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A set of fixed points in N-point gravitational lenses is studied in the paper. We use complex form of lens mapping to study fixed points.
There are some merits of using a complex form over coordinate. In coordinate form gravitational lens is described by a system of two
equations and in complex form is described by one equation. We transform complex equation of N-point gravitational lens into
polynomial equation. It is convenient to study polynomial equation. Lens mapping presented as a linear combination of two mappings:
complex analytical and identity. Analytical mapping is specified by deflection function. Fixed points are roots of deflection function.
We show, that all fixed points of lens mapping appertain to the minimal convex polygon. Vertices of the polygon are points into which
dimensionless point masses are. Method of construction of fixed points in N-point gravitational lens is shown. There are no fixed points
in 1-point gravitational lens. We study properties of fixed points and their relation to the center of mass of the system. We obtained
dependence of distribution of fixed points on center of mass. We analyzed different possibilities of distribution in N-point gravitational
lens. Some cases, when fixed points merge with the center of mass are shown. We show a linear dependence of fixed point on center
of mass in 2-point gravitational lens and we have built a model of this dependence. We obtained dependence of fixed point to center
of mass in 3-point lens in case when masses form a triangle or line. In case of triangle, there are examples when fixed points merges.
We study conditions, when there are no one-valued dependence of distribution of fixed points in case of 3-points gravitational lens and
more complicated lens.
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Effect of gravitational lensing has evolved from a method of verification of general relativity to separate field over
the years. Using gravitational lenses, stars, stars system and even planets can be found.

Often numerical methods were used to analyze gravitational lenses and analytically were described only special
symmetrical systems [1,2]. But these days, gravitational lenses are studied using analytical methods, particularly using
methods of algebraic geometry [3-6]. With algebraic geometry methods we were able to study an Einstein ring — an
important object in gravitational lensing — and prove that it is the only extended image in N-point gravitational lenses [4].

Circle source in N-point gravitational lens of any configurations was built using methods of algebraic geometry [7].

It is important to study fixed points in the theory of gravitational lenses [8]. Fixed points were researched before [9].
In paper [9] were shown examples of fixed points.

This paper proposes methods to study the distribution of fixed points. We show the distribution of fixed points and
study its properties in N-point gravitational lenses.

The goal of this work is studying of a set of fixed points in N-point gravitational lenses using analytical methods,
finding features of fixed points.

FORMULATION OF THE PROBLEM
N-point gravitational lens can be described by following equation
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where M1, - are dimensionless masses whose position in the plane of the lens is determined by normalized radius-vectors

L, >m =1
Equation (1) specifies single-valued mapping from linear vector space Rj (source plane) into linear vector space

sz (image plane):
L :(RI\A)—>R;, ()

where A={/,|i=1,2,..., N} -is a set of radius-vectors Z .
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Unification of source plane and image plane is referred as picture plane.
Mapping (2) can be described by system of equations:

N X —a,
m ——
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— _\N x,=b,
Yy =Xy = 2t (4=a,)*+(x,=b,)

n=x-X
(3)

where (a bn) are coordinates of point Cn in plane Rf.
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LENS MAPPING COMPLEXIFICATION

It is more convenient to use complex form of lens mapping in order to find fixed points [8]. We introduce new
complex variables:

Rez=x,Imz=x,Re{=y,Im{=y,.

New variables are related to old ones as:
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Using new variables, mapping can be described by following equation:

§=z—imn 1 , )

n=1 Z_A

where ij:lmn =1 and A, =a, +ib, are lenses coordinates; n=1,2,...,N .

Deflection function was introduced in [8]:

il 1
w=Ym ®)
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And function is complex conjugated to @ and defined:

w=>Ym, — (6)

It is convenient to use W and @ to find fixed points of lens mapping, except that it is more convenient to use W .
We use properties of complex mapping that were studied in [8]. It is known [8,11] that deflection function
w=w(z) is analytical.
There are some theorems.
Theorem 1. Deflection function W can be represented
0'(2)
a) w=—=——= @)

0(z)
where Q(z) = ﬁ[l(z -4, )m” ;
oL P&
deg P(z) P(z)

b) ®)

where P(z) - is polynomial;
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Theorem 2. (About number). Let 7, be a number of fixed points of mapping L : (C ¥ \A) %CY , therefore
ny: 1<n, <N-1.

