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Energetic characteristics of a surface wave at a plane plasma-plasma interface in an external magnetic field are studied. The 
dependencies of energy flow density and energy density on wave vector for different magnitudes of external magnetic field are 
analyzed. The sign of the Poynting vector in each plasma region is investigated. It is shown that the total energy flux of the surface 
wave is directed along the wave vector. The velocity of energy propagation is found. The equivalence between energy velocity and 
group velocity of the wave is demonstrated. The results obtained in the paper may be useful for analysis of transmission of 
electromagnetic waves through two-layer plasma structures in a magnetic field. 
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ЕНЕРГЕТИЧНІ ХАРАКТЕРИСТИКИ ПОВЕРХНЕВОЇ ЕЛЕКТРОМАГНІТНОЇ ХВИЛІ 

НА МЕЖІ ПОДІЛУ ПЛАЗМА-ПЛАЗМА В МАГНІТНОМУ ПОЛІ 
С.В. Івко, І.Б. Денисенко, М.О. Азарєнков 

Харківський національний університет імені В.Н. Каразіна 
61022, Харків, Україна 

Вивчаються енергетичні характеристики поверхневої хвилі на пласкій межі плазма-плазма в зовнішньому магнітному полі. 
Аналізуються залежності густини потоку енергії та густини енергії від хвилевого вектора для різних значень зовнішнього 
магнітного поля. Досліджується знак вектора Пойнтінга в кожній плазмовій області. Показується, що повний потік енергії 
поверхневої хвилі спрямований вздовж хвилевого вектора. Знайдено швидкість поширення енергії. Продемонстровано 
рівність між енергетичною та груповою швидкістю хвилі. Результати, що були отримані в статті, можуть бути використані 
для аналізу проходження електромагнітної хвилі крізь двошарову плазмову структуру в магнітному полі. 
КЛЮЧОВІ СЛОВА: поверхневі хвилі, геометрія Фойгта, вектор Пойнтінга, енергетична швидкість, густина енергії 
 

ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ 
НА ГРАНИЦЕ ПЛАЗМА-ПЛАЗМА В МАГНИТНОМ ПОЛЕ 

С.В. Ивко, И.Б. Денисенко, Н.А. Азаренков 
Харьковский национальный университет имени В.Н. Каразина 

61022, Харьков, Украина 
Изучаются энергетические характеристики поверхностной волны на плоской границе плазма-плазма во внешнем магнитном 
поле. Анализируются зависимости плотности потока энергии и плотности энергии от волнового вектора для разных 
значений внешнего магнитного поля. Исследуется знак вектора Пойнтинга в каждой плазменной области. Показывается, что 
полный поток энергии поверхностной волны направлен вдоль волнового вектора. Найдена скорость распространения 
энергии. Продемонстрировано равенство между энергетической и групповой скоростью волны. Результаты, полученные в 
статье, могут быть использованы для анализа прохождения электромагнитной волны через двухслойную плазменную 
структуру в магнитном поле. 
КЛЮЧЕВЫЕ СЛОВА: поверхностные волны, геометрия Фойгта, вектор Пойнтинга, энергетическая скорость, плотность 
энергии 
 

Propagation of electromagnetic waves in plasma has been extensively studied in various contexts for many 
years [1–3]. Researchers are still interested in the interaction of the electromagnetic radiation with overdense plasma. 
Transmission and absorption of electromagnetic waves that propagate through layered plasma structures, in particular, 
are studied due to practical applications. The supersonic aircrafts are surrounded by the layer of dense plasma, created 
by the heat from the compression of the atmosphere. The plasma layer is not transparent to radio waves that causes 
radio communications blackout. Different solutions [4,5] are proposed to this problem. Effective absorption of 
electromagnetic energy is important in plasma generation and heating. Enhanced absorption was observed in plasmas 
with steep electron density profiles. The increased absorption was explained by surface wave excitation [6,7]. Another 
way to increase absorption of the incident wave is to place subwavelength diffraction grating in front of plasma [8]. 

