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A review of polyadic systems and their representations is given. The classification of general polyadic systems is done.
The multiplace generalization of homomorphisms, preserving associativity, is presented. The multiplace representations
and multiactions are defined, concrete examples of matrix representations for some ternary groups are given. The ternary
algebras and Hopf algebras are defined, their properties are studied. At the end some ternary generalizations of quantum
groups and the Yang-Baxter equation are presented.
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IIOJIMA/INMYECKUWUE CUCTEMBI, ITPEJCTABJIEHNSA I KBAHTOBBIE I'PVYIIITHI
C.A. dynawnit
ILlenmp mamemamuru, Hayku u obpasosarus, yrusepcumem Pameepca, ITuckamasati, 08854-8019, CIIIA

[IpuBesen 0630p MoOJIMAMIECKUX CUCTEM U UX IIPEJICTABICHMIA, JJaHa KyacCcudUKalys obmux nouagudecknx cucreM. [To-
CTPOEHBI MHOTOMECTHBIE 0DODIIEHNST TOMOMOP(MU3MOB, COXPAHSIIONINE ACCONMATUBHOCTD. OIpene/ieHbl My/TbTUIEHCTBUST
¥ MYJIBTAMECTHBIE TIpejicTaBieHus. [IpuBeieHbl KOHKPETHbIE IIPUMEPbl MATPUYHBIX IIPEJICTABICHUI JjIs HEKOTOPBIX TeP-
HapHbIX rpynn. OupesesieHsl TepHapHble ajarebpbl 1 Xord anrebpbl, n3ydeHbl UX CBoiicTBa. B 3akirouenne, npeiCcTBiIeHb!
HEKOTOPbIe TepHAPHBIE 0000OINEHNST KBAHTOBBIX I'PYII U ypaBHeHus1 fura-Bakcrepa.

KJIFOYEBBIE CJIOBA: n-apuas rpynma, Teopema llocra, KoMMyTaTruBHOCTD, ToMOMOpPGMU3M, I'PYIIOBOE JIeiCTBHE,
ypaBuenne fAura-Bakcrepa

IIOJITAZINYHI CUCTEMU, ITPEICTABJIEHHSA I KBAHTOBI I'PVIIN
C.A. Oynuniit
Lenmp mamemamuru, Hayky ma ocetmu, ywisepcumem Pameepcy, ITickamaset, 08854-8019, CIIIA

3pobireHo OrJIsiy MOaUIHIUX CUCTEM Ta IX NPEeJCTaBJIeHb, JaHa Kiacudikallis 3arajJbHUX HoJiaanauux cucreM. [1oby-
noBaHi baraToMicHi y3araJbHeHHsT roMoMopdi3MuiB, 1m0 36epiraoTs acoriarusaicTs. Busnadeni MysbTumil 1 MyabTrMicHi
npenacrasiends. HaBemeni KOHKpeTHI MPUKJIAIM MATPUIHUX MPEICTABICHD I JEeSIKNX TeEPHAPHUX I'pyn. Busnadeni Tep-
HapHa aJjirebpa i anrebpu Xorda, BUBUYeEHI 1X BiacTuBocTi. Ha 3akindeHHs1, mpeJCcTBIIeH] JIesIKi TepHAPHi y3araJbHEeHHS
KBAaHTOBUX I'DYI Ta piBHaAHHA fHra-Bakcrepa.

KJIFOYOBI CJIOBA: n-apua rpyna, Teopema [locra, komyTaruBaicTb, roMoMopdi3M, rpymnoBa mist, piBHaHHs fHTa-
Baxkcrepa

One of the most promising steps in generalizing physical theories is consideration of higher arity algebras [1],
in other words ternary and n-ary algebras, in which the binary composition law is substituted by ternary or
n-ary one [2].

Firstly ternary algebraic operations (with the arity n = 3) were introduced already in the XIX-th century
by A. Cayley in 1845 and later by J. J. Silvester in 1883. The notion of an m-ary group was introduced in
1928 by [3] (inspired by E. Néther) which is a natural generalization of the notion of a group. Even before in
1924, a particular case, that is, ternary group of idempotents, was used in [4] to study infinite abelian groups.
The important Post’s coset theorem explained the connection between n-ary groups and their covering binary
groups [5]. The next step in study of n-ary groups was the Gluskin-Hosszi theorem [6,7]. Another definition
of m-ary group can be given as a universal algebra with additional laws [8] or identities containing special
elements [9].

The representation theory of (binary) groups [10,11] plays an important role in their physical applications
[12]. It is initially based on a matrix realization of group elements and abstract group action as a usual matrix
multiplication [13,14]. The cubic and n-ary generalizations of matrices and determinants were made is [15,16],
and their physical application appeared in [17,18]. In general, particular questions of n-ary group representations
were considered in and matrix representations were derived by the author [19], and some general theorems

*On leave of absence from V.N. Karazin Kharkov National University, Svoboda Sq. 4, Kharkov 61022, Ukraine.
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connecting representations of binary and n-ary groups were presented in [20]. Here to generalize the above
constructions of n-ary group representations to more complicated and nontrivial cases.

In physics the most applicable structures are nonassociative Grassmann, Clifford and Lie algebras [21-23],
and so their higher arity generalizations play the key role in further applications. Indeed, the ternary analog of
Clifford algebra was considered in [24], the ternary analog of Grassmann algebra [25] was exploited to construct
various ternary extensions of supersymmetry [26].

The construction of realistic physical models is based on the Lie algebras, such that the fields take their
values in the concrete binary Lie algebra [23]. In the higher arity considerations the standard Lie bracket is
replaced by a linear n-ary bracket, and the algebraic structure of the corresponding model is defined by the
additional characteristic identity for this generalized bracket, the Jacobi identity [2]. There are two possibilities
to construct the generalized Jacobi identity: 1) The Lie bracket is a derivation by itself; 2) A double Lie bracket
vanishes, when antisymmetrized with respect of its entries. The first case leads to so called Filippov algebras [27]
(or n-Lie algebra) and second case corresponds to generalized Lie algebras [28] (or higher order Lie algebras).

The infinite-dimensional version of n-Lie algebras are the Nambu algebras [29, 30], and their n-bracket is
given by the Jacobian determinant of n functions, the Nambu bracket, which in fact satisfies the Filippov identity
[27]. Recently, the ternary Filippov algebras were successfully applied to a three-dimensional superconformal
gauge theory describing effective worldvolume theory of coincident M2-branes of M-theory [31-33]. The infinite-
dimensional Nambu bracket realization [34] gave possibility to describe a condensate of nearly coincident M2-
branes [35].

From another side, Hopf algebras [36-38| play a fundamental role in the quantum group theory [39,40].
Previously, it was introduced their Von Neumann generalization in [41-43], also their actions on quantum plane
were classified in [44], and the ternary Hopf algebras were defined and studied in [45, 46].

