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Energetic characteristics of a surface wave at a plane plasma-plasma interface in an external magnetic field are studied. The
dependencies of energy flow density and energy density on wave vector for different magnitudes of external magnetic field are
analyzed. The sign of the Poynting vector in each plasma region is investigated. It is shown that the total energy flux of the surface
wave is directed along the wave vector. The velocity of energy propagation is found. The equivalence between energy velocity and
group velocity of the wave is demonstrated. The results obtained in the paper may be useful for analysis of transmission of
electromagnetic waves through two-layer plasma structures in a magnetic field.
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EHEPTETHYHI XAPAKTEPUCTUKH MOBEPXHEBOI EJJEKTPOMATHITHOI XBUJIT
HA MEXI IOALTY IIVIASMA-IIVIASMA B MAT'HITHOMY ITOJII
C.B. IBko, L.Bb. [lenncenxo, M.O. A3apeHkoB
Xaprxiscvkuil nayionanenutl ynieepcumem imeni B.H. Kapasina
61022, Xapxis, Vkpaina

BHUBYAIOTBCSl CHEPTETHYHI XapaKTEePUCTUKU IIOBEPXHEBOI XBHJI Ha IUIACKIH MEXi IU1a3Ma-ruia3Ma B 30BHIIIHEOMY MarHiTHOMY IIOJIi.
AHaI3yI0ThCS 3AICKHOCTI TYCTHHH MOTOKY €HEpril Ta IyCTHHH €Heprii Bill XBUJIEBOrO BEKTOpA IS Pi3HUX 3HAYCHb 30BHILIHBOTO
MartitHoro nois. JlocmimkyeTbest 3HaK BekTopa [loifHTiHTa B KOXHIHM 1m1a3MoBiit obacti. ITokasyeTbes, 0 TTOBHUM IOTIK eHepril
MOBEPXHEBOi XBWJI CIPSMOBAHUH B3I0BX XBHUJICBOTO BEKTOpA. 3HAWAEHO WIBUIKICTH MOIIMpeHHs eHepril. IIpoaeMOHCTpOBaHO
PIBHICTb Mi)K €HEPreTHYHOIO Ta PYIOBOIO IIBHIKICTIO XBHII. Pe3ynbraTy, mo Oyiu OTpHMaHi B CTaTTi, MOXYTh OYTH BUKOPHCTaHi
IUTSL aHAJIi3Y MPOXOXKESHHS eIeKTPOMATHITHOI XBHJII KPi3b ABOLIAPOBY LUIA3MOBY CTPYKTYPY B MarHiTHOMY ITOJIi.

KJIFOYOBI CJIOBA: nosepxHesi xBuii, reomerpist Poiirra, Bexrop IloiHTiHra, eHEpreTHYHa MIBUAKICTh, 'YCTHHA €HEpril

SHEPTETUYECKHE XAPAKTEPUCTHUKHA MOBEPXHOCTHOM JIEKTPOMATHHATHOMN BOJIHBI
HA I'PAHMIIE IJIABMA-IIVIASMA B MA'HUTHOM I10JIE
C.B. UBko, U.b. /lenncenxo, H.A. A3apenkon
Xapvkrosckuil nayuonanvusiti ynusepcumem umenu B.H. Kapasuna
61022, Xapwvkos, YVkpauna

W3yuatoTcst sHEpreTHUECKne XapakTepUCTUKU TOBEPXHOCTHON BOJIHBI Ha IUIOCKON TPpaHMIlE MIa3Ma-1ia3Ma BO BHEITHEM MarHUTHOM
none. AHaNU3UPYIOTCS 3aBUCUMOCTH IUIOTHOCTH IOTOKA SHEPIMU M TIJIOTHOCTH SHEPTHM OT BOJHOBOTO BEKTOPA Ul Pa3HBIX
3HA4YEeHHUH BHELIHEr0 MarHUTHOTO noiis. Miccnenyercs 3Hak Bekropa [loifHTHHTa B KaXknoil mnasMeHHoi# obiactu. [lokaseiBaeres, yTo
MOJHBIM IOTOK 3HEPruM NOBEPXHOCTHOM BOJHBI HAIpaBlIeH BJOJb BOJHOBOrO BekTopa. HalineHa ckopocTh pacmpocTpaHeHHs
sHeprud. IIporeMoOHCTPUPOBAaHO PABEHCTBO MEXKYy YHEPreTUYECKOM U IpyNIOBOI CKOPOCTHIO BOJIHBL Pe3ynbTaTel, IONy4eHHBIE B
CTaThe, MOTYT OBITH HCHOJIB30BAaHBI IS aHAIN3a IPOXOKACHUS JIEKTPOMArHUTHOI BOJHBI Yepe3 ABYXCIOWHYIO IUIA3MEHHYIO
CTPYKTYpYy B MarHUTHOM IIOJI€.
KJIFOYEBBIE CJIOBA: nosepxHOcTHbIC BOJIHBL, reomerpus Doiirra, Bexrop IloiiHTHHra, SHEpreTUdecKas CKOpoCTh, IIOTHOCTh
SHEPTUU