Theorem 3. (About distribution). Fixed points of mapping L belong to the convex polygon that consists of point
masses.

N-POINT LENSES

Consider N-point gravitational lens.

We change masses of point lenses and their positions are set to constant. Hence, fixed points depend on N parameters
(masses of lenses). Besides, point masses are bounded by masses normalization equation. There is a necessary condition
to find the parameters of fixed points distribution parameters. We need the same number of free parameters as number of
equations. Therefore, we need either to decrease the number of parameters or to increase the number of equations.

To decrease number of equations we can express masses in terms of masses center of point masses system. It is
convenient to describe 2- or 3- points gravitational lenses accordingly to this method. But we need to introduce new
additional conditions to describe more complicated systems.

Deflection function of 1-point lens is:

w=>ym = : ©)

where m, =1, A =0. There are no fixed points in 1-point gravitational lens.

Deflection function of 2-points lens is:

N
m m m
w=) —t—=—l 21, (10)
mz—A  z—A z—A4,
where m, +m, =1.
Fixed point is given by:
z,, = Am, + A,m, (11)

To find fixed point, we can parameterize point masses in such way m, =s,m, =1—s,5€[0,1], then
z, =4 +(4,—4)s (12)

We can also use equation for center of mass: z, =m, A4, +m, 4, .

If we express fixed point using the center of mass, we obtain:
z,=A+4,-z,. (13)

Thus, we obtained equation for fixed point in 2-point gravitational lens. The equation is linear. Masses are located
symmetrically in relation to the geometrical center of the system. Fixed point and center of mass can coincide only when
there are 2 identical masses. In this case, fixed point and center of masses are located in the geometrical center of the line
segment that is connecting 2 masses.

Deflection function of 3-point gravitational lens is:

m m, m,
w= + + (14)
z—A z—-A4, z—-A4,
We have an equation for fixed points:
22+ A, Am, + A Am, + A Aym, — 15)
15

—(142ml + A;m, + Am, + A;m, + Am, +A2m3)z =0
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We can set different parameterization for point masses in this case. There are some different mass parameterizations
in 3-point gravitational lenses on (fig.1-4). There are gravitational lenses with masses that form triangle on (fig.1-2) and
line in (fig. 3-4).
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We can describe a fixed point using the center of mass:
z, =X, +iy, =mA +mA, +m A, (16)

If point masses form a triangle, we can obtain one-valued dependence of fixed points on center of mass. There is
only 1 pair of fixed points per each center of mass. We put point masses in positions with A1 =al, A2 =a,, A3 =a, .

We obtain equation on fixed points:
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Z1p = (4 + 44, + 44, —Ax, - Ay *
24, (17)

i\/(Al2 +AA+AA —Ax, — Ay +4A (A (A + A4, —x)+y (A4, + A4 — 4, 4,)]

Using technical computing system, Wolfram Mathematica, we built mathematical model that shows the distribution
of fixed points. A parameter in the model is the center of mass. To build a more general picture, we set simultaneously
horizontal line of the possible center of mass. Thus, we can see 1 line of the center of mass and 2 curves of fixed points
that match centers of masses.

Using our model, we obtain when 3-point lens forms equilateral triangle we have 2 fixed points that merge (Fig.5-6).
In case when the center of mass of the triangle is geometrical center of the triangle, fixed points are located in 1 point.
Situation, when masses are almost equal is shown on (Fig. 5) and equal masses are shown on (Fig.6).

Fig. 5. Equilateral triangle with center of mass near Fig. 6. Equilateral triangle with center of mass
to geometrical center in geometrical center

Consider scalene triangle. There was an assumption in [8] that fixed points can merge only in case when point
masses form regular polygon. But in case of scalene triangle we have found cases of merging of fixed points. There is a
configuration of 3-point gravitational lens when in a forms scalene triangle with the merging of fixed points on (Fig.7-8).
A mass configuration with two separate fixed points is shown in (Fig. 7) and configuration with merged fixed points is
shown on (Fig. 8).