The goal of this paper is to give a comprehensive review of polyadic systems and their representations.
First, we classify general polyadic systems and introduce n-ary semigroups and groups. Then we consider their
homomorphisms and the multiplace generalizations, paying attention on their associativity. We define multiplace
representations and multiactions, give examples of matrix representations for some ternary groups. We define
and investigate ternary algebras and Hopf algebras, study their properties and give some examples. At the end
we consider some ternary generalizations of quantum groups and the Yang-Baxter equation.

PRELIMINARIES

Let G be a non-empty set (underlying set, universe, carrier), its elements we denote by lower-case Latin
letters g; € G. The n-tuple (or polyad) g1,..., g, of elements from G is denoted by (g1, ..., gn). The Cartesian
n

product! G x ... x G = G*™ consists of all n-tuples (g1, ...,9gn), such that g; € G, i = 1,...,n. For all equal
elements g € G, we denote n-tuple (polyad) by power (¢"). If the number of elements in the n-tuple is clear
from the context or is not important, we denote it in one bold letter (g), in other case we use power in brackets
(g(”)). Introduce two important constructions on sets.

The i-projection of the Cartesian product G*™ on its i-th “axis” is the map Prz(-") : G*™ — G such that
(915 Gir- 1 Gn) = Gi-

The i-diagonal Diag, : G — G*" sends one element to the equal element n-tuple g — (g™).

The one-point set {o} can be treated as a unit for the Cartesian product, since there are bijections between
G and with G x {e} ™", where G can be on any place. On the Cartesian product G*" one can define a polyadic
(n-ary, n-adic, if it is necessary to specify n, its arity or rank) operation p, : G*™ — G. For operations we use
small Greek letters and place arguments in square brackets p, [g]. The operations with n = 1,2, 3 are called
unary, binary and ternary. The case n = 0 is special and corresponds to fixing a distinguished element of

G, a “constant” ¢ € G, and it is called a 0-ary operation ,u((f), which maps the one-point set {e} to G, such

that uéc) : {e} — G, and formally has the value ugc) [{e}] = ¢ € G. The 0-ary operation “kills” arity, which can
be seen from the following [47]: the composition of n-ary and m-ary operations p,, o i, gives (n +m — 1)-ary
operation by

Then, if to compose p,, with the 0-ary operation u(()c), we obtain

1 9] = pn lg. ], (2)

because g is a polyad of length (n — 1). So, it is needed to make a clear distinction between the 0-ary operation

,ugc) and its value ¢ in G, which will be seen and important below.

1We place the sign of the Cartesian product (x) into the power, because the same abbreviation will be used below also for other
types of products.
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A polyadic system G is a set G which is closed under polyadic operations.

We will write G = (set |operations ) or G = (set |operations |relations ), where “relations” are some additional
properties of operations (e.g., associativity conditions for semigroups or cancellation property). In such definition
it is not needed to list the images of 0-ary operations (e.g. unit, zero in groups), as it is done in various other
definitions. Here, we mostly consider concrete polyadic systems with one “chief” (fundamental) n-ary operation
i, which is called polyadic multiplication (or n-ary multiplication).

A n-ary system G,, = (G| up) is a set G closed under one n-ary operation p, (without any other
additional structure).

Note that a set with one closed binary operation without any other relations was called a groupoid by
Hausmann and Ore [48] (see, also [49]). However, nowadays the term “groupoid” is widely used in the category
theory and homotopy theory for a different construction with binary multiplication, the so-called Brandt
groupoid [50] (see, also, [51]). Alternatively, and much later on, Bourbaki [52] introduced the term “magma”
for binary systems. Then, the above terms were extended to the case of one fundamental n-ary operation
as well. Nevertheless, we use some neutral notations “polyadic system” and “n-ary system” (when arity n is
fixed /known /important), which adequately indicates all their main properties.

Let us consider the changing arity problem:

For a given n-ary system (G | p,) to construct another polyadic system (G | p,,) over the same set G,
which multiplication has different arity n'.

The formulas (1) and (2) give us the simplest examples, how to change arity of a polyadic system. In

general, there are 3 ways:

1. Iterating. Using composition of the operation pu,, with itself, one can increase arity from n to n},., (asin (1))

without changing signature of the system. We denote the number of iterating multiplications by /,,, and use
the bold Greek letters ,u,l;“ to for the resulting composition of n-ary multiplications, such that

Zl»"
o e, def s 1x(n—1) : 1x(n—1)
My = Mgt = fhn © | fn 0 ... |y X id Looxid , (3)
where
n =njer =0, (n—1) +1, (4)

which gives the length of a polyad (g) in the notation uf{‘ [g]. Without assuming associativity there many
variants of placing u,’s among id’s in r.h.s. of (3). The operation uff is named a long product [3] or
derived [53].

2. Reducing. Using n.. distinguished elements or constants (or n. additional 0-ary operations ,u(()c"), i=1,...n.),

one can decrease arity from n to n/_; (as in (2)), such that?

Ne

iy = et E o [ s ) g e | (5)

where
n/ = Nyred = N — Ng, (6)
and the 0-ary operations péci) can be on any places.

3. Mixing. Changing (increasing or decreasing) arity by combining the iterating and reducing (maybe with
additional operations of different arity). If we do not use additional operations the final arity can be presented
in general form using (4) and (6). It will depend on the order of iterating and reducing, so we have two
subcases:

(a) ITterating— Reducing. We have

n' = Niter—red = Eu (n - 1) —ne+ 1. (7)

/ —
iter—red —

The maximal number of constants (when n 2) is equal to

C

ng®™*=/¢,(n—1)—1 (8)

and can be any by increasing the number of multiplications /,,.

2In [54] /1,7(161"'6"6) is named a retract (which is already busy and widely used in the category theory for another construction).
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(b) Reducing—Iterating. We obtain
n = nped—iter = Ly (n —1—n.) + 1. (9)
Now the maximal number of constants is
ne™ =n —2 (10)
and is achieved, only when ¢, = 1.

To give examples to the third (mixed) case we put n = 4, £, = 3, n, = 2 for both subcases of opposite
ordering:

1. Iterating— Reducing. We can put
’uécl,@)/ {9(8)} = pa[91, 92, 93, 114 (94, G5 g6, 114 [97, g8, €1, C2]]] - (11)
2. Reducing— Iterating. We can have
(cr,e2)r | (4)| _
|22 g = U4 [91,017027M4 [92a617627p“4 [93761702794”]‘ (12)

It is important to find conditions, when the iterating and reducing compensate each other, i.e. they do not
change arity. Indeed, let the number of the iterating multiplications ¢, is fixed, then we can find such number
of reducing constants ngo), that the final arity will coincide with the initial arity n. The result will depend on
the order of operations. There are two cases:

1. Iterating— Reducing. For the number of reducing constants ngo) we obtain from (4) and (6)

n® = (n—1)(6, 1), (13)
such that there is no restriction on £,.
2. Reducing— Iterating. For ngo) we get
n = =D 2l Uéf“ = (14)

and now ¢, <n — 1. The requirement that ngo) should be integer gives two further possibilities

n—1
n =3 5 k=2 (15)
n—2, f,=n-—1

The above relations can be useful in the study of various n-ary multiplication structures and their presentation
in special form needed in concrete problems.