Propagation of electromagnetic waves in plasma has been extensively studied in various contexts for many
years [1-3]. Researchers are still interested in the interaction of the electromagnetic radiation with overdense plasma.
Transmission and absorption of electromagnetic waves that propagate through layered plasma structures, in particular,
are studied due to practical applications. The supersonic aircrafts are surrounded by the layer of dense plasma, created
by the heat from the compression of the atmosphere. The plasma layer is not transparent to radio waves that causes
radio communications blackout. Different solutions [4,5] are proposed to this problem. Effective absorption of
electromagnetic energy is important in plasma generation and heating. Enhanced absorption was observed in plasmas
with steep electron density profiles. The increased absorption was explained by surface wave excitation [6,7]. Another
way to increase absorption of the incident wave is to place subwavelength diffraction grating in front of plasma [8].

The effect of the transmission assisted by the surface waves occurs also in plasma-like media such as metals in
optical range. It was shown both experimentally and theoretically, that three-layer structure composed of metal
sandwiched between two layers of dielectric is absolutely transparent for inpigefarized electromagnetic wave
with certain wave vector and frequency [9]. Lately it was noticed that similar effect can be achieved by adding only one
layer of dielectric [10]. One more way to achieve transparency for metallic film is to perforate it with a periodic array of
subwavelength-sized holes [11]. Perforation is needed to transform incident propagating wave into non-propagating that
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couples with surface mode at vacuum-metal interface. Resonant nature of a transparency in that type of structures can
be used to build various kinds of tunable filters and spatial and spectral multiplexors [12,13].

The conditions of total transparency for two- and three-layer structures were studied in [14]. For two-layer
structure it was found that the condition for total transparency coincides with dispersion relation for surface waves at
the interface separating layers. The method of finding resonant conditions for multilayer structures with arbitrary
number of layers was proposed in [15]. The role of dissipation effects in transmission through the structure composed of
two layers of warm plasma was studied in [16].

Propagation of energy in case of total transmission was also considered. It was demonstrated that finite energy flux
in direction perpendicular to the interface is possible if width of the layers is finite and there is a finite phase shift
between the amplitudes of the growing and decaying part of the evanescent wave [14,16]. In [17] tunneling time and
velocity of electromagnetic wave propagating through the barrier was studied. It was compared two velocities of wave
propagation: energy velocity and group delay velocity that are equal only in case of total transmission.

In our work [18] we studied the influence of external magnetic field on transparenqypofarized
electromagnetic wave through two-layer plasma structure. We found condition for absolute transparency and showed
that it coincides with dispersion relation for surface waves only if layers are sufficiently thick. Later [19] we
investigated the influence of inhomogeneity of one of the layers on wave transmission.

In this paper we study energetic properties of the electromagnetic wave propagating in a two-layer structure in
external magnetic field. We consider infinitely thick layers because resonance condition in this case has simple form.
The normal component of the time-averaged energy flux turns to zero but we still can obtain information about the
tangential component that gives us approximation for the case of layers of finite thickness. We derive and analyze
expressions for group velocity, time-averaged Poynting vector and energy density. The special focus is given to the
direction of energy propagation.

MAIN EQUATIONS

Consider an electromagnetic surface wave (SW) propagating at a plane interface between two semi-infinite plasma
regions. It is assumed that plasma in each region is uniform, cold, collisionless and consists of electrons and ions. The
wave frequency is assumed to be larger than the ion plasma frequepcytherefore, the effect of ions on the wave
may be neglected. The less dense plasma with electron plasma frequygnegcupies the regiom < 0, while the
more dense plasma with electron plasma frequengy> w,,) is located ak > 0. The plasma system is immersed in
an external magnetic fieH, directed along-axis parallel to the plasma-plasma interface.

