taking into account the continuity equation (3) can be transformed to the form:  
2

2
0,
1

v
0.








z

z
z

z
 (12) 

We assume that the temperature at horizontal boundaries of the cylinder is fixed. It follows that the temperature 
perturbations at the boundaries 0, 1 z z are equal to zero: 

0,
1

0.



z
z

T  (13) 

To the boundary conditions (10), (12), (13), we should add the condition for the perturbed velocity at the external 
boundary:    v , , v , , 0 r r z t r z t at 0r R .  

As an initial condition we assume, that at the time point 0t =  all the perturbations are either missing: 

0
v, , 0




  
t

T p  (14) 

or specified as: 

     
0

v, , v ,0 , ,0 , ,0 .



      
t

T p r T r p r  (15) 

Thus, the problem of studying the stability of a rotating, heated from below, viscous, incompressible liquid of a 
cylindrical form with free boundaries is reduced to solving the eigen value problem for the system of equations (3), (8), 
(9) with boundary conditions (10), (12), (13) [4] and with initial conditions (14), (15). 
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SOLUTIONS OF THE ORIGINAL SYSTEM OF EQUATIONS 
We write equations (3), (8), (9) in a cylindrical coordinate system , ,r z . We assume the perturbations are 

axisymmetric, i.e. such that the perturbations do not depend on the angular coordinate  . This means that all the 

perturbed values meet the condition ... / 0   . Rotation of the cylindrical volume of a liquid is a flow with an 

equilibrium azimuthal velocity    V r r  [7, 8], which is obtained from the Couette flow, if we set the radius and 

angular velocity of rotation of the inner cylinder to zero. Based on this we write the projections of the velocity vector in 

the cylinder:   v= v , v ,v 


r zV r .  

The equations for the perturbed velocity projections follow from (8): 

 1
2

v v
v v ,

 
     

 
r r

rp E
t r r

 (16) 

 1
2

v v
v v , 



   

 rE
t r

 (17) 

 
v

v ,
 

    
 

z
zp RT

t z
 (18) 

where 
2

2

1          
r

r r r z
.  

In cylindrical coordinates the continuity equation (3) is converted to the form: 

  1
v v 0

 
 

 r zr
r r z

 (19) 

Equations (16) (19) should be supplemented by the equation of heat balance (9).  
We will seek solutions of the original task in the form: 

       1
1v , , exp cos ,      r r rr z t A t n k n z J k r  a) 

(20) 

       1v , , exp cos ,      rr z t D t n z J k r  b) 

       0v , , exp ,    z rr z t A t sin n z J k r  c) 

       0, , exp .     rp r z t C t cos n z J k r  d) 

             0 0, , exp ,       
r rT r z t B t sin n z J k r B t sin n z J k r  e) 

where   - eigen values characterizing attenuation ( 0  ), increase ( 0  ) or stationary state ( 0  ) of 

perturbations (18); 
  22

, , ,


 


 r r

An
A B C D

k E k n
 - perturbation amplitudes;    0 1,J x J x  - Bessel functions of the 

first kind of zero and first order of the argument x  respectively; rk  - radial wave number characterizing the 

dependence of the perturbations on the transverse coordinate r , 1, 2,3...n   - the mode number. 
It is easy to see, that the boundary conditions on the external boundary are automatically satisfied, if we set 

1, 0 ,r ik R where 1, i  - i - th zero of Bessel functions of the first kind of the first order (  1 1, 0iJ   ), 1, 2, 3, ....i . 

From (20) a), c), and e) it follows that the spatial distribution of perturbations of horizontal and vertical velocities 
and temperature are similar to those implemented for a layer of heated from below, viscous, incompressible liquid 
without rotation in a cylindrical coordinate system [3].  
 
THE STABILITY ANALYSIS OF A ROTATING, VISCOUS, INCOMPRESSIBLE, HEATED FROM BELOW 

LIQUID OF A CYLINDRICAL FORM 
Substitution of solutions (20) into equations (9), (16) (18) gives a cubic characteristic equation for determining 

eigen values :  

3 2 0,a b c       (21) 
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where, 
       2 22 2 6

2 4
2

2 1 2
, , ,

 
 



    
    r rP P P n Te k R k R k n Te

a k b k c
P P Pk P

    22 2
rk k n   , 

2 2 4 24Te E h     - Taylor number.  

Let us consider the solutions of the characteristic equation (21), which describe a stable rotation of a viscous, 
incompressible and heated from below liquid of a cylindrical form.  

We determine the condition of a monotone instability of a rotating, viscous, incompressible and below-heated 
liquid of a cylindrical form from (21), similarly to [5].  

    3 22 2 ,r ck R k n Te   (22) 

where cR  - critical Rayleigh number of monotone instability. 

It should be noted, that the expression (22) goes into the expression obtained in the Cartesian coordinate system by 

Rayleigh, if we replace 
2
rk  by 2 2 2

x yk k k   [4, 5]. 