SPECIAL ELEMENTS AND PROPERTIES OF POLYADIC SYSTEMS
Let us remind definitions of some standard algebraic systems and their special elements, which will be
considered in this paper, using our notation.

A zero of a polyadic system is a distinguished element z (and the corresponding 0-ary operation u(()z))
such that for any (n — 1)-tuple (polyad) g € G*(*~1 we have

1229 [g,z] =z, (16)

where z can be on any place in the Lh.s. of (16).

There is only one zero (if not to fix its place) which can be possible in a polyadic system. As in the binary
case, an analog of positive power of an element [5] should coincide with the number of multiplications ¢,, in the
iterating (3).

A (positive) polyadic power of an element is

g(e“) _ Mf{" [gZ}L(n71)+1:| . (17)
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An element of a polyadic system g is called £,-nilpotent (or simply nilpotent for £, = 1), if there exist
such /,, that
gt = 2. (18)

A polyadic system with zero z is called £,-nilpotent, if there exist such ¢, that for any (¢, (n — 1) + 1)-
tuple (polyad) g we have
it lg) = 2. (19)
Therefore, the index of nilpotency (number of elements whose product is zero) of £,-nilpotent n-ary
system is (¢, (n — 1) 4+ 1), while its polyadic power is¢,, .
A polyadic (n-ary) identity (or neutral element) of a polyadic system is a distinguished element e

(and the corresponding 0-ary operation uée)) such that for any element g € G we have

Hn [ga en—l} =9 (20)

where g can be on any place in the Lh.s. of (20).
In binary groups the identity is the only neutral element, while in polyadic systems, there exist neutral
polyads m consisting of elements of G satisfying

fn g, m] = g, (21)

where g can be also on any place. The neutral polyads are determined not uniquely. It follows from (20) that
the sequence of polyadic identities e®~! is a neutral polyad.

An element of a polyadic system ¢ is called ¢,-idempotent (or simply idempotent for £, = 1), if there
exist such ¢, that

g =g. (22)

Both zero and identity are ¢,-idempotents with arbitrary £,. We define the (total) associativity as
invariance of the composition of two n-ary multiplications

12 g, byl = o [g, o [B] ] = inv (23)

under placement of the internal multiplication in r.h.s. with the fixed order of elements in the whole polyad of
(2n — 1) elements £~ = (g, h,u). Informally, “internal brackets/multiplication can be moved on any place”,
which gives n relations

by, © (un X idx(nfl)) =...=lpo (idx(nfl) Xﬂn) . (24)

There are many other particular kinds of associativity which were introduced in [55] and studied in [56,57]. Here
we will confine ourselves the most general total associativity (23). In this case, the iterating does not depend of
the placement of internal multiplications in the r.h.s of (3).

A polyadic semigroup (n-ary semigroup) is a n-ary system which operation is associative, or GS¢™*9" =
(G| pn | associativity ).

In a polyadic system with zero (16) one can have the trivial associativity, when all n terms is (23)
are equal to zero, i.e.

By lgl =z (25)

for any (2n — 1)-tuple g. Therefore, we state that

Any 2-nilpotent n-ary system (having index of nilpotency (2n — 1)) is a polyadic semigroup.

In the case of changing arity one should use in (25) not the changed final arity n/, but the “real” arity
which is n for the reducing case and ¢, (n — 1) 4 1 for all other cases. Let us give the examples.

In the mixed (interating-reducing) case with n = 2, ¢, = 3, n. = 1, we have a ternary system (G | us)

iterated from a binary system <G | pa, ,u(()c)> with one distinguished element c (or an additional 0-ary operation)?

1 19 hou] = (g (h- (u-¢))), (26)

where for binary multiplication we denote g-h = pso [g, h|. Thus, if the ternary system <G | ugc)> is nilpotent of

index 7 (see 9), then it is a ternary semigroup (because ugc) is trivially associative) independently of associativity

of usy (see, e.g. [19]).
It is very important to find the associativity preserving conditions (constructions), when associative
initial operation p, leads to associative final operation p,, during the change of arity.

3This construction is named the b-derived groupoid in [54].
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The associativity preserving reducing can be given by construction of the binary associative operation
using (n — 2)-tuple ¢ consisting of n. = n — 2 different constants

157 (g, 0] = pin [g, ¢, ). (27)

The associativity preserving mixing constructions with different arities and places were considered in [54,
57,58].

An associative polyadic system with identity (20) is called a polyadic monoid.

The structure of any polyadic monoid is fixed [59]: it can be obtained by iterating of a binary operation [60]
(for polyadic groups this was shown in [3]).

In polyadic systems, there are several analogs of binary commutativity. The most straightforward one comes
from commutation of the multiplication with permutations.

A polyadic system is o-commutative, if u,, = u, oo, or

tin 9] = pin [0 0 g], (28)

where 0o g = (g,,(l)7 e ,go(n)) is a permutated polyad and o is a fixed element of S,,, a permutation group of
n elements. If (28) holds for all o € S,,, then a polyadic system is commutative.
A special type of the o-commutativity

tn (9, h] = pn [y 2, 9], (29)

where t is any fixed (n — 2)-polyad, is called semicommutativity. So for a n-ary semicommutative system we
have

fin [g, 0" 7] = p [A71 9] - (30)

If a n-ary semigroup G*“™"? is iterated from a commutative binary semigroup with identity, then G*¢™%"P
is semicommutative.
Let G be the set of natural numbers N, and the 5-ary multiplication is defined by

s 9] = g1 — g2 + g3 — g4 + g5, (31)

then Gy = (N, us) is a semicommutative 5-ary monoid having the identity e, = s [9°] = g for each g € N.
Therefore, G? is the idempotent monoid.
Another possibility is to generalize the binary mediality in semigroups

(911 - 912) - (921 - g22) = (911 - g21) - (912 - G22) , (32)

which, obviously, follows from the binary commutativity. But for n-ary systems they are different. It is seen that
the mediality should contain (n + 1) multiplications, it is a relation between n x n elements, and therefore can
be presented in a matrix from. The latter can be achieved by placing arguments of the external multiplication
as a column.

A polyadic system is medial (or entropic), if [56,61]

Hn, [911»~~~,91n] Hn [911,~~.7gn1]
Hn = Hn . (33)
Hn [gnly"-agnn] Hn [glny---ygnn}

For polyadic semigroups we use the notation (3) and can present the mediality as follows
pi |G = py [GT], (34)

where G = ||g;;|| is the n x n matrix of elements and G* is its transpose. The semicommutative polyadic
semigroups are medial, as in the binary case, but, in general (except n = 3) not vise versa [62]. A more general
concept is o-permutability [63], such that the mediality is its particular case with o = (1,n).

A polyadic system is cancellative, if

Hn [ga t] = Un [h, t] =g = h, (35)

where g, h can be on any place. This means that the mapping u, is one-to-one in each variable. If g, h are on
the same i-th place on both sides, the polyadic system is called i-cancellative.
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The left and right cancellativity are 1-cancellativity and n-cancellativity respectively. A right and left
cancellative n-ary semigroup is cancellative (with respect to the same subset).