We assume the surface wave propagatgsdinection along the interface perpendicularly to the magnetic field.
The wave is assumed to pepolarized, and it is characterized by the wave veE;aﬂirected alongy-axis. The SW

amplitude decays from the boundaxy= 0. The electromagnetic field of the surface wave has the following
components

E= (Ex(x),Ey(x), O)exp(ikyy - iwt),
H= (0,0, Hz(x))exp(ikyy — iwt).
The amplitudeB,, £, ,H, can be found from the following expressions [3]

E.(x) = (e, + 9 5) &)
x(x) - ko(gz _ gz) yg z + g dx 4
E,(x) = : k,gH aH; 2
/@ =~ ot e ) @
d%H,
W + KZHZ =0, ©)

wherex = [k; — eyk? is the decay constant ag = w/c. We introduce the Voigt dielectric permittivity = € —

g°/e, wheree and g are the components of the dielectric tensgfor cold magnetoactive plasma neglecting ion
motion and particle collisions:
1 a)§
E=ey=€p=1-——,
11 22 0.)2 _ wg
o .}
= -6, = i€y =————,
g 12 21 (1)(0)2 _ wg)
wherew, > 0 is the electron cyclotron frequency. It is assumed that the component ofdefizothe regionx < 0is
positive, while the componert, for the regionx > 0 is negative. Here, indexes 1 and 2 correspond to the less and
more dense plasma regions, respectively.

The flux of energy carried by the electromagnetic wave is described by the Poynting vector
c
S=1- [EH].
The Poynting vector of p-polarized surface wave has two componesi{sands,,.The time-averaged flux ir-
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direction is zerdS, ) = 0. Thus, there is only one non-zero time-averaged component of the energy flux density

c
(s,) = —gRe[ExH;].
Using the expression fdi,and the expressions for wave field components (1) — (3), one gets the time-averaged

energy flux density in the first and second plasma regions, correspondingly

¢ (kyg+ K191 ) 4
<5y1> - 87Tk0< 512 _ glz |HZO| exp(Zle);
(5)

c kysz — K30,

(5312) = 87Tk0 ( 822 _ g% |HZO|2eXp(_2K2x)'
where|H,,| is the amplitude of magnetic field of the surface wave at the interface. The energy flux density per unit area
of the interface can be obtained by integrating Eqs.(4) - (5) alamxgs:

0 So (k&1 + K19 (6)
Soi = S, Ydx = 2 2L 191
y1 f_w<yl)x K1< e —g?
teo So (k&5 — K 7
5y2=f (Syz)dx=—0< y; 292>’ (7)
0 K & —9;

where we introduce the unit of energy flux densigy= c|H,,|?/16mk,. The total energy flux density carried by the
surface wave is a sum of energy fluxes in each media:

91 92 1 1
§=5,,+S,,=S5 - +k ( + ) . 8
yro e ° (512 -9i &€-9; Y \Ky8y1  KaEyn > ®)
We can simplify this equation by making use of the SW dispersion equation. The dispersion equation derived by
matching tangential electric and magnetic fields of the wave at the interface is:

kygi + &1kq B kyg, — &k, _0 (9
2 _ 2 2 _ 2 :
&~ 01 €& 9z
Equation (9) can be rewritten in the following form
91 9> 1 ( K1 = Kz )
- = — —+—. 10
812 _gf 822 _gg ky Ey1  Ey2 (10)

Combining Eq.(10) with Eq.(8), after some algebraic manipulations one gets the expression for SW time-averaged
energy flux density per unit area
k2,1 1 1
S‘S"E(ZH_Z)' (11)
Sincek; > 0 andk, > 0, the sign of total energy flux densftys determined by the sign of wave veadtgr Thus,
the wave energy propagates in the same direction as the wave phase.
The energy flux density (11)can be expressed through the derivative of the dispersion equation with respect to
wave vectolk,,.
Using Egs. (6) and (7), the total energy flux density per unit area can be presented in the different form:

2 ~ -
E. 1E 1E
S=—| y0| w —Aizl+—,\—§2, (12)
lém ki By, K E,
where|E,o| = |E,(0)| is the tangential component of the wave electric field at the interface.
A kyey +Kx191 o _ ky&s — K292 _ kygi + K18 B = kyg, — K26, (13)
Toe-gt Y g-g 0 -t T d-43
Note that
. kolE; (O
- ol Ei( )l’ (14)
|H20|

wherek; (0) is thei-th component of electric field at the interface= 0.
Now, the dispersion equation (9) can be presented in the form