The condition of monotone instability (22) in graphic form is shown in Fig. 2. Here the dependence of the lines of 

the logarithm levels of the critical Rayleigh number  cln R upon the wave number rk and the Taylor number Te  is 

presented.  

The level lines show, that the wave number ,mrk  (the abscissa of the maximum of the level line) corresponding to 

the minimum critical Rayleigh number increases with increasing Taylor number, starting from the value of 

,m 2 2.221rk    [5]. In this case, the critical Rayleigh number increases also from value  4* 27 4 657.11cR n   

that corresponds to the case of no rotation, i.e. 0  .  

Fig. 2. Lines of the logarithm level of the critical Rayleigh number 

 cln R versus the wave number rk  and the Taylor number Te . 

Let us define the conditions for the equation fulfillment (22). 

We rewrite the equation (22) relatively the unknown
2k , and get an incomplete cubic equation: 

 
 32 2 0,k pk q   

 
(23) 

where    2
;c cp R q n Te R    .  

Since  22 2 0rk k n    , then we will look only for real positive solutions of the equation (23).  

It is known that the type of solutions (23) depends on the sign of the discriminant Q : 

 
223 2 *

* * * * * *
1 1 .

3 2 2

                                               

c c c c c

c c c c c c

n R R R R Rp q Te Te
Q

R R R R R R
 (24) 
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The discriminant Q  is positive for  * * * 1 0c c c c cTe R R R R R   . The equation (23) in this case has one 

negative real and two complex conjugate roots. Therefore, by the requirement of 2 0k   the solutions (23) are not 

considered for the case 0Q  .  

The discriminant Q  is equal to zero for  * * * 1c c c c cTe R R R R R  . The equation (23) has one negative and two 

coincident positive roots. The negative root is equal to       22 3
1

2 2ck n Te R     and positive roots - 

      22 33 3 3
2,3

1 1
2 2

2 2 2 2 c

q q
k Q Q q n Te R           . Therefore, 2k  can only take the value 

    22 3 2ck n Te R   .  

The discriminant Q  is negative for Taylor numbers  * * *0 1  c c c c cTe R R R R R . This condition is true for 

Rayleigh numbers * 1c cR R   . Within these ranges of variation of the Rayleigh and Taylor numbers the equation (23) 

has three different real roots. From them, by virtue of the requirement, we select positive root within the whole range of 
variation Te  and cR  : 

       

1
2 * 3

22 33
3

1 3
c.c.,

2 2
cn R i

k i X Y X Y X




                  
 (25) 

where * *Y ,c c cTe R X R R  , c.c.  - denotes a complex conjugate value.  

The lines of the logarithm level of the radial wave number  rln k  versus the Rayleigh number ( *1 10c cR R  ) 

and the Taylor number ( 0 100Te  ) for the case 1n   are presented in Fig. 3. 

Fig. 3. Lines of the logarithm level of the radial wave number  rln k  versus 

the Rayleigh number *
c cX R R  and the Taylor number *

cY Te R  

According to the level lines for the radial wave number,  minrk differs in exponent from that given in [5] by a 

factor of two  
Thus, from the Fig. 3 it is seen that the minimum radial wave number (the inflection points of level lines) increases 

nonlinearly with increasing the Taylor number and the Rayleigh number.  
At large Taylor numbers 1Y   the minimum critical Rayleigh number varies according to the law 

       1 3 1 3 2 3* 2 3 4 2 3 2 2 3

min
27 4 3 2  c cR R Te Te Te  [5, 9] and the corresponding radial wave 

number -    1 32 1 3

min
2rk Te  (Fig. 2).  

It should be noted that the expression of monotone instability (22) is observed for the values of radial wave 
numbers: 
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    22 3 2ck n Te R   , 
     

1
2 * 3

22 33
1 3

c.c.
2 2

cn R i
k i X Y X Y X




            
 

 (26) 

To analyze the stability of perturbations of the boundary-value problem we turn to expressions (21), (22).  
Further, when describing the stability of perturbations in a medium, we will consider only the perturbed 

temperature, noting that the transition to other perturbed quantities is carried out in accordance with expressions (20), 
a) - e).  

The fulfillment of the monotone instability condition (22) gives the following eigen values of the problem: 

     2 2
2 4

1 2,3 2 2

2 1 1 4
0, .

2 4


   



  
    r cc c P P P n Te k R

k k
P P k P

 (27) 

The perturbed temperature (20), e) depends on time as a general solution of the characteristic equation (21), 
consisting of the sum of partial perturbations: 

   
3

1

exp ,m m
m

B t tC 


   (28) 

where mC  - arbitrary constants determined by initial conditions, 1; 2;3m  .  