The effect of the transmission assisted by the surface waves occurs also in plasma-like media such as metals in 
optical range. It was shown both experimentally and theoretically, that three-layer structure composed of metal 
sandwiched between two layers of dielectric is absolutely transparent for incident p-polarized electromagnetic wave 
with certain wave vector and frequency [9]. Lately it was noticed that similar effect can be achieved by adding only one 
layer of dielectric [10]. One more way to achieve transparency for metallic film is to perforate it with a periodic array of 
subwavelength-sized holes [11]. Perforation is needed to transform incident propagating wave into non-propagating that 
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couples with surface mode at vacuum-metal interface. Resonant nature of a transparency in that type of structures can 
be used to build various kinds of tunable filters and spatial and spectral multiplexors [12,13]. 

The conditions of total transparency for two- and three-layer structures were studied in [14]. For two-layer 
structure it was found that the condition for total transparency coincides with dispersion relation for surface waves at 
the interface separating layers. The method of finding resonant conditions for multilayer structures with arbitrary 
number of layers was proposed in [15]. The role of dissipation effects in transmission through the structure composed of 
two layers of warm plasma was studied in [16]. 

Propagation of energy in case of total transmission was also considered. It was demonstrated that finite energy flux 
in direction perpendicular to the interface is possible if width of the layers is finite and there is a finite phase shift 
between the amplitudes of the growing and decaying part of the evanescent wave [14,16]. In [17] tunneling time and 
velocity of electromagnetic wave propagating through the barrier was studied. It was compared two velocities of wave 
propagation: energy velocity and group delay velocity that are equal only in case of total transmission. 

In our work [18] we studied the influence of external magnetic field on transparency of p-polarized 
electromagnetic wave through two-layer plasma structure. We found condition for absolute transparency and showed 
that it coincides with dispersion relation for surface waves only if layers are sufficiently thick. Later [19] we 
investigated the influence of inhomogeneity of one of the layers on wave transmission. 

In this paper we study energetic properties of the electromagnetic wave propagating in a two-layer structure in 
external magnetic field. We consider infinitely thick layers because resonance condition in this case has simple form. 
The normal component of the time-averaged energy flux turns to zero but we still can obtain information about the 
tangential component that gives us approximation for the case of layers of finite thickness. We derive and analyze 
expressions for group velocity, time-averaged Poynting vector and energy density. The special focus is given to the 
direction of energy propagation. 

 
MAIN EQUATIONS 

Consider an electromagnetic surface wave (SW) propagating at a plane interface between two semi-infinite plasma 
regions. It is assumed that plasma in each region is uniform, cold, collisionless and consists of electrons and ions. The 
wave frequency � is assumed to be larger than the ion plasma frequency ���, therefore, the effect of ions on the wave 
may be neglected. The less dense plasma with electron plasma frequency ��� occupies the region � < 0, while the 
more dense plasma with electron plasma frequency ���(> ���) is located at � > 0. The plasma system is immersed in 
an external magnetic field 
� directed along z-axis parallel to the plasma-plasma interface. 

We assume the surface wave propagates in y-direction along the interface perpendicularly to the magnetic field. 
The wave is assumed to be p-polarized, and it is characterized by the wave vector �
��directed along y-axis. The SW 
amplitude decays from the boundary � = 0. The electromagnetic field of the surface wave has the following 
components � = ������, �����, 0�exp����� − ����, 
 = �0,0,  !����exp����� − ����. 

The amplitudes��, ��, ! can be found from the following expressions [3] 
 ����� = − 1���$� − %�� &��$ ! + % ( !(� ), (1) 

 ����� = − ����$� − %�� &��% ! + $ ( !(� ), (2) 

 (� !(�� + *� ! = 0, (3) 

where * = +��� − $,��� is the decay constant and �� = �/.. We introduce the Voigt dielectric permittivity$, = $ −
 %�/$, where $ and % are the components of the dielectric tensor 0�1for cold magnetoactive plasma neglecting ion 
motion and particle collisions: 
 $ ≡ 0�� = 0�� = 1 − ����� − �3�,  

 % ≡ −�0�� = �0�� = �3������� − �3��,  

where �3 > 0 is the electron cyclotron frequency. It is assumed that the component of tensor $� for the region � < 0is 
positive, while the component $�  for the region � > 0 is negative. Here, indexes 1 and 2 correspond to the less and 
more dense plasma regions, respectively. 