A polyadic system is called (uniquely) i-solvable, if for all polyads ¢, u and element h, one can (uniquely)
resolve the equation (with respect to h) for the fundamental operation

pn [u, b t] =g (36)

where h can be on any i-th place.
A polyadic system which is uniquely é-solvable for all places i is called a n-ary (or polyadic) quasigroup.
It follows, that, if (36) uniquely i-solvable for all places, than

pl fuht] =g (37)

can be (uniquely) resolved with respect to h being on any place.

An associative polyadic quasigroup is called a n-ary (or polyadic) group.

The above definition is the most general one, but it is overdetermined. Much work on polyadic groups was
done [64] to minimize the set of axioms (solvability not in all places [5,65], decreasing or increasing number of
unknowns in determining equations [66]) or made it in terms of additionally defined objects (various analogs of
identity and sequences [67]), as well as using not the total associativity, but various partial ones [57,68,69].

In a polyadic group the only solution of (36) is called a querelement of g and denoted by g [3], such that

Hn [hag] =9 (38)

where g can be on any place. So, any idempotent g coincides with its querelement g = g. It follows from (38)
and (21), that the polyad

ny = (5"%9) (39)
is neutral for any element of a polyadic group, where g can be on any place. If this i-th place is important,
then we write n,;. The number of relations in (38) can be reduced from n (number of possible places) to only
2 (when g is on the first and last places [3,70], or other 2 places ). In a polyadic group the Dérnte relations

o (95 Tehsi] = o M5, 9] = g (40)

hold valid for any allowable 4, j. In the case of a binary group the relations (40) become g-h-h~! = h-h=!.g = g.
The relation (38) can be treated as a definitions of the unary queroperation

plgl =g (41)
A polyadic group is a universal algebra
GI'"P = (G | pn, 11 | associativity, Dérnte relations ) , (42)

where p,, is n-ary associative operation and fi; is the queroperation.

A straightforward generalization of the queroperation concept and corresponding definitions can be made
by substituting in the above formulas (38)—(41) the n-ary multiplication u, by the iterating multiplication uf{"
(3) (cf. [71] for £, = 2).

Let us define the querpower k of g recursively

§<<k>> _ <§<<k—1>>)7 (43)

k

where §{9 = ¢, g{1) = g, or as the k composition AS* =Ty o i o...o fi; of the queroperation (41).

For instance [66], fi$? = p”~3, such that for any ternary group fi$? = id, i.e. one has § = g. Using the
queroperation in polyadic groups we can define the negative polyadic power of an element g by the following
recursive relation

Hn [9““7”,9”72,9“5“)} =y, (44)
or (after use of (17)) as a solution of the equation
uip g, gm0 ] = g, (45)

It is known that the querpower and the polyadic power are mutually connected [72]. Here, we reformulate
this connection using the so called Heine numbers [73] or g-deformed numbers [74]

[[K]], = : (46)
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which have the “nondeformed” limit ¢ — 1 as [k], — k. Then
gk — g(=lklla) (47)

which can be treated as follows: the querpower coincides with the negative polyadic deformed power with the
“deformation” parameter ¢ which is equal to the “deviation” (2 — n) from the binary group.

HOMOMORPHISMS OF POLYADIC SYSTEMS
Let G,, = (G; pp) and G, = (G'; ul.,) be two polyadic systems of any kind (quasigroup, semigroup, group,
etc.). If they have the multiplications of the same arity n = n’, then one can define the mappings from G, to
G/,. Usually such polyadic systems are similar, and we call mappings between them the equiary mappings.

Let us take n 4+ 1 mappings <piGG/ :G—G',i=1,...,n+ 1. An ordered system of mappings {goiGG/} is
called a homotopy from G,, to G/, if

S (i (g1, -5 gn)) = 1y |07 (91) -, 059 (gn)|, 9 €G. (48)

In general, one should add to this definition the “mapping” of the multiplications

(nu')
L

[ S . (49)
(n')

In such a way, the homotopy can be defined as the extended system of mappings {gol»GG,; Unn }

(1)

The existence of the additional “mapping” ¥n, ’ acting on the second component of (G;u,) is tacitly

(")

nn’
{ore st}

Gn = e (50)

implied. We will write/mention the “mappings” manifestly, e.g.,

as needed only. If all the components cprl of a homotopy are bijections, it is called an isotopy. In case of
polyadic quasigroups [56] all mappings <piGG/ are usually taken as permutations of the same set G = G'. If the
multiplications are also coincide p,, = ), then {apiGG; id} is called an autotopy of the polyadic system G,,.
Various properties of the homotopy in universal algebras were studied, e.g. in [75,76].

A homomorphism from G,, to G/, is given, if there exists a mapping ©%C" . G — @ satisfying

% (tn lg1,- - gn)) = 1y {wGG' (g1) 5., 9%¢ (gn)] . gi€G. (51)

Usually the homomorphism is denoted by the same one letter QDGG/

GG,; 1/),(%” )} We will use both notations on a par.

, while it would be more consistently
to use for its notation the extended pair of mappings {cp

We, first, mention some small subset of known generalizations of the homomorphism (for bibliography till
1982 see, e.g., [77]) and then introduce a concrete construction for an analogous mapping which can change
arity of the multiplication (fundamental operation) without introducing additional (term) operations. A general
approach to mappings between free algebraic systems was initiated in [78], where the so-called basic mapping
formulas for generators were introduced, and its generalization to many-sorted algebras was given in [79]. In [80]
it was shown that the construction of all homomorphisms between similar polyadic systems can be reduced to
some homomorphisms between corresponding mono-unary algebras [81]. The notion of the n-ary homomorphism
as a sequence of n consequent homomorphisms ¢;, ¢ = 1,...,n, of n similar polyadic systems

n

G, Ada, 3. "5 el Gy (52)

n n n

(generalizing the Post n-adic substitutions [5]) was introduced in [82], and studied in [83,84].

The above constructions do not change arity of polyadic systems, because they are based on the corresponding
diagram which is a definition of an equiary mapping. To change arity one has to:

1) add another equiary diagram with additional operations using the same formula (51), both do not
change arity;

2) use one modified (and not equiary) diagram and the underlying formula (51) by themselves, which will
allow us to change arity without introducing additional operations.
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The first way leads the concept of the weak homomorphism which was introduced in [85-87] for non-
indexed algebras and in [88] for indexed algebras, then developed in [89] for Boolean and Post algebras, in [90]
for coalgebras and F-algebras [91] (see also [92]). To define the weak homomorphism in our notation we should
incorporate into the polyadic systems (G; u,,) and (G'; p),,) the following additional term operations of opposite
arity v @ G — G and vl G'™*"™ — G and consider two equiary mappings between (G;p,, v, ) and
(G i ).

A weak homomorphism from (G, vy) to (G’ ul,, v
satisfying two relations simultaneously

/
n

) is given, if there exists a mapping @GG, G — G

% (ptn [g1, -+ 9al) = Vi [ (1) .65 (90)] (53)
O (g1, gur]) = i [#9 (g1) - 6% (gu)] - (54)

If only one of the relations (53) or (54) takes place, such a mapping is called a semi-weak homomorphism
[93]. If @GG/ is bijective, then it defines a weak isomorphism. Any weak epimorphism can be decomposed into
a homomorphism and a weak isomorphism [94], therefore the study of weak homomorphisms reduces to weak
isomorphisms (see also [95-97]).