For the case of the development of monotonous instability, the eigen value 1 1
c  equal to zero corresponds to 

the time-invariant amplitude of the partial perturbation and the eigen values 2,3 2,3
c  describe the temporal dynamics 

of the partial perturbations depended on the radicand value. 
Below, we consider the solution (21) for the case with lack of external temperature effect (the lower boundary of 

the layer is not heated), as well as for the case when this temperature effect occurs. 
 

THE STABILITY ANALYSIS OF A ROTATING LIQUID CYLINDRICAL VOLUME 
WITHOUT HEATING FROM BELOW 

Let us determine the characteristic numbers of the equation (21) without heating the liquid from below. Despite 
the fact that there is no heating of the liquid, the Rayleigh number is not equal to zero, but it is determined by the 
temperature difference between the lower 2, flT and upper 1, flT  boundaries at the fluctuation level: 2, 1,fl fl flT T   .  

The temperature fluctuation value of the upper boundary of the liquid cylindrical volume with radius VR and 

thickness of several molecular layers Vh is determined by a number of water molecules in it and the average temperature 

of the medium *T  [10]:
 

1
*2

1, flT N T


 , where N  is the number of particles in the volume 2
V VV R h . For water the 

fluctuation level of temperatures is sufficiently small and is of the order of 8 710 10fl
     С. 

Therefore, if the liquid is not heated from below, we assume that the Rayleigh number is equal to flR R , where 

 3
fl flR g h    - the Rayleigh number for the fluctuation temperature difference between the lower and upper 

boundaries of the tank. Here it should also be noted that the temperature unit in (8) is no longer  as well fl . 

However, this value is clearly not included in the characteristic equation (21), and thus does not affect its solutions. 
At the above fluctuation level of temperature difference, the Taylor number is a fairly large value:

 2, 1flTe R k   

In this case, the discriminant of the equation (21) takes the value     3 22 2 2
0 3 1 3 0Q Te k Te P P     , that 

corresponds to one real root and two complex conjugate roots 

1
2 2

2
2,3 2

Te
k i

k

 


 
   

 
 

Substituting the roots of the characteristic equation in (28) and assuming  2 2 3C C C     ,  3 3 2C i C C     we 

get: 

        1 2
1

2 132exp cos sin exp


         
 

B t t t tC C C t
P

 (29) 

where 2
1 k  ,  

1
2 2 2

2 2 1,Te k     . 
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If we set in (29), for example, 2 1C C  and, 3 0C  then the amplitude  B t will have the form:  

   1
1

1 2

1
exp 1 exp cos .


  

       
   
  

  

P
B t t t t

P P
C  (30) 

Further everywhere, without loss of generality, we can set 1 1C  in (30).  

 
The temperature difference between the horizontal boundaries of the liquid is fixed and equal to zero 

As noted above, in case with no heating from below the temperature difference between the horizontal boundaries 
of the liquid is not equal to zero, but it is determined by the fluctuation level 2, 1,fl fl flT T   .  

From (30) it follows, that the amplitude of the perturbed temperature as a result of action of viscous forces 
increases from zero at 0t   to a maximum value at maxt t  . After reaching a maximum it decreases to zero, oscillating 

with exponentially decreasing amplitude of oscillations. The law of decreasing the average amplitude value  B t
 
is 

determined by the expression (30) averaged over the period of fast oscillations. 

The temperature variation rate of the liquid (30) at the initial time (zero time) is equal to 1
0

1
= 



 
 

 
 

T

t
fl

dB P

dt P
, 

where TB
 
- the liquid temperature in °С.  

The temperature dependence upon the time for different values
 2  

is presented in Fig. 4. 

Fig. 4. Temperature  B t versus time without water heating from below 

for different values 2 : 1 - 2 110   ; 2 - 2 115   ; 3 - 2 120   . 

From Fig. 4 it follows that with increasing 2  and, consequently, the Taylor number, the amplitude of the first 

temperature maximum increases and the time of the maximum reaching decreases.  
Thus, in rotating liquid cylindrical volume with free horizontal boundaries at a temperature difference between the 

lower and upper boundaries at the fluctuation level, increasing the perturbed temperature from zero is observed. Then it 
reaches a maximum   1.5,..., 2.0  B t , and after it again decreases to zero with exponentially decreasing amplitude 

of oscillations. In the final state at large times the water will rotate as a whole without perturbation of velocity, pressure 
and temperature. 

However, it should be noted, that the value of the first maximum of the liquid temperature exceeds the fluctuation 
level by a factor of 1.5,...,2.0  . This indicates that the liquid is being heated within the time interval max0  t t . 

 
The temperature difference between the horizontal boundaries of the liquid 

is not fixed and not supported from the outside 
If the temperature difference between the horizontal boundaries of the liquid cylindrical volume   is specified at 

the fluctuation level and is not supported from the outside, then the system can be considered as isolated. In such a 
system according to (30) the temperature  B t

 
will increase from zero to the maximum value   within the time 

interval max0  t t  (refer to Fig. 4) 

According to (30) a point in time maxt t , when the temperature should decrease with time increasing, comes in 

the system. However, this cannot be realized, since the entropy of an isolated system  flS t  is a non-decreasing 

function of time [11], i.e. the condition 0fldS dt
 
should be met. 
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Based on the principle of entropy increasing we will describe the dynamics of temperature variation in the system 

within the time interval maxt t . 