1
D=———=0. (15)
Eyl Eyz

Taking derivative fronD onk,, one obtains

oD 1 k 1 k 1E, 1E,
Py o s Rl Rl s Rl il Bl Gty =y ¢
ok, Ey1(31 - 91) Ky EyZ(SZ - 95) K K1 E Ky E

y1 y2
That is exactly up to a sign the expression in parentheses in Eq. (12). Finally, one can write
2
|E, o]~ oD
o= 1=y = 16
16m ok, (10)

The time-averaged energy density in media with time dispersion can be found from the formula [20]
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16m \dw 17T dw J J

Taking into account the form of the tensor of dielectric permittivity and the wave field components, it follows
from Eq. (17) that for the waves considered here

w =i(@(|E 2+ |E,|") + 20999 pe s |H |2)
16m\dw * % Y ow ¥ 2 )
where
dwe wh(w* + wf)
0 T (wE-wd)?’
owg 20w wh
o (w2 —w2)?

Using Eq. (14), the expressions for time-averaged energy densities per unit area for the first and second plasma
areas can be presented in the following form

W, owe; , . " owg; . -

Wy =5 (kg F (B + B) -2 ExlEyl), (18)
W, we, , ., . wg, ~ -

Wy = 5t (kg + L (B + By) -2 Eszy2>, (19)

respectively. Herdl, = |H,,|%/16mk,.
The total energy density of a surface walé £ W, + W,) can be expressed through the frequency derivative of
dispersion relation. Unfortunately, the expression for frequency derivatarothe presence of an external magnetic

field is very complicated. Therefore, we consider here only the case of large values of the wawé ylextdr, /ey,
|ky| > k,. For largek, andk, > 0, k,, = k,, and expressions (13) can be simplified:

P LY s __p _ Ikl
By =E, =—"—, Eyp=-E,=—2"—.
* - &~ 0 2 2 &t 9>
Substituting the expressions for normalized field components into Egs. (18) and (19), one obtains
|Hyol? np (we  Odwg,
=——| ki + 2E2 ( - ) , 20
T 32mie, k2 ° HREEAN ow (20)
|Hyol? ny (WE Odwg,
=——| ké+2E2 ( ) . 21
27 32mi, k2 \ 0 52\ %6 T e (21)

Since|k, | » ko andxk, , = k,, it follows from Egs. (20) and (21) that

W _|Ey0|2 d (wgl_gl).
1 )

16w dw iy |
_ |EyO|2 d &t 9>
"2 =en %(“’ Ik, )

In this case, dispersion relation (15) can be presented in the following form
&—01 & 192

D= + =0.
kel IRyl
From the expressions faér, W, andW,, it follows that

2

|Eyo|” @ (22)
W—W1+W2— 167‘[ %(wD).
Sinced, (wD) = wd,,D, dividing (16) by (22), one obtains the expression for velocity of SW energy propagation
ap
S ok, Ow

V== =2 =2 oy (23)

Wk,

ow
Thus, the SW energy propagates with the group velogjtyFor arbitrary values dt,,, this result can be obtained
numerically ifH, # 0 and analytically when the external magnetic field is abd&nt( 0).

ANALYSIS
Now, study the dependence of SW energetic characteristics (the energy flux density, the energy density and the
energy propagation velocity) on the wave veépand the external magnetic field. We specify frequency ranges where
the surface waves may exist. In the presence of magnetic field, the surface waves propagating in positive direction, i.e.
with k, > 0, and the waves propagating in negative direction<(®0) have different dispersion. Thus, we have to
consider these two cases separately. We narrow down our study to the surface waves with frequencies larger than
electron cyclotron frequencw(> w,), that givesg, > 0 andg, > 0. Moreover, it is assumed thgt > 0 ande, < 0.
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Waves propagating in positive direction
Let us start with thewsface waves propagating positive direction. In our previous wor18], we found that the
lower frequency limit for the waves is determinec equationk; = 0 if wf; < wy,, andk, = 0 if v}, > w;,. Here,

Wi = %( /wg + 4wy, + wc), Wy, = %( /wg + 4wy, — wc) are the frequencies at whice,; =0 and g,, =0

correspondingly. First, consider the case v wyf; < wy,, that imposes the following condition on the magnitude
external magnetic field arlasma densitie
Wwhy — why
W, < :
’2((»12,2 + why)
In this case, e upper frequency limw;,; is determined by the following equatior8[1
g1— & =921 &