The flux of energy carried by the electromagnetic wave is described by the Poynting vector 

4 = .46 7�
8. 
The Poynting vector of a p-polarized surface wave has two components: 9� and 9�.The time-averaged flux in x-
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direction is zero 〈9�〉 = 0. Thus, there is only one non-zero time-averaged component of the energy flux density 

<9�= = − .86 ?@7�� !∗8. 
Using the expression for 9�and the expressions for wave field components (1) – (3), one gets the time-averaged 

energy flux density in the first and second plasma regions, correspondingly 
 <9��= = .86�� B��$� + *�%�$�� − %�� C | !�|�exp�2*���, (4) 

 <9��= = .86�� B��$� − *�%�$�� − %�� C | !�|�exp�−2*���, (5) 

where | !�| is the amplitude of magnetic field of the surface wave at the interface. The energy flux density per unit area 
of the interface can be obtained by integrating Eqs.(4) - (5) along x-axis: 
 9�� = F  �

GH <9��=(� = 9�*� B��$� + *�%�$�� − %�� C, (6) 

 9�� = F  IH
� <9��=(� = 9�*� B��$� − *�%�$�� − %�� C, (7) 

where we introduce the unit of energy flux density 9� = .| !�|�/166��. The total energy flux density carried by the 
surface wave is a sum of energy fluxes in each media: 
 9 = 9�� + 9�� = 9� K %�$�� − %�� − %�$�� − %�� + �� & 1*�$,� + 1*�$,�)L. (8) 

We can simplify this equation by making use of the SW dispersion equation. The dispersion equation derived by 
matching tangential electric and magnetic fields of the wave at the interface is: 
 ��%� + $�*�$�� − %�� − ��%� − $�*�$�� − %�� = 0. (9) 

Equation (9) can be rewritten in the following form 
 %�$�� − %�� − %�$�� − %�� = − 1�� & *�$,� + *�$,�). (10) 

Combining Eq.(10) with Eq.(8), after some algebraic manipulations one gets the expression for SW time-averaged 
energy flux density per unit area  
 9 = 9� ����� & 1*� + 1*�). (11) 

Since *� > 0 and *� > 0, the sign of total energy flux density9 is determined by the sign of wave vector ��. Thus, 
the wave energy propagates in the same direction as the wave phase. 

The energy flux density (11)can be expressed through the derivative of the dispersion equation with respect to 
wave vector ��.  

Using Eqs. (6) and (7), the total energy flux density per unit area can be presented in the different form: 
 9 = M���M�

166 � B 1*�
�N���N��� + 1*�

�N���N��� C, (12) 

where M���M = M���0�M is the tangential component of the wave electric field at the interface. 
 �N�� = ��$� + *�%�$�� − %�� ,    �N�� = ��$� − *�%�$�� − %�� ,    �N�� = ��%� + *�$�$�� − %�� ,    �N�� = ��%� − *�$�$�� − %�� . (13) 

Note that  
 �N� = ��|���0�|| !�| , (14) 

where ���0� is the i-th component of electric field at the interface � = 0. 
Now, the dispersion equation (9) can be presented in the form  

 O = 1
�N�� − 1

�N�� = 0. (15) 

Taking derivative from D on ky, one obtains 
 ∂O∂�� = − 1

�N��� �$�� − %��� B%� + $� ��*�C − 1
�N��� �$�� − %��� B%� − $� ��*�C = − B 1*�

�N���N��� + 1*�
�N���N��� C.  

That is exactly up to a sign the expression in parentheses in Eq. (12). Finally, one can write 
 9 = − M���M�

166 � ∂O∂�� . (16) 

The time-averaged energy density in media with time dispersion can be found from the formula [20] 
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 Q = 1166 & ∂∂� ��0�1����1∗ + ∂∂� ��R�1� � 1∗). (17) 

Taking into account the form of the tensor of dielectric permittivity and the wave field components, it follows 
from Eq. (17) that for the waves considered here 
 Q = 1166 &∂�$∂� �|��|� + M��M�� + 2� ∂�%∂� ����∗ + | !|�),  

where  
 ∂�$∂� = 1 + ������ + �3����� − �3��� ,  

 ∂�%∂� = − 2��3������ − �3���.  