The law of variation of the system entropy can be written using (30) in the form: 

 1
1 2

2, ,

1

1

,exp 1 exp c 0
1

os



 

   
           

      

f fl

fl f

f

l

l lP
t t t

T T P P

dS dS

dt dt
 (31) 

where, 2, 1,  fl fl flS S S const  - the sum of entropies of microvolumes on the lower and upper boundaries of the liquid, 

1, 0fldS dt  - the entropy of the upper boundary increased with time. 

From (31) it follows that the entropy increases for the time interval max0  t t . At times maxt t the inequation 

(31) is violated, i.e. the entropy decreases. Therefore, the system has one way out: at the point of time maxt t  it passes 

from the first stage of instability to the second. At this stage of instability the cylindrical volume of a liquid is described 
by the original system of equations (9), (16) - (19), but with the temperature difference at the boundaries of the volume 
increased by a factor   compared with the first stage: .fl fl  

 
Increasing the temperature difference at the liquid 

boundaries by a factor   leads to the same increase of the Rayleigh number:
 

fl flR R . 

The overall increase of the liquid temperature at the second stage will be equal to  1  . Increasing the Rayleigh 

number does not violate the applicability of the characteristic equation (21) and the expression (30), since the condition 
 flTe R

 
is still met.  

At the third stage, the process of increasing the temperature will repeat, and the maximum temperature will now be 

equal to 2 . The overall increase of the temperature will be equal to  21    . 

With multiple repeating of temperature rise stages, the liquid temperature will increase in increasing geometric 

progression to the value 1

1

 




n
i

i

, where 1n  - the number of stages of the temperature rise.  

However, with a certain number of rise stages 1 n N , the Rayleigh number 1

1

 



 
N

i
fl

i

R R  may increase to a 

value  cR R . In this case the characteristic equation (21) will have another eigen values and, consequently, another 

expression for the temperature  B t 1. At that, the liquid temperature will increase, but its final value should not exceed 

the temperature of the phase transition. Otherwise, the original system of equations is not applicable. 
As an example of heating a uniformly rotating cylindrical volume of a viscous, incompressible liquid can be used 

the heating of water in the Ranque – Hilsch vortex tubes [12, 13]. 
For a pure water with an initial fluctuation level of the temperature difference 710 fl  °С [10] and 1.8  , 

heating to a temperature difference of the order of (8-9)·10-2°С  (temperature difference at which the Rayleigh number 
increases to a value cR R ) corresponds to the number of temperature rise stages 23n .  

Further increase of the difference in the water temperature from (8-9)·10-2 С to a given temperature is a continuation of 
the previous multistage rise and will be described in the next Section (Stationary temperature perturbations at large 
Rayleigh numbers (  cR R )). 

As follows from the above analysis, heating of the rotating volume of water in Ranque – Hilsch tubes is due to the 
action of viscous forces. The spatial distribution of the vertical and horizontal velocity of water coincides with a similar 
distribution in the Rayleigh problem on convection in a layer of a viscous, incompressible liquid heated from below. 
Therefore, the problem of occurrence of a temperature gradient in a rotating volume of water, as well as the problem of 
heating water in Ranque -Hilsch tubes should be considered as the inverse Rayleigh problem. 

Rayleigh's inverse problem involves searching the temperature difference between the boundaries of a viscous, 
incompressible liquid of a cylindrical form according to a given distribution of its vertical and horizontal velocities. 
 

Analysis of the stability of a rotating cylindrical volume of liquid when heated from below 
The expression for the perturbed temperature (30) will change if the rotating cylindrical volume of the liquid is 

heated from below with a certain rate. To show this, let us set a dependence of the perturbed temperature amplitude 
upon the time at heating in the form: 

     exp h T TB tBt t  (32) 

                                                 
1 The solution of the characteristic equation (21) and the expression for the perturbed temperature for large Rayleigh numbers are 
given in Section 5. 
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where ,T T   - constants determining the parameters of water heating.  

Such a representation is similar to introduction to the characteristic equation (22) a number with a shift T 
 

instead of an eigen value , where the shift value T is selected so that to reduce the free term c  to zero.  

From (32) it follows, that there is no heating for the parameter values 1T   and 0T  .  

If we set
 1T P  , we will get the expression for the temperature of the rotating liquid with heating: 

   1 1 21 exp cos
1

,    
     

  
h

P
B t t

P
C t  (33) 

where   , h T h exB t B  is measured in units 2, 1,  ex ex exT T , ,T hB  - liquid temperature - in °С, 2, 1,,ex exT T  - 

temperatures of the lower and upper boundaries of the liquid layer, respectively. 
We will assume 1 1C  in (33), as before.  