Fig. 7. Scalene triangle with 2 separate fixed points Fig. 8. Scalene triangle with merged fixed points

Fixed points in 3-point gravitational lens can coincide only in case either equilateral triangle or when the system is
reduced to 2-point gravitational lens.

If point masses are located along line, number of equations, that are used to describe masses, decreases by 1. In this
case we need to introduce 1 additional parameter. The same center of mass can describe different distribution of masses.
Considering this feature, we can obtain different fixed points for the same center of mass. We introduce additional

parameter, for example, 1 —m1, = . Thus, changing a, we can obtain different combinations of masses for the same
center of mass. And besides, this parameter limits the position of center of mass. For example, when we have 3-point lens
with masses in (—0.5,0),(0,0),(0.7,0), position of center of mass is limited by X, € (=0.5¢50.7¢) .

There is a distribution of fixed points with different o on (Fig. 9). Lenses are located in (-0.5;0), (0,0) and (0.7;0),
centers of mass are in (0.1;0). On left image @ =0.26, on right image a =0.92.
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Deflection function of 4-point gravitational lens:

m m m
— R 2 4 3
z—A z—A, z-A4

3

m,
z—A

4

w +

(18)

Fig. 9. 3-point lens with masses on a line with different parameter o

Using parameterization, different distributions of fixed points can be obtained. Examples of different
parametrization in 4-point gravitational lenses are shown in (Fig.10-12). Triangle consists of 4 masses is shown on (Fig.
10), the square is shown in (Fig. 11) and triangle with 1 internal mass is shown in (Fig. 12).

We need to introduce more additional parameters to study gravitational lenses with 3 or more-point masses. Thus,
it is more complicated to apply this method and it is only convenient to study 2- and 3- point gravitational lenses.
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Fig. 10. 4-point lens with m, =1—s,m2 = S3 NI =V,m4 Z%Al =0,A2 =1,A3 =—1,A4 =i
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Fig. 11. 4-point lens with 1, =1—s,m2 :y,m3 :y,m4 Z%Al =1,A2 =—1,A3 =i,A4 =—i
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Fig. 12. 4-point lens with m, :1—s,m2 zy,m3 zy,m4 I%Al =2,A2 =—1,A3 =2i,A4 =i