Using Eq. (14), the expressions for time-averaged energy densities per unit area for the first and second plasma 
areas can be presented in the following form 
 S� = S�2*��� &��� + ∂�$�∂� ��N��� + �N��� � − 2 ∂�%�∂� �N���N��), (18) 

 S� = S�2*��� &��� + ∂�$�∂� ��N��� + �N��� � − 2 ∂�%�∂� �N���N��), (19) 

respectively. Here, S� = | !�|�/166��. 
The total energy density of a surface wave (S = S� + S�) can be expressed through the frequency derivative of 

dispersion relation. Unfortunately, the expression for frequency derivative of O in the presence of an external magnetic 
field is very complicated. Therefore, we consider here only the case of large values of the wave vector M��M ≫ ��U$,, M��M ≫ ��. For large �� and �� > 0, κ�,� ≈ �� and expressions (13) can be simplified: 

 �N�� = �N�� = M��M$� − %� ,             �N�� = −�N�� = M��M$� + %�.  

Substituting the expressions for normalized field components into Eqs. (18) and (19), one obtains 
 S� = | !�|�

326*���� K��� + 2�N��� &∂�$�∂� − ∂�%�∂� )L, (20) 

 S� = | !�|�
326*���� K��� + 2�N��� &∂�$�∂� + ∂�%�∂� )L. (21) 

Since M��M ≫ �� and κ�,� ≈ ��, it follows from Eqs. (20) and (21) that  
 S� = M���M�

166 ∂∂� B� $� − %�M��M C ;  

 S� = M���M�
166 ∂∂� B� $� + %�M��M C.  

In this case, dispersion relation (15) can be presented in the following form 
 O = $� − %�M��M + $� + %�M��M = 0.  

From the expressions for O, S� and S�, it follows that  
 S = S� + S� = M���M�

166 ∂∂� ��O�. (22) 

Since ∂Z��O� = � ∂ZO, dividing (16) by (22), one obtains the expression for velocity of SW energy propagation 
 

[\] = 9S = −
^_

^`a^_
^Z

= ∂�∂�� = [bc . (23) 

Thus, the SW energy propagates with the group velocity [bc. For arbitrary values of ��, this result can be obtained 
numerically if 
� ≠ 0 and analytically when the external magnetic field is absent (
� = 0). 

 
ANALYSIS 

Now, study the dependence of SW energetic characteristics (the energy flux density, the energy density and the 
energy propagation velocity) on the wave vector �� and the external magnetic field. We specify frequency ranges where 
the surface waves may exist. In the presence of magnetic field, the surface waves propagating in positive direction, i.e. 
with �� > 0, and the waves propagating in negative direction (�� < 0) have different dispersion. Thus, we have to 
consider these two cases separately. We narrow down our study to the surface waves with frequencies larger than 
electron cyclotron frequency (� > �3), that gives %� > 0 and %� > 0. Moreover, it is assumed that $� > 0 and $� < 0. 
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Let us start with the surface waves propagating in 
lower frequency limit for the waves is determined by

�,�I = �
� &+�3� + 4���� + �3) , �,�G =

correspondingly. First, consider the case when
external magnetic field and plasma densities:

In this case, the upper frequency limit 

The frequency corresponding to the low frequency limit 
comparing the boundaries of the SW existence domain ��]e < �,�G . In the SW existence domain,
numerator of Eq.(6) are positive. And since 
energy flux in the first plasma layer is directed along 
opposite direction (9� < 0), because $
along �� (Eq. (11)) and, therefore, |9�|

If the wave frequency is close to 
plasma region are essentially larger than those

a)
Fig.1. (a)Typical dependences of $ and $, on the

and from Eqs. (12) and (18) one obtains
 

 S ≈ S� ≈ S�2��
At the lower frequency boundary, 

propogation velocity  
 [\] = 9�S

is finite [see Fig. 2(c)]. 
Taking derivative of $,� with respect to 
 

we can write Eq. (26) in the following form
 

 