The dependence of the perturbed temperature amplitude upon the time (33) for different values 2  is presented in 

Fig.4. 

 

Fig. 5. Temperature  hB t  versus time at heating from below for 

different values 2 : 1 - 2 110   ; 2 - 2 115   ; 3 - 2 120   . 

From Fig. 5 it follows, that the liquid temperature increases from zero with time at 0t  , reaches the first 

maximum   hB t
 
and oscillating with an exponentially decreasing amplitude tends to unity.  

From this we can conclude, that in experiments with heating a rotating cylindrical volume of liquid, the value ex  

determines the final temperature of the liquid heating, as well as the initial rate of temperature variation, i.e. 

,
1

0

1
= 



  
 


T h
ex

t

dB P

dt P
. It follows that the rate of variation in the temperature of a heated liquid is greater than that 

of a non-heated one. 
 
STATIONARY TEMPERATURE PERTURBATIONS AT LARGE RAYLEIGH NUMBERS (  cR R ) 

As follows from the previous presentation, the temperature difference between the horizontal boundaries of the 
rotating cylindrical volume of a liquid increases. This leads to an increase in the Rayleigh number, which may possess 
eventually a value  cR R . In this case, the characteristic equation (22) has solutions in the form of stationary 

perturbations, which differ from solutions (33). 
Let us consider these stationary perturbations. 
The eigen values of the characteristic equation at  cR R  are as follows: 

 
 2

1 2,3

2 1
0; ,

2
  


  

P
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P
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where 1n , 
 
 

26
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1





 r

c w

P k
R R

P k
.  

We will set the dependence of temperature on time in (20), e) for eigen values (34) in the form 

   exp  D t B t . Then the overall solution can be represented as: 
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           
3

1 2 3
1

exp cos sin exp ,m m
m

D D D DD t t t t t   


     (35) 

where mD  - arbitrary constants determined by initial conditions.  

From (35) it follows, that in a stationary state the general solution for the liquid perturbed temperature consists of 

the sum of three particular solutions. One summand with an eigen value 1 0 
 
is a constant number. The other two 

summands with eigen values 2,3
 

describe either exponentially damped temperature variation with a damping 

decrement    2
2,3 1

2 1
Re

2
  




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P

 and oscillation frequency 
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at c wR R , or damped variation without oscillations with decrements 
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w c

P Pk
k R R

P Pk
 at c wR R . Moreover, in the latter case

 1 2 0   c w c wR R R R . 

We use the expressions (33), (35) to describe the experimental data on the stability of a rotating cylindrical volume 
of water heated from below [5, 9]. 

In some experiments (let's designate them as experiments I) the water was placed in glass cylinders with an outer 
diameter of 29.4 cm. An electric heating element was attached to the horizontal bottom of the cylinder, which provided 
controllable temperature variation. Heating was carried out at a low rate (heater power - 1 W), medium rate (heater 
power - 3 W) and high rate (heater power - 10 W). The cylinder with water rotated around its axis using special tools. 
The layer of water with a depth of 3 cm and the rotation velocity of 10 rpm was studied in the experiments. 

For experiments I) in (34), the relation c wR R  is satisfied and, thus, the instability with the parameters 1,2 c wR R

 
is realized. 

In other experiments (experiments ІІ) [4, 9] in water layers of 18 cm depth at a temperature difference of lower 
and upper boundaries - 0.7 ° C and a rotation velocity of 5 rpm we have found by visual observations using a rotoscope, 
that for a heating rate of more definite value in a cylindrical volume of water rotating as a whole the convective cells 
with a diameter of 4.6 cm arose. The motion inside the cells becomes visible as a result of dispersing a small amount of 
aluminum powder over the surface of the water.  

We will analyze the described experiments on the basis of the performed analytical calculations below.  
 

Stationary temperature perturbation at a low rate of liquid heating 
At a low rate of heating the bottom of the tank, the process of water heating will take place in two stages. These 

stages, due to the low rate of liquid heating and the low level of saturation temperature, will not go into one another, but 
overlap, i.e. to the first stage of temperature variation, valid within the entire time interval, one should add the second 
stage of its variation, valid after the temperature is established of the order of (8 - 9)·10-2°С (when the equality  cR R  

is satisfied). 
At the first stage the water temperature increases as a result of multi-stage rise, reaches values of the order of 

8-9·10-2°С and the Rayleigh number increases to a value  cR R . This stage of the multistage temperature rise will be 

approximated by the expression: 

      1 exp ,s th s rB A B tt t t    (36) 

where , ssA B  - constants describing the first stage of water heating, trt  - the time of transition of water temperature rise 

from the first stage to the second. 
At the second stage, when  cR R , the temperature variation is described by the sum of two temperatures, where 

the first temperature from this sum  hB t is set by the sum of the summands of the solution (36) with arbitrary 

coefficients  

   exp ,  s sh sA DB t B t  (37) 

and the second  D t is the sum of particular solutions of the characteristic equation at cR R : 
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where ,, , , , , s s e ee e eA D A B C D t  - constants describing the second stage of water heating. 