MULTIPLACE MAPPINGS OF POLYADIC SYSTEMS

Let us turn to the second way of changing arity of the multiplication and use only one relation which we
modify in some natural manner. First, recall that in any set G there always exists the additional distinguished
mapping, viz. the identity idg. We use the multiplication p,, with its combination of idg. We define an ({iq-
intact) id-product for the polyadic system (G; u,,) as

.Ugfid) = Hn X (idG)Xéid ) (55)
Mgleid) . GX(TH-eid) N GX(1+€id)_ (56)

To indicate the exact i-th place of u, in r.hs. of (55), we write u%‘d) (), as needed. Here we use the

id-product to generalize the homomorphism and consider mappings between polyadic systems of different arity.
It follows from (56) that, if the image of the id-product is G alone, than £;g = 0. Let us introduce a multiplace

(n)

mapping ®, acting as follows
o) gk L, (57)
We are allowed to take only one upper @,gn’n ) , because of one G’ in the upper right corner. Since we already
know that the lower right corner is exactly G’ xn’ (as a pre-image of one multiplication ., ), the lower horizontal

(n)

arrow should be a product of n’ multiplace mappings @, . So we can write a definition of a multiplace analog
of the homomorphism which changes arity of the multiplication using one relation.
()

A k-place heteromorphism from G,, to G, is given, if there exists a k-place mapping @, (57) such
that the corresponding defining equation (a modification of (51)) depends of the place i of u,, in (55). For i =1
it can read as

Hn [gla e agn}
n,n’ In+1 nyn’ non'
(") _ = [0 el : . (58)

9k Gkn’
In+tia

This notion is motivated by [98, 99], where mappings between objects from different categories were
considered and called chimera morphisms. See, also, [100].
In the particular case n =3, n’ =2, k =2, £ig = 1 we have

HB32) < 13 (91, 92, 93] > _ {@(3,2) < g1 ) ,<I>(3’2) ( 93 ﬂ . 59
2 9 Ho | P2 9 2 9 (59)

This formula was used in the construction of the bi-element representations of ternary groups [19]. Consider
the example.
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Let G = M$" (K), a set of antidiagonal 2 x 2 matrices over the field K and G’ = K, where K = R, C, Q, H.
The ternary multiplication us is a product of 3 matrices. Obviously, us is nonderived. For the elements g; =

( I? %i >, i = 1,2, we construct a 2-place mapping G x G — G’ as

o2 ( i: ) = ajasby by, 0

which satisfies (59). We can introduce a standard 1-place mapping by ¢ (g;) = a;b;. It is important to note,
that ¢ (g;) satisfies (51) for a commutative field K only (= R,C) becoming a homomorphism, and in this case

we can have the relation between the heteromorhism <I>é3’2) and the standard homomorphism

3,2
o0 () =g l) (o). (61
where the product (-) in Lh.s. is taken in K, such that (51) and (59) coincide. For noncommutative field K (= Q
or H) we can define the heteromorphism (60) only.

A heteromorphism is called derived, if it can be expressed through ordinary (1-place) homomorphism. So,
in the above example the heteromorphism is derived (by formula (61)) for a commutative field K and nonderived
for a noncommutative one.

For arbitrary n a slightly modified construction (59) with still binary final arity, defined by n’ =2,k = n—1,
lig =n— 2,

Hn [gla"'ugnfhhl] 0 hl

ha . 2) .
: : : 1 : - (62)

hnfl In—1 hnfl
was used in [53] to study representations of n-ary groups. However, no new results compared with [19] (other
than changing 3 to n in some formulas) were obtained. This reflects the fact that a major role play the final
arity n’ and number of n-ary multiplications in Lh.s. of (59) and (62). In the above cases, the latter number
was one, but can make it arbitrary below n.

A heteromorphism is called a £,-ple heteromorphism, if it contains ¢, multiplications in the argument of

(P,(Cn’” ) in its defining relation. According this definition the mapping defined by (58) is the 1,,-ple heteromorphism.
So by analogy with (55)—(56) we define a ¢,,-ple {ig-intact id-product for the polyadic system (G; p,) as

Mgua[id) _ (Mn)xfu > (idg)xfid7 (63)
#%w&d) s G butlia) _y < (butlia) (64)

(n)

A (,-ple k-place heteromorphism from G, to G/, is given, if there exists a k-place mapping ®,
(57). The corresponding main heteromorphism equation is

Hn [gla e 7gn] 3
. eﬂ
, ' , g1 ) k(n'—1)
q)lgn,n ) Hn [ng(éu—l), s ;gnfu} _ u;ﬂ cI)](Cn,n ) o 7‘1)](:,” ) . (65)

gnéu+17

. 9k 9kn’
bia
9nt,+ta

Obviously, we can consider various permutations of the multiplications in both sides, as further additional
demands (associativity, commutativity, etc.), which will be considered below. The system of equation connecting
initial and final arities is

kn' = TLE# + liq, (66)
k=20,+laq. (67)
Excluding ¢, or {iq, we obtain two arity changing formulas, respectively

-1

TL, =Nn— L&d, (68)
k
-1

n = ”Téu +1, (69)
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where "T_léid > 1 and "T_lﬁu > 1 are integer. The following inequalities hold valid
1<, <k, (70)
0< g <k—1, (71)
bi<k<(m-1)0, (72)
2<n' <n, (73)

which are important for further classification of heteromorphisms. The main statement follows from (73):

(n.n')

The heteromorphism ®, defined by the relation (65) decreases arity of the multiplication.

Another important observation is the fact that only the id-product (63) with £;q # 0 leads to change of
the arity. In the extreme case, when k approaches its minimum, k£ = kyijn = £,, the final arity approaches
its maximum n;,. = n, and the id-rpoduct becomes a product of ¢, initial multiplications p, without id’s,
since now fjq = 0 in (65). Therefore, we call a heteromorphism defined by (65) with ¢iq =0 a k(= ¢,)-place
homomorphism. The ordinary homomorphism (48) corresponds to k = ¢, = 1, and so it is really the 1-place
homomorphism. An opposite extreme case, when the final arity approaches its minimum n ., = 2 (the final
operation is binary), corresponds to the maximal value of k, that is &k = kmax = (n — 1) £,,. The number of id’s
now is fiq = (n —2) ¢, > 0, which vanishes, when the initial operation is binary as well. This is the case of the
ordinary homomorphism (48) for both binary operations n’ =n =2 and k = ¢, = 1. We conclude that:

Any polyadic system can be mapped into a binary system by means of the special k-place £,,-ple heteromorphism

@,(Cn’n ), where k£ = (n—1)¢, (we call it a binarizing heteromorphism) which is defined by (65) with
gid = (n — 2) fﬂ.