Waves propagating in positive direction 
urface waves propagating in positive direction. In our previous work [

lower frequency limit for the waves is determined by equation *� = 0 if �,�I < �,�G , and *�
�
� &+�3� + 4���� − �3) are the frequencies at which 

correspondingly. First, consider the case when �,�I < �,�G , that imposes the following condition on the magnitudes of
plasma densities: 

�3 < ���� − ����
+2����� + ���� �. 

he upper frequency limit ��]e is determined by the following equation [18]%� − $� = %� + $� 
The frequency corresponding to the low frequency limit �� satisfies the following 

comparing the boundaries of the SW existence domain 7��, ��]e8 with �,�I  and �,�G , we obtained that 
. In the SW existence domain,$� > 0 because �f� < �,�I  [see Fig.1(a)], thus,

are positive. And since |$�| > |%�| [see Fig. 1 (b)], the denominator is also positive. As a result, the 
energy flux in the first plasma layer is directed along ��(9� > 0), while the energy flux in the second layer$� < 0 and |$�| > |%�| (see Fig.1). Meantime, the total energy flux is directed > |9�|. 

If the wave frequency is close to �,�I (*� → 0), the energy flux density and energy density 
are essentially larger than those in the dense plasma region (see Eqs. (11), (20) and (21)

 b)
on thewave frequency. (b) Typical dependences of $� and %� 

�N�� = ��$�$�� − %�� , �N�� = ��%�$�� − %��, 
one obtains 

9 ≈ 9� ≈ 9� ��$,�*� ; 
S�

�*� K��� + ����$�� − %���� &∂�$�∂� �$�� + %��� − 2 ∂�%�∂� $�%�
At the lower frequency boundary, 9 → ∞ and S → ∞ [see Eqs. (24) and (25) and Fig.2], but the energy 

�S� = 2.
U$,�

K2 + �$,� B∂$�∂� + %��$��
∂$�∂� − 2%�$�

∂%�∂� CL
G�

 

with respect to � ∂$,�∂� = ∂$�∂� + %��$��
∂$�∂� − 2%�$�

∂%�∂� , 
we can write Eq. (26) in the following form 

[\] = . BU$,� + �
2U$,�

∂$,�∂� CG�. 

positive direction. In our previous work [18], we found that the 
� = 0 if �,�I > �,�G . Here, 

are the frequencies at which $i1 = 0 and $i2 = 0 

, that imposes the following condition on the magnitudes of 

8] 

satisfies the following condition �,�I j  ��. By 
, we obtained that �,�I j �� <

see Fig.1(a)], thus, the both terms in the 
[see Fig. 1 (b)], the denominator is also positive. As a result, the 

he second layer is directed in 
). Meantime, the total energy flux is directed 

energy density in the low density 
(20) and (21)). In this case, 

 
 on the wave frequency.  

(24) 

�)L. (25) 

[see Eqs. (24) and (25) and Fig.2], but the energy 

L (26) 

 

(27) 



26
EEJP Vol.1 No.1 2014 S.V. Ivko, I.B. Denysenko, N.A. et al

Taking into account that [\] = [bc
this limiting case the form 

Using this expression for D, one obtains the derivatives:∂O∂�
Then, from Eq. (23) and the expressions

At the upper boundary of the frequency domain that is determined by equation

the wave vector is large (�� ≫ �0), and, therefore,
second plasma regions are 

Hence, the total energy flow density 
Figs. 2 (a) and 2 (c)). At the boundary, the e
proportionally to ��(it follows from the expressions for 
 

 

In Fig.2, energetic characteristics of the wave for different values of magnetic field are shown. One can see that 
with the increase of magnetic field the energy flux density decreases, while the energy density increases. 
velocity of energy propagation decreases with growth of external magnetic field.