After summing up the solutions (37), (38) we obtain an expression for water temperature variation at the second 
stage of instability: 
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D e

t
B

A A t t e e
A A D

t  (39) 

where   x  -  Heaviside unit function. 

Constants in (39) can be determined by combining the theoretical dependencies (36), (39) with experimental data 
[4, 9]. 

Graphs of temperature versus time for the rotating cylindrical volume of water heated from below, obtained 
experimentally, and calculated by formulas (36), (39) are presented in Fig. 6. The experimental dependence of 
temperature upon time (solid line) was obtained as a result of digitization and graphic transformation to the Cartesian 
coordinate system. The beginning of the obtained experimental curve was brought into coincidence with the beginning 
of the Cartesian coordinate system. 

As a result of approximation of formulas (36), (39) with experimental data the following values of the constants 
were obtained: 36.4, 0.055 ss BA , 8.86, 0, 1.9 0.5, 0.2, 08,      e e ss s e e C D BA D A B 1, 15.8  e trt t . 

Fig. 6. Temperature versus time of a rotating cylindrical volume of water with a low 

heating rate: solid line - experiment [4, 9]; ○ - formula (36),  - formula (39) 

In Fig. 6 the water heating rate at the initial time is determined by the quantity:

 0

= 0.676h

t

dB

dt 

, it is a fairly small 

quantity. 
From Fig. 6 it follows, that the experimental data and theoretical dependences are quantitatively consistent. The 

data show, that in a rotating cylindrical volume of water with a low heating rate, a monotonic rise in temperature to a 
certain level and its stabilization at a slightly higher level are observed. Lack of convective vortices in the experiment 
indicates that temperature stabilization in a cylindrical volume of water occurs, apparently, due to mechanical heat and 
mass transfer, which occurs as a result of the liquid rotation. 

The radial and vertical spatial distribution of the velocity of mechanical heat and mass transfer of a rotating liquid, 
as follows from (20), is determined by the same expressions as for convective heat and mass transfer in the below 
heated water layer with free boundaries [3]. 

 
Stationary temperature perturbation at high heating rate 

At the tank heating rate of more than a definite value the process of water heating can be divided also into two 
stages. However, the second stage of temperature variation, due to the high rate of water heating and rapid 
establishment of the equality cR R , will be described only by the sum of particular solutions of the characteristic 

equation. 

Thus, at the first stage in the time interval max0 t t   the water will be heated to the value  1.5 2 exT according 

to the law (36). 

At the second stage, when maxt t , the temperature variation is described by the expression: 
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The constants in (36), (40) can be determined by combining theoretical dependences with experimental data.  
Graphs of temperature versus time of a rotating cylindrical volume of water heated from below, obtained 

experimentally and calculated by formulas (36), (40) are presented in Fig. 7. The experimental temperature dependence 
on time was taken from [4, 9], digitized, and graphically transformed to the Cartesian coordinate system. The beginning 
of the experimental curve thus obtained was brought into coincidence with the beginning of the Cartesian coordinate 
system. 

As a result of approximation of the experimental data using formulas (36), (40) the following values of the 
constants were obtained: 36.4 .0 5, 0 5s sBA  , 15.45, 27.245, 0.557, 0.197,e e e eA B C D       8.3411, 15.57e trt t   . 

Fig. 7. Temperature versus time of a rotating cylindrical volume of water heated from below 

with a high heating rate: solid line - experiment [4, 9]; ○ - formula (36),  - formula (40). 

In Fig. 7 the water heating rate at the initial time is determined by the value:

 0

= 2.0h

t

dB

dt 

. It can be seen that in 

the case under consideration the water heating rate at the initial time is higher than the heating rate in the experiment 
described above. 

From Fig. 7 it follows, that at the first stage within the time interval max0 t t   the temperature increases 

according to the exponential law (36) to a certain level. Then, at maxt t  the first stage goes into the second, where the 

perturbed temperature variation is described by the expression (40). At that, the perturbed temperature experiences 
oscillations damped in time with respect to temperature 15.45T  . 

It should be noted, that in Fig. 6, 7 and below, the part of the experimental curve, not marked with markers, 
describes the water temperature variation after the heater is turned off.  

Let us consider another experiment in which the water heating rate was higher than the heating rate used in the 
experiment in Fig. 7. 

Fig. 8 shows experimentally obtained and calculated by formulas (36), (40) graphs of dependence of the disturbed 
temperature upon the time of a cylindrical volume of water heated from below at rate exceeding the heating rate in the 
experiment in Fig. 7. 