CONCLUSIONS
Method of obtaining of fixed points distribution in N-point gravitational lenses is shown in this study paper. We
show a linear dependence of the fixed point location on center of mass in 2-point gravitational lens. Distribution of
fixed points in 3-point gravitational lens is obtained using the center of mass of the system. We show that fixed points
in 3-point gravitational lenses can merge. There are examples of distribution of fixed points in 4-point gravitational
lens.
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OCOBJIMBOCTI HEPYXOMHMX TOYOK B N-TOUKOBHUX I'PABITALIAHUAX JITH3AX
B.1O. lllad1enko
Xapkiscokuti nayionanvnuil ynieepcumem imeni B.H. Kapa3zina
Maitioan Ceo600u, 4, 61022, Xapxie, Yrpaina
B po6orti npoBeneHe A0CiIKEHHSI MHO)KHHH HEPYXOMHUX TOYOK B N-TOUKOBHX rpaBiTallifiHuX JiH3ax. s 1poro Oyia BUKOpHUCTaHA
KOMIUIEKCHA (hopMa JIiH30BOro BioOpaxkeHHs. KoMiuiekcHa opma Mae repeBary HaJi KOOPIMHATHOIO: B KOOpAMHATHHI dopmu N-
TOYKOBA I'PaBiTaILliliHAa JIiH3a 3aIa€THCSI CHCTEMOIO 3 IBOX PiBHSIHB, @ B KOMIUICKCHOMY BUIJISII TOCHTh OJHOTO piBHsHHS. Lle piBHSHHS
JIETKO TIEPETBOPUTHCS B MOJTIHOMIaIbHE PIBHSHHS, sSIKE 3pydYHEe Ui AOCHTipKeHHs. B poboTi JiH30Be BiZoOpakeHHS NPEICTABICHO Y
BUTJISAI JIiHIMHOI KOMOiHamii IBOX BiZOOpa)keHb: KOMIUICKCHO-aHATITHYHOTO 1 TOTOXXKHOTO. AHAJTITUYHE BiZOOpaXKCHHS 3aaae
aHamiTrnuHa QyHKUiA (QyHKUiA BinxmwieHHs). HepyxomuMu ToukaMu € KopeHi ¢yHKIT BigxuneHHs. [lokazaHo, 110 Bci HEPyXOMi TOUKH
JIIH30BOTO BifoOpaskeHHs HaJleXKaTh MiHIMAJIbHOMY OIyKJIOMY 0araToKyTHHKY. BepimmHamMy MiHIMaJIBHOTO OIyKJIOTO 6araToKyTHHKA
€ TOYKH, B SIKMX 3HAXOIAThCs 0€3p03MipHi TOUKOBI Macu. B poGoTi po3riisiHyTHIT MeTO/ T00YI0BH HEPYXOMHUX TOYOK B N-TOYKOBHX
rpaBiTalidHuX JiH3aX. byno mokasaHo, Mo HEPYXOMHX TOYOK B OJTHOTOYKOBIH JIiH31 HE icHYe. J[oCHiKeH] BIACTHBOCTI HEPYXOMHUX
TOYOK i iX 3B’30K 3 IEHTPOM Mac CHCTeMH JIiH3. OTpHMaHi 3aJIe)KHOCTI PO3MOJIiLy HEpYyXOMHUX TOYOK Bijt LieHTpa Mac. [IpoanasizoBaHi
pi3Hi MOXJMBI BUMAAKU po3mofiny B N-TOYKOBHX rpaBiTaumidHuX jiH3ax. [lokazaHo, IO y JASSIKHX BHIAJKaX HEPYXOMi TOYKH
36iraroThCst 3 LEHTPOM Mac CHCTeMH. Byio oTpuMaHo JiHINHY 3a/IeKHICTh MK HEPYXOMOIO TOYKOIO B JIBOTOUYKOBIil rpaBiTaiiitHii
JIiH31 Ta IEHTPOM Mac Ta OOy AyBaiIl MoJenb. OTpUMaH 3aJIC)KHICTh HEPYXOMHX TOYOK Bifl IEHTPY Mac B 3-TOUKOBiH rpaBiTaliifHii
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JH31 B BUIIQJIKY KOJM JiH3a yTBOPIOE TPUKYTHHK Ta npsMmy. ITokaszanu, 10 B BUNAAKY TPUKYTHHKA iCHYIOTb HPHKIAIH, KOJIU
36iraroTecst HepyxoMi Touku. JlocmipKeHi yMOBH, KOJIH HEMOXKIMBO OJHO3HAYHO OTPUMATH 3QJISIKHICTD PO3IMOAITY HEPYXOMHUX TOYOK
BiJl LIGHTPY Mac y BHITAJKy 3-TOYKOBOI rpaBiTaIliiHOT JiH3U Ta y OLIbLI CKIAJHUX BUMAIKAX.

KJIFOYOBI CJIOBA: rpaBiTaniiiHe TiH3yBaHHS, HEPYXOMi TOUKH, (QYHKIIS BiAXUICHHS, JTIH30BE BiIOOpaKEHHS

OCOBEHHOCTU HENMOABUKHBIX TOYEK B N-TOUEYHBIX TPABUTAITMOHHBIX JINH3AX
B.1O. 1l1a6enko
Xapvkroscokuil nayuonanvhvill ynusepcumem umenu B.H. Kapasuna
ITrowaos Ceoboowl, 4, 61022, Xapvros, Yrkpauna