 

Consider surface waves propagating in negative direction. The frequency domain for these waves is bounded by 
the hybrid frequencies: � 1 < � < � 
from the energy flow in the first region

a)

c)
bc, one could get Eq. (27) by differentiating the dispersion equation, having in 

O = �� − �. U$,� = 0. 
, one obtains the derivatives: O�� = 1,   ∂O∂� = − 1. BU$,� + �

2U$,�
∂$,�∂� C. 

expressions for derivatives of D, one obtains Eq. (27). 
of the frequency domain that is determined by equation %� − $� = %� + $�, 

), and, therefore, *� ≈ *� ≈ M��M. Thus, the energy flow densities in the first and

9� ≈ klmnGbn , 9� ≈ klmoIbo,  and 9� = −9�. 

total energy flow density and energy propagation velocity are vanishing at the upper boundary
At the boundary, the energy densities in both plasma regions are equal and are going to infinity 

(it follows from the expressions for S� and S� presented after Eq. (21) ):

S� = S������$� − %���
∂��$� − %��∂� , 

S� = S������$� + %���
∂��$� + %��

∂� . 
energetic characteristics of the wave for different values of magnetic field are shown. One can see that 

with the increase of magnetic field the energy flux density decreases, while the energy density increases. 
decreases with growth of external magnetic field. 

Waves propagating in negative direction 
Consider surface waves propagating in negative direction. The frequency domain for these waves is bounded by 

 2. We determine the direction of energy flow in each plasma region. Let us start 
from the energy flow in the first region 9�. We divide aforementioned interval in two parts:

 b)

 

Fig.2. The dependences of normalized energy flux density (a), 
normalized wave energy (b) and group velocity (c) on the 
normalized wave vector for �� > 0

, one could get Eq. (27) by differentiating the dispersion equation, having in 

Thus, the energy flow densities in the first and 

are vanishing at the upper boundary (see 
equal and are going to infinity 

: 
(12) 

(13) 

energetic characteristics of the wave for different values of magnetic field are shown. One can see that 
with the increase of magnetic field the energy flux density decreases, while the energy density increases. As a result, the 

Consider surface waves propagating in negative direction. The frequency domain for these waves is bounded by 
e the direction of energy flow in each plasma region. Let us start 

. We divide aforementioned interval in two parts: �f� < � < �,�I  and 

 

normalized energy flux density (a), 
normalized wave energy (b) and group velocity (c) on the 0. 



27
Energetic characteristics of the surface electromagnetic wave EEJP Vol.1 No.1 2014

� > �,�I . For the first part $�� < %��, thus the denominator of Eq.(6) is negative, and the terms in the numerator have 
opposite signs, because $� > 0 and �� < 0. Therefore, to determine the sign of the expression we need to compare 
these terms by magnitude. From inequalities $�� < %�� and $� > 0, it follows that the Voigt dielectric permittivity is 

negative: $,� = �$�� − %���/$� < 0, and thus *� = +��� − $,���� > |��|. Taking into account that |$�| < |%�|, one 

comes to the conclusion that |��$�| < |*�%�|, i.e. the numerator of Eq.(6) is positive and the expression as whole is 
negative. For the frequencies � larger than �,�I , the following inequalities hold true $� > 0,  $�� > %��, $,� > 0, 
meaning that *� < |��| and |��$�| > |*�%�|, thus the numerator of Eq. (6) is positive but the denominator is negative. 
As a result, the sign of Eq. (6) is also negative in the frequency range considered. Therefore, for �� < 0 the energy flow 
in the first plasma region is directed along the wave vector (9� < 0). 

Determine direction of the Poynting vector in the second plasma region. Since �3 < � < �f�, the dielectric 
permittivity $� is negative and %� > 0, and for �� < 0 we have ��$� > 0, meaning that the terms in the numerator of 
Eq. (7) have different signs. Depending on the magnitude of wave vector ��, the difference ��$� − *�%� can be positive 
or negative. The difference is zero if 

�� = �90 = − %2√−$2 �0. 
The difference ��$� − *�%�is negative for M��M < |�k�|, and it is positive if M��M > |�k�|. 

Substituting �� = �k� into dispersion equation, we find the corresponding zero frequency 

�k�� = �
� &�f�� + +�f�q + 4�3������ − ���� �) > �f�� . 

Note that the total energy flow density is always directed along the wave vector (see Eq.(11)). Near the lower 
frequency limit (� = �f�), where $� → 0 and consequently *� → ∞, the expression for total energy flow density may 
be simplified (see Eq.(11)): 

9 = 9������*�. 
As a result, at � = �f� the total energy flow density is finite [see the region of small wave vectors in Fig. 3 (a)]. 