As before, the experimental dependence of temperature difference on time [4, 9] is digitized, and graphically 
transformed to the Cartesian coordinate system. The beginning of the experimental curve thus obtained was brought 
into coincidence with the beginning of the Cartesian coordinate system. 

As a result of approximation of the experimental data using formulas (36), (40) the following values of the 
constants were obtained: 52.5 .0 5, 0 5s sBA  , 14.817, 3.592 0.772, 0., 2,e e e eC DA B       11.451, 8.44e trt t   . 

In Fig. 8 the water heating rate at the initial time is higher than the heating rate in two previous experiments 

0

= 2.9h

t

dB

dt 

.  

From Fig. 8 it follows that increasing the water heating rate compared with the data in Fig. 7 changes the temporal 
dynamics of the perturbed temperature: the first stage of heating exists for a shorter period of time, and the damped 
vibrations at the second stage have a shorter period and larger amplitude of oscillations. As to the rest, the amplitude 
dynamics of the perturbed temperature in Fig. 8 corresponds to the dynamics in Fig. 7: the amplitude of the first 
maximum and the saturation level are almost the same.  

The discrepancy between the experimental data and the theoretical curve in Fig. 8 at maxt t  is, apparently, due 

to the fact that with a high heating rate it is necessary to take into account the contribution of nonlinear summands in the 
initial equations (9), (16) - (19). 
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Fig. 8. Temperature versus time of a rotating cylindrical volume of water with a 

high heating rate: solid line - experiment [4, 9]; ○ - curve (36),  - curve (40). 
 

CONCLUSION 
In this work, in neglect of the centrifugal convective force, the equations of heat and mass transfer in a rotating, 

viscous, incompressible liquid of a cylindrical form with free boundaries are analyzed. Solutions of the linearized 
original system of equations in cylindrical geometry are obtained that satisfy the boundary conditions of the problem. 
The spatial distributions of the projections of the perturbed velocity and the perturbed temperature of the liquid are 
determined with the accuracy to constants.  

It is shown, that the spatial distribution of horizontal and vertical velocities and the temperature of a rotating, 
viscous, incompressible liquid of a cylindrical form with free boundaries are similar to those implemented for a layer of 
a viscous, incompressible liquid heated from below without rotation, which correspond to solutions of the Rayleigh 
problem in the cylindrical coordinate system. 

The analysis of stability of a rotating, viscous, incompressible liquid of a cylindrical form heated from below was 
carried out. A stability condition for the rotating, viscous, incompressible liquid of a cylindrical form heated from below 
in the cylindrical coordinate system was obtained. For the case of its stable rotation the graphs of dependence of the 
logarithm of the critical Rayleigh number  cln R on the wave number rk and the Taylor numberTe , as well as the 

logarithm of the radial wave number  rln k on the Rayleigh number * c cX R R and the Taylor number 
* cY Te R were plotted. The obtained dependences, except for the minimum radial wave number 

   1 32 1 3

min
2rk Te , fully match the previous studies by other authors. 

The stability analysis of a rotating cylindrical volume of a liquid without heating from below was carried out. It 
has been shown that at a fixed, zero temperature difference between the horizontal boundaries of the cylindrical tank of 
a liquid, an increase in its temperature is observed starting from zero. Then it reaches a maximum value of the 
order 1.5,..., 2.0  , and after, oscillating with exponentially decreasing amplitude of oscillations, again decreases to 
zero. In the final state at large times the liquid will rotate as a whole without perturbations of velocity, pressure and 
temperature. 

If the temperature difference between the horizontal boundaries of the cylindrical volume of the liquid  is set at a 
fluctuation level and is not supported from the outside, then the system can be considered as isolated. In this case, 
according to the law of entropy increasing in isolated systems, the liquid will successively go through only the stages of 
temperature rise with the rise coefficient at each stage of the order  so, that its temperature eventually will increase in 

increasing geometric progression up to the value 1

1

 




n
i

i

 , where 1n - the number of stages of the temperature rise. 

However, at a certain number of rise stages n N , the Rayleigh number 1

1

 



 
N

i
fl

i

R R  may increase to a value 

 cR R . In this case, the characteristic equation will have another eigen values and, consequently, another expression 

for increasing the liquid temperature. The water temperature will increase, but its final value should not exceed the 
phase transition temperature, since in this case the original system of equations is not applicable. 

Based on performed calculations an example of heating a rotating cylindrical volume of water without heating 
from below is considered. This example shows that the problem of the occurrence of a temperature gradient in the 
volume of water, as well as its heating in Ranque-Hilsch tubes, should be considered as an inverse Rayleigh problem. In 
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the Rayleigh inverse problem it is required to find the temperature difference between the horizontal boundaries of a 
viscous, incompressible liquid of a cylindrical form according to a given distribution of its horizontal and vertical 
velocities. 