In the relation with the Gluskin-Hosszi theorem [7] (any n-ary group can be constructed by the special
binary group and its homomorphism) our statement can be treated as an opposite one: any n-ary system (not
only a group) can be mapped into a binary system, but now using another construction, that is, the binarizing
heteromorphism.

The case of 1-ple binarizing heteromorphism (¢, = 1) corresponds to the formula (62). Further requirements

(associativity, commutativity, etc.) will give additional relations between multiplications and @,(Cn’n ), and fix
the exact structure of (65). Thus, we arrive to the following
Classification of £,,-ple heteromorphisms:

1. n=n__. =n— @,i"’") is the £,-place or multiplace homomorphism, i.e.,

max
k = knin = 4. (74)
2.2<n <n= (I’,(cn’n ) is the intermediate heteromorphism with

k= ¢ (75)

n—1"

In this case the number of intact elements is proportional to the number of multiplications

!

n—n
Eid == m we (76)

3. n=nl,; =2= <I>,(cn’2) is the (n — 1) £,,-place (multiplace) binarizing heteromorphism, i.e.,
k= kmax = (n— 1) €. (77)

In the extreme (first and third) cases there are no restrictions on the initial arity n, while in the intermediate
case n is “quantized” due to the fact that fractions in (68) and (69) should be integer. Thus, we have established a
general structure and classification of heteromorphisms defined by (65). The next important issue is preservation
of special properties (associativity, commutativity, etc.), while passing from p,, to p,,, which will further restrict
the concrete shape of the main relation (65) for each choice of the heteromorphism parameters: arities n, n/,
places k, number of intacts {4 and multiplications ¢,,.
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ASSOCTATIVITY AND HETEROMORPHISMS

The most important property of the heteromorphism, which is needed for its next applications in the
representation theory, is associativity of the final operation y/,,, when the initial operation fx,, is associative. In
other words, here we consider the concrete form of semigroup heteromorphisms. In general, this is a complicated
task, because it is not clear from (65), which permutation in Lh.s. should be taken to get an associative product
in its r.h.s. for each set of the heteromorphism parameters. Straightforward checking of the associativity of the
final operation u,, for each permutation in Lh.s. of (65) is almost impossible, especially for higher n. To solve
this difficulty we introduce the concept of the associative polyadic quiver and special rules to construct the
associative final operation p!,.

A polyadic quiver of product is the set of elements from G,, (presented as several copies of some matrix
of the elements glued together) and arrows, such that the elements along arrows form n-ary product p,. For
instance, for the multiplication g4 [g1, ha, g2, u1] the 4-adic quiver is denoted by {g1 — ha — g2 — w1 }. Here the
elements from G,, are arbitrary and have no connection with heteromorphisms.

Next we define polyadic quivers which are related to the main heteromorphism equation (65) in the
following way: 1) the matrix of elements is the transposed matrix from r.h.s. of (65), such that different letters

(n)

correspond to their place in ®, and the low index of an element is related to its position in the y,, product;
2) the number of polyadic quivers is ¢, which corresponds to ¢, multiplications in the Lh.s. of (65); 3) the
heteromorphism parameters (n, n’, k, {iq and £,) are not arbitrary, but satisfy the arity changing formulas
(68)-(69). In this way, a polyadic quiver makes clear visualization of the main heteromorphism equation (65);
4) The intact elements will be placed after semicolon.

For example, the polyadic quiver {g1 — ho — g2 — uq; hy,us} corresponds to the heteromorphism with
n=4n"=2k=3l6g=2and {, =11s

ta (g1, ha, g2, u1] g1 g2
(¥ hy = | @82 hy |, By | (78)
U2 Uy U2

As it is seen from (78), the product p} is not associative, if p14 is associative. So, not all polyadic quivers preserve
associativity.

An associative polyadic quiver is a polyadic quiver which ensures the final associativity of u], in the
main heteromorphism equation (65), when the initial multiplication pu,, is associative.

So, one of the associative polyadic quivers which corresponds to the same heteromorphism parameters as
the non-associative quiver (78) is {g1 — ha — w3 — g2; h1,u2} which corresponds to

ta (g1, ha,ut, g2] g1 g2
(bi(’)4’2) hy = /LIQ (I)gl’z) hy R (I):(;l’z) ho . (79)
U2 Uy U2

‘We propose the classification of associative polyadic quivers and the rules of construction of the corresponding
heteromorphism equations, and use for the heteromorphism parameters the classification of £,,-ple heteromorphisms
(75). In other words, we describe the consistent procedure of building the semigroup heteromorphisms.

Let us consider the first class of heteromorphisms (without intact elements ¢ig = 0 or intactless), that
is £,,-place (multiplace) homomorphisms. In the simplest case, associativity can be reached, when all elements
in a product are taken from the same row. The number of places k is not fixed by the arity relation (68) and
can be arbitrary, while the arrows can have various directions. There are 2¥ such combinations which preserve
associativity. If the arrows have the same direction, this kind of mapping is also called homomorphism. As an
example, for n =n’' =3, k =2, {,, = 2 we have

33 [ Hal91,92,98) \ _ / [463 ( @1 3.3) (92 33 ( 93 ]
2 ( 3 [, ha, hs] ) — s _(I>2 ( ha )’(1)2 ( ha ),@2 ( hs ) - (50)
Note that the analogous quiver with opposite arrow directions is
@.3) ( #3lo,92,93) \ _ o [g69 (0 3.3) [ 92 33 (93 )
®2 ( 13 [hg,hg,hﬂ ) = M3 _(I)Q < hl ) 7@2 ( h2 ) aq)Q ( h3 )_ : (81)

The latter mapping was used in constructing the middle representations of ternary groups [19].
The important class of intactless heteromorphisms (with ¢4 = 0) preserving associativity can be constructed
using analogy with the Post substitutions [5], and therefore we call it the Post-like associative quiver.



40
«Journal of Kharkiv National University», Ne1017, 2012 S.A. Duplij

The number of places k is now fixed by k = n —1, while n’ = n and ¢, = k = n— 1. An example of the Post-like
associative quiver with the same heteromorphisms parameters as in (80)-(81) is

3.3) [ w391, h2, 93] ) ) { (3,3) ( 9 ) (3.3) < 9 > <3,3)( 93 )]
® — | D ) . 82
2 ( w3 [h1, g2, hs] Hs | ™2 hy 2 ha 2 hs (82)

This construction appeared in the study of ternary semigroups of morphisms [101-103]. Its n-ary generalization
was used in consideration of polyadic operations on Cartesian powers [104], polyadic analogs of the Cayley
and Birkhoff theorems [84,105] and special representations of n-groups [106,107] (where the n-group with the
multiplication pf was called the diagonal n-group). Consider the example.

Let A be the Grassmann algebra consisting of even and odd parts A = Ag @ A1 (see e.g., [108]). The odd

part can be considered as a ternary semigroup Ggi) = (A1, ps), its multiplication pg : A X A; x A; — A7 is
defined by us[a, B,7] = « - B - ~, where (-) is multiplication in A and «, 8,7 € A7, so Gg) is nonderived and
contains no unity. The even part can be treated as a ternary group Géﬁ) = (I_X@, ws) with the multiplication
wh o Agx Agx Ag — Ag, defined by ps [a,b, ¢] = a-b-c, where a,b, c € Ag, thus Ggo) is derived and contains unity.