The frequency corresponding to the low frequency liw, satisfies the followinccondition wif; < w,. By
comparing the boundaries of the SW existence dol[w,, w;,s] With wy; and wy,, we obtained thawy; < w, <
winr < wy,. In the SW existence domee; > 0 becausewy; < wy, [see Fig.1(a)], thu the both terms in the
numerator of Eq.(6dre positive. And sinc|e,| > |g,| [see Fig. 1 (b)], the denominator is also positive. As a resul
energy flux in the first plasma layer is directed alk,,(S; > 0), while the energy flux inhe second lay is directed in
opposite direction, < 0), becauses, < 0 and |&;| > |g,| (see Fig.L Meantime, the total energy flux is direci
alongk,, (Eq. (11)) and, thereforgs; | > |S,].

If the wave frequency is close wi;(k; — 0), the energy flux density anehergy densityin the low density
plasma regiomre essentially larger than th in the dense plasma region (see Egs. (20), and (21). In this case,

EV 52
el . .
1,
N
wy _---"77 Y wy
L 7 o 1 B
-
+
a} b) WV
Fig.1. (a)Typical dependencesaénds, on thewave frequency. (b) Typical dependences?éndg? on the wave frequency.
~ kysl PN kygl
Exi =2, =7
& — 91 & — Y1
and from Egs. (12) and (18he obtain
k
S~8 ~ 8§ —; (24)
Ey1kq
W, k2 dwe, dwg,
W~ W, ~ k2 y ( 2 4 g2) 2 ) . 25
1 2k0K1< 0+(€12—912)2 EP (ef +91) 9 191 (25)
At the lower frequency boundanS — o and W — « [see EqQs. (24) and (25) and Fig.2], but the en
propogation velocity
-1
S 2c w [0e 20e;, 29,0
S 24— (2 950 0 (26)
Wl /ng ng 6(1) El 6(1) 51 6(1)

is finite [see Fig. 2(c)].
Taking derivative ot,, with respect tw
dw  dw dw g oo
we can write Eq. (26) in the following fo

-1
w 63V1>
Voy = C Ey1 +t——— . (27)
en ( Vi 2 ) dw
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i Fig.2. The dependences nbrmalized energy flux density (e
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Taking into account that.,, = v,,, one could get Eq. (27) by differentiating the dispersion equation, hav
this limiting case the form
w
D=k,——,/ = 0.
YT . Ey1

Using this expression f@, one obtains the derivativ:
oD oD 1 w O&yy
a;—Laz—‘z@%HGT;BJ>
Then, from Eq. (23) and thexpressior for derivatives oD, one obtains Eq. (27).
At the upper boundaryf the frequency domain that is determined by equ
91— & =92t &,
the wave vector is largéc{ > k), and, therefor k; = K, ~ |ky|. Thus, the energy flow densities in the first

second plasma regions are
_ _So ~ 50 - _
_Sl o S, P _andSl _ S,. o
Hence, thetotal energy flow densitand energy propagation velocigye vanishing at the upper bounc (see
Figs. 2 (a) and 2 (c)At the boundary, thenergy densities in both plasma regions egeal and are going to infini

proportionally tok, (it follows from the expressions flW; andW, presented after Eq. (21) )

W, = WOky dw(ey — g1) (12)
! ko(e1 — g1)? dw '
Wok,, dw(e, + g,) (23)

Ve dw
In Fig.2, energetic characteristics of the wave for different values of magnetic field are shown. One can
with the increase of magnetic field the energy flux density decreases, while the energy density ilAs a result, the
velocity of energy propagatiaecreases with growth of external magnetic f

Waves propagating in negative direction
Consider surface waves propagating in negative direction. The frequency domain for these waves is bc
the hybrid frequenciesoy; < w < wy,. We determia the direction of energy flow in each plasma region. Let us
from the energy flow in the first regi S;. We divide aforementioned interval in two pe wy; < w < wj; and
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w > wi;. For the first partZ < g2, thus the denominator of Eq.(6) is negative, and the terms in the numerator have
opposite signs, becausg > 0 andk, < 0. Therefore, to determine the sign of the expression we need to compare
these terms by magnitude. From inequaliti¢s< g? ande; > 0, it follows that the Voigt dielectric permittivity is

negative: gy, = (62 — g?)/e; <0, and thusk; = /k§ — &y k§ > |k, |. Taking into account thake;| < |g;|, one

comes to the conclusion thit, e | < |k, g4/, i.e. the numerator of Eq.(6) is positive and the expression as whole is
negative. For the frequencies larger thanw;;, the following inequalities hold true; > 0, &2 > g2, g, > 0,
meaning thak, < |k, | and|k,&;| > |k;9,|, thus the numerator of Eq. (6) is positive but the denominator is negative.
As a result, the sign of Eq. (6) is also negative in the frequency range considered. Therdfpre, @ahe energy flow
in the first plasma region is directed along the wave ves{ox (0).