B paboTe mpoBeieHO HCCIeJOBAaHHE MHO)KECTBA HEMOJBIKHBIX TOYEK B N-TOUYCUYHBIX TPaBHTALMOHHBIX JHH3ax. st oToro Gbuia
HCIIOIb30BaHA KOMIUIEKCHAsT (opMa JMH30BOr0 OTOOpaxkeHHs. KOMIUIEKCHBIH BHI MMEET MPEUMYIIECTBO Ha KOOPIMHATHBIM: B
KoopArHATHOM Brjie N-TOUeuHast [PaBUTAMOHHAS JIMH3A 33/1a€TCSI CHCTEMOM M3 IBYX YPaBHEHHUI, 8 B KOMILUICKCHOM BH/IE JOCTATOYHO
OJIHOTO YpaBHEHHs. DTO ypaBHEHHE JIErKO MPEBPAIAETCs B MOJHHOMHAIRHOE ypaBHEHHE, KOTOpOe YI0OHO /Ut uccienoBanus. B
paboTe TMH30BOE OTOOpaXKeHHe IPEICTAaBICHO B BUJIE JINHEIHONH KOMOMHAIIMN ABYX OTOOPaKEHMI: KOMIUIEKCHO-aHAIUTHIECKOTO 1
TOXECTBEHHOT0. AHAIUTHIECKOE 0TOOpaKeHNE 3a/1aeT aHaIuTHIecKast QyHKIus (PyHKIMS OTKIOHeHHs). Hermo B KHEIMY TOUKaMuU
SBJIIOTCS KOpPHU (YHKIMH OTKJIOHEHHs. Iloka3aHo, YTO BCe HEMOJBIIKHBIC TOYKH JIMH30BOTO OTOOPAXSHHWS MpPUHAIJIEKAT
MHHUMAJIBFHOMY BBIITYKJIOMY MHOTOYTOJIBHHKY. BepuniMHaMH MHHHUMAalbHOTO BBITYKJIOIO MHOTOYTOJIBHHMKA SIBJSIIOTCS TOYKH, B
KOTOpBIX HaxomiTcsi Ge3pa3MepHble TOYedHbIe Macchl. B paboTe paccMaTpuBaeTCsi METOJ| MOCTPOCHHUSI HETOJBHIKHBIX TOYEK N-
TOYEYHBIX I'PABUTAIIMOHHBIX JIMH3aX. BBUIO MOKa3aHO, YTO HEMOABMKHBIX TOYEK B OJAHOTOYEYHOM JIMH3E HE CYLIECTBYET. Bpuin
HCCIIeZIOBAHBI CBOMCTBA HETOABIIKHBIX TOUEK U MX CBS3b C IEHTPOM Macc CHCTeMbI JUH3. [10TydeHbl 3aBUCHMOCTH PacIipe/IeICHuUs
HETOJBIDKHBIX TOYEK OT LEHTpa Macc. lIpoaHamM3WpOBaHBI Pa3IWYHBIC BO3MOXHBIE CIydad pacmpeieieHus B N-TOYSUHBIX
IPaBUTALOHHBIX JHH3aX. [loka3aHo, YTO B HEKOTOPHIX CIIydasX HEIIOJBIDKHBIE TOUYKH COBMAJAIOT C IIEHTPOM Macc CHCTeMBI. bruia
MOJTydeHa JIMHeHHAast 3aBHCHMOCTD MEX/[y HEHO/BIDKHOH TOUKOH B IBYXTOYEYHOH I'PaBUTAI[MOHHOI JTHH3€ U IEHTPOM MAacC CHCTEMBI
1 ObUIa TOCTPOEHA MOAENb. MBI TOJIy4YHIIN 3aBUCHMOCTB HETIOJ[BIDKHBIX TOUEK OT LIEHTPA MaccC B 3-TOYCYHOW rPaBUTALMOHHON JIMH3E
B CIIydae, KOIJa JIMH3a 00pa30BhIBAET TPEYTOJNBHUK 1 NpsiMyto. [Tokasanu, 4To B ciryyae TpeyroybHUKa CYIIECTBYIOT IPUMEPHI, KOria
HETIOJBIDKHBIC TOUKU COBMANaioT. VccineoBaHbl yCIOBUsI, KOT/Ia HEBO3MOXKHO O/IHO3HAYHO MOJYYUTh 3aBUCHMOCTh PacIpe/Ie/iCHHUs
HETOBIKHBIX TOUEK OT [IEHTPA MacC CHCTEMBI B CIy4ae 3-TOUeYHOM IpaBUTALIMOHHON JIMH3BI U B 00JI€€ CIIOMKHBIX CIIydasiX.
KJIFOYEBBIE CJIOBA: rpaBuTalMiOHHOE JIMH3UPOBAHHE, HEMIOABIDKHBIC TOUKH, (YHKIHS OTKJIOHEHHUS, TMH30BOE OTOOpaKeHHE