We introduce the heteromorphism Géi) — Ggﬁ) as a mapping (2-place homomorphism) <I>é3’3) A7 X A7 = Ag
by the formula
o) ( g ) =a-p, (83)

where «, 8 € A7. It is seen that (DS"S) defined by (83) satisfies the Post-like heteromorphism equation (82), but
not the “vertical” one (80), due to anticommutativity of odd elements from A;. In other words, Ggo) can be

treated as a nontrivial example of the “diagonal” semigroup of Gg) (according to the notation of [106,107]).
Note that for & > 3 there exists additional (to the above) associative quivers having the same heteromorphisms
parameters. For instance, when n’ = n = 4 and k = 3 we have the Post-like associative quiver

aa [ [91, ha, us, g4] an [0 aay [ 92 way [0 aay [ 92
o5 pa [ha,uz, g3, hal | = ply | Py hi |,®5” ha |,®57 hi |,®57 ha . (84)
pa [u1, g2, h3, ugl L Uy U U1 uz ) |
Also, we have one intermediate non-Post associative quiver
[ F [91,u2, h3, g4] I an [ O an [ 2 aa [ 01 aw [ 2 1
Q5 pa [P, g2, u3, hy) = Nil ®3” hy @37 he @37 hy @37 hs . (85)
pa [ur, ha, g3, w4l L uy () uy ug /|

The next type of heteromorphisms (intermediate) is described by the equations (66)-(76), it contains intact
elements (i > 1) and changes (decreases) arity n’ < n. For each fixed k the arities are not arbitrary. There
are many other possibilities (using permutations and different variants of quivers) to obtain an associative
final product !, corresponding the same heteromorphism parameters. The above examples are sufficient to
understand the rules of their construction for each concrete case.

MULTIPLACE REPRESENTATIONS OF POLYADIC SYSTEMS

The representation theory (see e.g. [109]) deals with mappings from abstract algebraic systems into linear
systems, such that, e.g. linear operators in vector spaces, or into general (semi)groups of transformations of
some set. In our notation, this means that in the mapping of polyadic systems (50) the final multiplication .,
is a linear map. This leads to some restriction on the final polyadic structure G/,,, which are considered below.

Let V be a vector space over a field K (usually algebraically closed) and EndV be a set of linear
endomorphisms of V', which is in fact a binary group. In the standard way, a linear representation of a binary

semigroup Go = (G; us) is a (1-place) map Iy : Go — End V, such that II; is a homomorphism

0y (p2[g,h]) =111 (g) * Iy (), (86)

where g, h € G and (%) is the binary multiplication in End V' (usually, it is a (semi)group with multiplication
as composition of operators or product of matrices, if a basis is chosen). If G is a binary group with the unity
e, then we have the additional condition

IT; (e) = idy . (87)

We generalize these known formulas to corresponding polyadic systems along with the introduced above
heteromorphism concept. Our general idea is to use the heteromorphism equation (65) instead of the standard
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homomorphism equation (86), such that the arity of representation will be different from the arity of the initial
polyadic system n’ # n.

Consider the structure of the final n/-ary multiplication y, in (65), taking into account that the final
polyadic system G/, should be constructed from End V. The most natural and physically applicable way is to
consider the binary EndV and to put G/, = der,s (EndV), as it was proposed for the ternary case in [19].
In this way G/, becomes a derived n'-ary (semi)group of endomorphisms of V' with the multiplication p, :

(End V)™ — EndV, where
o (U1 o] =v1 %ok vy, v; € End V. (88)

Because the multiplication u), (88) is derived and therefore, associative by definition, we consider the
associative initial polyadic systems (semigroups and groups) and the associativity preserving mappings, that
are the special heteromorphisms constructed in the previous section.

Let G,, = (G} ) be an associative n-ary polyadic system. By analogy with (57), we introduce the following
k-place mapping

H,E”’" ). &% 5 EndV. (89)
A multiplace representation of an associative polyadic system G,, in a vector space V is given, if there

exists a k-place mapping (89) which satisfies the (associativity preserving) heteromorphism equation (65), that
is

/*Ln[glau'vgn]v n'
. 0
, ' , 91 , Jk(n'—1)
H}En,n ) M, [gn(gu,l), - ,gneu] _ H[gn,n ) : - H]En,n ) ’ (90)
gne,+1,
. 9k 9kn'
liq
Inl, +tiq
where ug‘“e‘d) is given by (63), ¢, and ¢iq are numbers of multiplications and intact elements in the Lh.s. of

(90), respectively.

The exact permutation in the Lh.s. of (90) is given by the associative quiver presented in the previous
section. The representation parameters (n, n', k, £, and {q) in (90) are the same as the heteromorphism
parameters, and they satisfy the same arity changing formulas (68) and (69). Therefore, a general classification
of multiplace representations can be done by analogy with one of the heteromorphisms (74)—(77) as follows:

1. The hom-like multiplace representation which is a multiplace homomorphism with n’ = nl, = n,
without intact elements l;q = li(glm) = 0, and minimal number of places
k= kmin = £. (91)

2. The intact element multiplace representation which is the intermediate heteromorphism with 2 <

n’ < n and the number of intact elements ,

n—n

b=l (92)

3. The binary multiplace representation which is a binarizing heteromorphism (77) with n’ =n/ . =2,
maximal number of intact elements ll(én ) = (n —2) ¢, and maximal number of places

k=kmax =(n—1)4,. (93)

The multiplace representations for n-ary semigroups have no additional defining relations, as compared
with (90). In case of n-ary groups, we need an analog of the “normalizing” relation (87). If the n-ary group has
the unity e, then one can put

H,E"’”) Dok | =idy. (94)
&

If there is no unity at all, one can “normalize” the multiplace representation, using analogy with (87) in the
form

I (h' % h) =idy, (95)
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as follows B
h
4,
H,ﬁ"’” ) = idy, (96)
h
ool
h

for all h €G,,, where h is the querelement of h. The latter ones can be placed on any places in Lh.s. of (96) due
to the Dornte identities. Also, the multiplications in Lh.s. of (90) can change their place due to the same reason.

A general form of multiplace representations can be found by applying the Dérnte identities to each n-ary
product in Lh.s. of (90). Than, using (96) we schematically have

3]
91
n,n’ n,n’ téu
| =nl) , (97)
9k g
: liq
g
where g is an arbitrary fixed element of the n-ary group and
ta:/ln[galv“wganflng a:]-v"‘vg,u' (98)

This is the special shape of some multiplace representations, while the concrete formula should be obtained
in each case separately. Nevertheless, some conclusions can be done from (97). First, the equivalent classes on

’
n,n

which H,g ) is constant are determined by fixing ¢, 4+ 1 elements, i.e. by the surface t, = const, g = const.
Second, some k-place representations of n-ary group can be reduced to ¢,-place representations of its retract. In
the case ¢, = 1, multiplace representations of n-ary group derived from a binary group correspond to ordinary
representations of the latter (see [19,53]).