Determine direction of the Poynting vector in the second plasma region. @incav < wy,, the dielectric
permittivity &, is negative ang, > 0, and fork,, < 0 we havek, e, > 0, meaning that the terms in the numerator of
Eq. (7) have different signs. Depending on the magnitude of wave ¥gctitie difference, e, — k, g, can be positive

or negative. The difference is zero if
9,
ky = kSO = _—ko.
The differencek, &, — k, g,is negative folk, | < |ks,|, and it is positive ifk, | > |k
Substitutingk,, = kg, into dispersion equation, we find the corresponding zero frequency

1
w2y = 5(0)1211 + \/w,‘_‘,l + 4w2(wp, — a)zz,l)> > w?.
Note that the total energy flow density is always directed along the wave vector (see Eqg.(11)). Near the lower

frequency limit o = wy,), whereg; — 0 and consequently; — oo, the expression for total energy flow density may
be simplified (see Eq.(11)):

kyic,’
As aresult, atv = wy, the total energy flow density is finite [see the region of small wave vectors in Fig. 3 (a)].

Meanwhile, the total energy density goes to infinity (see Fig. 3(b)). This conclusion follows from Eq. (18) if one takes
Ky = !

S =

W=W, =

Wor, [ €2+ g? dwe; 26,91 0wy,
2ky \(7 —gD)? 0w (e — g})? ow
Taking into account that at low frequencies= kg, /+/¢; (becauses; — 0), one concludes that
W, OJdwe
- 291Ve 0w
Since the total energy density is finite atd— oo, one obtains that the energy propagation velocity goes to zero
at the low frequency limit [Fig. 3(c)].
At the upper frequency limit determined by equation
g1+ € =92~ &,
the energy flows in the first and the second plasma regions are equal on absolute magnitude but have different
directions:

So So

, S, = :
&1t g ? 92— &
Thus, the total energy flux goes to zero kgr> kg (see Fig. 3(a)). Ik, — o, the total energy density goes to
infinity:

~

Sl'v

W, = Woky,  dw(e; + g1) _ Woky,  dw(e; — g2)
1 ko(ey + 91)? Jdw T k(e — 92)? ow .
Note that the expressions faf, andW, are similar to Egs. (28) and (29), describing the energy densities when the
waves propagate in positive direction.
With the growth of magnetic field the energy flux density decreases by magnitude and the energy also decreases
(see Fig.3). For higher values of magnetic field the maximum of group velocity decreases and shifts to the larger
magnitudes of the wave vector.
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CONCLUSIONS

We have studied thenergetic characteristics of the surface \s propagating alonthe plane plasma-plasma
interface immersed in aexternal magnetic fieldThe expressions for timeveraged energflow density and time
averaged energy density of the wairegach plasmregion have been obtained. We havalyzei the dependency of
these characteristics on thave vectomagnitude and directidior different values of magnetic fiel

The direction of Poynting vectdras bee investigated. For the waves with positikg, the energy fluxes in the
first and the second plasma regions are always opposite ition. Meanwhile, forthe waves with negative wa
number,the energy flux in the second plasma recgmay be directed alonthe flux in the first regio, as well as in
opposite direction. Thevave vector ancorresponding wave frequency for the case wherflux in the second regic
is absent have been found. Thus, darertain range of wave vectotthe fluxes in both plasma rons are in same
direction, what is imossible in the absence an external magnetic field. Meantintbe total tim-averaged energy
flux of the wavess always directed along the wave vec

The expression for theelocity of waveenergy propagation has been obtained.nNaAleshowed that the velocity
of SW energy propagation is equatie group velocity of the wax We havestudied the dependencygroup velocity
on thewave vector and magnitude of external magnetic ' It has been found that ttf#W energy flux and energy
velocity are vanishing when the wave vector is la

At the lower frequency limitthe energy propagation velocity depends on directibmvave vectorIf the wave
vectoris directed in negative direction, group velocity goes to zero, while for positikg it reaches a finite value.
With an increase of thexternal magnetic fielthe maximum of thgroup velocity decreas:
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