Meanwhile, the total energy density goes to infinity (see Fig. 3(b)). This conclusion follows from Eq. (18) if one takes κ� → ∞: 

S ≈ S� ≈ S�*�2�� B $�� + %���$�� − %����
∂�$�∂� + 2$�%��$�� − %����

∂�%�∂� C. 
Taking into account that at low frequencies *� ≈ ��%�/√$�  (because  $� → 0), one concludes that 

S ≈ S�2%�√$�
∂�$�∂� . 

Since the total energy density is finite and S → ∞, one obtains that the energy propagation velocity goes to zero 
at the low frequency limit [Fig. 3(c)]. 

At the upper frequency limit determined by equation  %� + $� = %� − $�, 
the energy flows in the first and the second plasma regions are equal on absolute magnitude but have different 
directions: 

9� ≈ − 9�$� + %� , 9� ≈ 9�%� − $�. 
Thus, the total energy flux goes to zero for ��� ≫ ��� (see Fig. 3(a)). If �� → ∞, the total energy density goes to 

infinity: 

S� = S������$� + %���
∂��$� + %��∂� ,   S� = S������$� − %���

∂��$� − %��∂� . 
Note that the expressions for S� and S� are similar to Eqs. (28) and (29), describing the energy densities when the 

waves propagate in positive direction. 
With the growth of magnetic field the energy flux density decreases by magnitude and the energy also decreases 

(see Fig.3). For higher values of magnetic field the maximum of group velocity decreases and shifts to the larger 
magnitudes of the wave vector. 
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We have studied the energetic characteristics of the surface wave
interface immersed in an external magnetic field. 
averaged energy density of the waves in each plasma 
these characteristics on the wave vector 

The direction of Poynting vector has been
first and the second plasma regions are always opposite in direc
number, the energy flux in the second plasma region 
opposite direction. The wave vector and 
is absent have been found. Thus, for a 
direction, what is impossible in the absence of 
flux of the waves is always directed along the wave vector.

The expression for the velocity of wave 
of SW energy propagation is equal to the group velocity of the wave.
on the wave vector and magnitude of external magnetic field.
velocity are vanishing when the wave vector is large. 

At the lower frequency limit, the 
vector is directed in negative direction, the
With an increase of the external magnetic field 
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possible in the absence of an external magnetic field. Meantime, the total time

is always directed along the wave vector. 
velocity of wave energy propagation has been obtained. We have 

the group velocity of the wave. We have studied the dependency of 
wave vector and magnitude of external magnetic field. It has been found that the SW 

velocity are vanishing when the wave vector is large.  
the energy propagation velocity depends on direction of wave vector. 

is directed in negative direction, the group velocity goes to zero, while for positive �
external magnetic field the maximum of the group velocity decreases.

REFERENCES 
Ginzburg, V.L. Propagation of Electromagnetic Waves in Plasma / V.L. Ginzburg. Gordon & Breach Science Publishers Ltd, 

Stix, T.H. The theory of plasma waves / T.H. Stix.McGraw-Hill, 1962. – 306 p. 
Kondratenko, A.N. Surface and bulk waves in a bounded plasma / A.N. Kondratenko. Moscow Energoizdat, 1985. 
Stenzel, R.L. A new method for removing the blackout problem on reentry vehicles / R.L. Stenzel, J.M. Urrutia // Journal o

Vol. 113, № 10. – P. 103303. 
Sternberg, N. Resonant Transmission through Dense Plasmas via Amplification of Evanescent Mode / N. Sternberg, A.I. 

2009. – Vol. 5, № 8. – P. 781–785. 

 b)

 

Fig.3. The dependences of normalized energy flux density (a), 
normalized wave energy (b) and group velocity (c) on the 
normalized wave vector for �� < 0

propagating along the plane plasma-plasma 
averaged energy flow density and time 

analyzed the dependency of 
for different values of magnetic field.  ��, the energy fluxes in the 

the waves with negative wave 
the flux in the first region, as well as in 

the flux in the second region 
the fluxes in both plasma regions are in same 

the total time-averaged energy 

have showed that the velocity 
studied the dependency of group velocity 

SW energy flux and energy 

of wave vector. If the wave �� it reaches a finite value. 
group velocity decreases. 