The stability analysis of a rotating cylindrical volume of a liquid at heating from below has shown, that over time 
the temperature difference of the liquid increases from zero at 0t , reaches the first maximum value of the order   
and tends to unity oscillating with exponentially decreasing oscillation amplitude. In experiments with heating the 
rotating cylindrical volume of a liquid, the value of the temperature difference set from outside determines the final 
heating temperature of the liquid, as well as the initial rate of its variation. It is shown that the rate of temperature 
variation of a heated liquid is greater than that of a similar one without heating. 

Stationary temperature perturbations are considered for different rates of water heating.  
In all cases it was proposed to consider two stages of the development of stationary perturbations.  
At the first stage the water, as a result of a multistage heating at a rate set from outside, acquires a temperature at 

which the Rayleigh number is small, but increases from the value  cR R to  cR R . 

At the second stage of heating, when  cR R , the eigen values of the characteristic equation and the type of 

particular solutions, of which the general solution for a temperature consists, change. The temperature of the system is 
described either by a superposition of general solutions for the first and second stages of the temperature rise (at a low 
heating rate), or only by a general solution for the case  cR R  (at a high heating rate). 

Comparison of theory and experimental data for heating water shows a qualitative and quantitative agreement. 
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МЕЖАМИ, ЩО ОБЕРТАЄТЬСЯ ТА ПІДІГРІВАЄТЬСЯ ЗНИЗУ 
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Теоретично досліджено стійкість циліндричного горизонтального шару в'язкої, нестисливої рідини з вільними межами, що 
обертається і підігрівається знизу. У нехтуванні відцентровими силами записані рівняння руху, теплопровідності і 
нестисливості рідини, з яких в лінійному наближенні отримано відоме дисперсійне рівняння. Розглянуто стійкість 
обертового циліндричного об'єму рідини у відсутність підігріву знизу за умови, що різниця температур горизонтальних 
границь рідини фіксована, і дорівнює нулю. Показано, що у відсутність підігріву знизу і якщо різниця температур 
горизонтальних кордонів рідини, що обертається, не фіксована, і не підтримується ззовні, то збурена температура рідини 
буде збільшуватися, але її кінцеве значення не перевищуватиме температуру фазового переходу. Отриманий результат 
використаний для пояснення нагріву води у вихрових трубках Ранка-Хілша. Зроблено висновок про те, що нагрів води в 

https://gallica.bnf.fr/ark:/12148/bpt6k17075r?rk=21459;2
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трубках типу Ранка-Хілша слід розглядати як зворотну задачу Релея, в якій за відомим розподілом швидкостей всередині 
об'єму рідини можна визначити градієнт температури, що виникає. Наведено аналіз стійкості обертового циліндричного 
об'єму рідини при підігріві знизу. Показано, що в експериментах величина різниці температур на кордонах циліндра, 
задається, а також початкова швидкість її зміни визначає кінцеву температуру нагрівання рідини. Порівняння 
запропонованої теорії та експериментальних даних для нагріву води показує їх гарну якісну і кількісну відповідність. 
КЛЮЧОВІ СЛОВА: теорія, стійкість, в'язкий, нестисливий, рідина, горизонтальний циліндричний шар, обертається, 
нагрівається, вільні границі 
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Теоретически исследована устойчивость вращающегося и подогреваемого снизу горизонтального цилиндрического слоя 
вязкой, несжимаемой жидкости со свободными границами. В пренебрежении центробежными силами записаны уравнения 
движения, теплопроводности и несжимаемости жидкости, из которых в линейном приближении получено известное 
дисперсионное уравнение. Рассмотрена устойчивость вращающегося цилиндрического объема жидкости в отсутствие 
подогрева снизу при условии, что разность температур горизонтальных границ жидкости фиксирована, и равна нулю. 
Показано, что в отсутствие подогрева снизу и, если разность температур горизонтальных границ вращающейся жидкости не 
фиксирована, и не поддерживается извне, то возмущенная температура жидкости будет увеличиваться, но ее конечное 
значение не превышает температуру фазового перехода. Полученный результат использован для объяснения нагрева воды в 
вихревых трубках Ранка-Хилша. Сделан вывод о том, что нагрев воды в трубках типа Ранка-Хилша следует рассматривать 
как обратную задачу Рэлея, в которой по известному распределению скоростей внутри объема можно определить 
возникающий градиент температуры. Приведен анализ устойчивости вращающегося цилиндрического объема жидкости 
при подогреве снизу. Показано, что в экспериментах величина задаваемой разности температур на границах цилиндра, а 
также начальная скорость ее изменения определяет конечную температуру нагрева жидкости. Сравнение предложенной 
теории и экспериментальных данных для нагрева воды показывает их хорошее качественное и количественное 
соответствие. 
КЛЮЧЕВЫЕ СЛОВА: теория, устойчивость, вязкий, несжимаемый, жидкость, горизонтальный цилиндрический слой, 
вращается, нагревается, свободные границы 