Ginzburg, V.L. Propagation of Electromagnetic Waves in Plasma / V.L. Ginzburg. Gordon & Breach Science Publishers Ltd, 

Kondratenko, A.N. Surface and bulk waves in a bounded plasma / A.N. Kondratenko. Moscow Energoizdat, 1985. – 208 p. 
Stenzel, R.L. A new method for removing the blackout problem on reentry vehicles / R.L. Stenzel, J.M. Urrutia // Journal of 

Sternberg, N. Resonant Transmission through Dense Plasmas via Amplification of Evanescent Mode / N. Sternberg, A.I. 

 

normalized energy flux density (a), 
normalized wave energy (b) and group velocity (c) on the 0. 



29
Energetic characteristics of the surface electromagnetic wave EEJP Vol.1 No.1 2014

6.  Kindel, J. Surface-Wave Absorption / J. Kindel, K. Lee, E. Lindman // Physical Review Letters. – 1975. – Vol. 34, № 3. – P. 
134–138. 

7.  Aliev, Y. Total absorption of electromagnetic radiation in a dense inhomogeneous plasma /Y. Aliev et al. // Physical Review A. 
– 1977. – Vol. 15, № 5. – P. 2120–2122. 

8.  Bliokh, Y.  Total Absorption of an Electromagnetic Wave by an Overdense Plasma / Y. Bliokh, J. Felsteiner, Y. Slutsker // 
Physical Review Letters. – 2005. – Vol. 95, № 16. 

9.  Dragila, R. High Transparency of Classically Opaque Metallic Films / R. Dragila, B. Luther-Davies, S. Vukovic // Physical 
Review Letters. – 1985. – Vol. 55, № 10. – P. 1117–1120. 

10.  Ramazashvili, R.R. Total transmission of electromagnetic waves through slabs of plasmas and plasma-like media upon the 
excitation of surface waves / R.R. Ramazashvili // JETP Letters. – 1986. – Vol. 43, № 5. – P. 298–301. 

11.  Ebbesen, T.W. Extraordinary optical transmission through sub-wavelength hole arrays / T.W. Ebbesen et al. // Nature. – 
1998. – Vol. 391, № 6668. – P. 667–669. 

12.  Sambles, R. Photonics: More than transparent / R. Sambles // Nature. – 1998. – Vol. 391, № 6668. – P. 641–642. 
13.  Lezec, H.J. Beaming Light from a Subwavelength Aperture / H.J. Lezec // Science. – 2002. – Vol. 297, № 5582. – P. 820–822. 
14.  Smolyakov, A.I. Resonant modes and resonant transmission in multi-layer structures / A.I. Smolyakov et al. // Progress In 

Electromagnetics Research. – 2010. – Vol. 107, – P. 293–314. 
15.  Sternberg, N. Resonant Transmission of Electromagnetic Waves in Multilayer Dense-Plasma Structures / N. Sternberg, 

A.I. Smolyakov // IEEE Transactions on Plasma Science. – 2009. – Vol. 37, № 7. – P. 1251–1260. 
16.  Fourkal, E. Evanescent wave interference and the total transparency of a warm high-density plasma slab / E. Fourkal et al. // 

Physics of Plasmas. – 2006. – Vol. 13, № 9. – P. 092113. 
17.  Frias, W. Non-local energy transport in tunneling and plasmonic structures / W. Frias, A. Smolyakov, A. Hirose // Optics 

Express. – 2011. – Vol. 19, № 16. – P. 15281. 
18.  Ivko, S. Resonant transparency of a two-layer plasma structure in a magnetic field / S. Ivko, A. Smolyakov, I. Denysenko, 

N.A. Azarenkov// Physical Review E. – 2011. – Vol. 84, № 1. – P. 016407. 
19.  Denysenko, I.B. Transmission of electromagnetic waves through a two-layer plasma structure with spatially nonuniform 

electron density / I.B. Denysenko, S. Ivko, A. Smolyakov, N.A. Azarenkov// Physical Review E. – 2012. – Vol. 86, № 5. – 

P. 056402. 

20. Landau L.D. Electrodynamics of continuous media / L.D. Landau, E.M. Lifshits, L.P. Pitaevskiĭ. – Oxford: Butterworth-
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