The above formulas describe various properties of multiplace representations, but they give no idea, how to
build representations for concrete polyadic systems. The most common method of representation construction
is using the concept of group action on a set. Below we extend this concept to the multiplace case, as it was
done above for homomorphisms and representations.

MULTIACTIONS AND G-SPACES
Let G, = (G; p) be a polyadic system and X be a set. A (left) 1-place action of G,, on X is the external

binary operation p§”) : G x X — X such that it is consistent with the multiplication u,, i.e. composition of the

binary operations p; {g|x} gives the n-ary product, that is,

P L lgrs - gal I} = o0 {aulo™ {gal - P {gubc} ) o} grigee GoxeX (99)

If the polyadic system is n-ary group, then in addition to (99) it is implied the there exist such e, € G (which may
or may not coincide with the unity of G,,) that pln) {ex|x} = x for all x € X, and the mapping x pgn) {ex|x}
is a bijection of X. The right 1-place action of G,, on X is defined in the symmetric way, and therefore we will
consider below only one of them. Obviously, that we cannot compose pgn) and pgn/) with n # n'. Usually X is
called a G-set or G-space depending of its properties (see, e.g., [110]).

The application of the 1-place action defined by (99) to the representation theory of n-ary groups gave
mostly repetitions of the ordinary (binary) group representation results (except mentioning trivial b-derived
ternary groups) [20]. Also, it is obviously seen that the construction (99) with the binary external operation
p1 cannot be applied for studying the most important regular representations of polyadic systems, when the X
coincides with G,, itself and the action arises from translations.

Here we introduce the multiplace concept of action for polyadic systems which is consistent with heteromorphisms
and multiplace representations. Then we show, how it naturally appears when X = G,, and apply it to construct
examples of representations including the regular ones.

For a polyadic system G,, = (G; uy,) and a set X we introduce an external polyadic operation

pr: GF X = X, (100)
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which is called a (left) k-place action or multiaction. To generalize the l-action composition (99), we use
the analogy with multiplication laws of the heteromorphisms (65) and the multiplace representations (90) and
propose (schematically)

Mn[glv"'agn]> n'
: Y4
tin [t —1)s- -+ Gt ] ! 7 ey
n n |n(l,—1)>--->Y9nL, n . n .
ol (6u—1) xp=pmd | D Ixpepe o (101)
gn€u+1a
. » gk Jkn
9ne, +4;q

The connection between all parameters here is the same as in the arity changing formulas (68)—(69).
Composition of mappings is associative, therefore in concrete cases we can use the associative quiver technique,
as it is described in the previous sections. If G,, is n-ary group, then we should add to (101) the “normalizing”
relations analogous with (94) or (96). So, if there is a unity e €G,,, then

e
pé") D lxp=x, forall xeX. (102)

e

In terms of the querelement the normalization has the form

h
e
(n) h
Py, N xp =x, forall xe X and for all h € G,. (103)
: gid
h
The multiaction p,in) is transitive, if any two points x and y in X can be “connected” by p}cn), i.e. there
exist g1, ..., gk €G, such that
91
p,(Cn) Doxp =Y. (104)
Gk
If g1,...,g9% are unique, then p,(gn) is sharply transitive. The subset of X, in which any points are

connected by (104) with fixed g1, ..., gr can be called the multiorbit of X. If there is only one multiorbit, then
we call X the heterogenous G-space (by analogy with the homogeneous one). By analogy with the (ordinary)
1-place actions, we define a G-equivariant map ¥ between two G-sets X and Y by (in our notation)

g1 g1
v xp | =p"d e e, (105)
9k 9k
which makes G-space into a category (for details, see, e.g., [110]). In the particular case, when X is a vector

space over K, the multiaction (100) can be called a multi-G-module which satisfies (102) and the additional
(linearity) conditions

91 g1 9
P’ S axtbyp =apV St Ixp b S |y (106)
9k Ik 9k
where a,b € K. Then, comparing (90) and (101) we can define a multiplace representation as a multi-G-module
by the following formula
5N 91
Hl(cn’n ) (x) = p,(cn) Doxop. (107)
Ik 9k

In a similar way, one can generalize to the polyadic systems many other notions of the group action
theory [109].
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REGULAR MULTIACTIONS

The most important role in the study of polyadic systems plays the case, when X =G,,, and the multiaction
coincides with the n-ary analog of translations [111], so called i-translations [56]. In the binary case ordinary
translations lead to the regular representations [109], therefore we call such action a regular multiaction

p.? (") In this connection, the analog of the Cayley theorem for n-ary groups was obtained in [105,112]. Now
we show in examples, how the regular multiactions can arise from i-translations.
Let Gs be a ternary semigroup, k = 2, and X =Gg, then 2-place (left) action can be defined as

P9 { z

This gives the following composition law for two regular multiactions

reg(3 g reg(3 g
p2g<>{ hi p2g<>{ hz

u} déf M3 [gv h, U’] : (108)

u}} = U3 [gl7h17/’l’3 [927h27u]]

= p3 (3 [g1, P, g2] , ho,u] = pgeg(?’) { H [91;21792] ‘U} . (109)

Thus, using the regular 2-action (108) we, in fact, derived the associative quiver corresponding to (59).
The formula (108) can be simultaneously treated as 2-translation [56]. In this way, the following left
regular multiaction
91
p;;eg(n) Clh def tn g1, 98, B, (110)
9k
corresponds to (62), where in r.h.s. there is the i-translation with ¢ = n. The right regular multiaction
corresponds to the i-translation with ¢ = 1. The binary composition of the left regular multiactions corresponds
to (62). In general, the value of i fixes the minimal final arity n;.., which differs for even and odd values of the
initial arity n.
It follows from (110) that for regular multiactions the number of places is fixed

breg = -1, (1)
and the arity changing formulas (68)—(69) become
Nyeg =1 — bia (112)
Ny = b+ 1. (113)

From (112)—(113) we conclude that for any n a regular multiaction having one multiplication £, = 1 is
binarizing and has n — 2 intact elements. For n = 3 see (109). Also, it follows from (112) that for regular
multiactions the number of intact elements gives exactly the difference between initial and final arities.

If the initial arity is odd, then there exist a special middle regular multiaction generated by the i-
translation with ¢ = (n + 1) /2. For n = 3 the corresponding associative quiver is (81) and such 2-actions were
used in [19] to construct middle representations of ternary groups, which did not change arity (n’ = n). Here we
give a more complicated example of middle regular multiaction, which can contain intact elements and therefore
can change arity.

Let us consider 5-ary semigroup and the following middle 4-action

g i=3
p269(5) Z s =us |g,h, g R (114)
v

Using (113) we observe that there are two possibilities for the number of multiplications ¢,, = 2,4. The last case
¢, =4 is similar to the vertical associative quiver (81), but with more complicated Lh.s., that is

s (91, R, 92, ha,gs3]

739(5) M5 [h’37 94, h47 95, h5]
P M5 [u5,v5,u4,v47u3]
M5 [U37U2,U27U1,U1]

9 92 g3 94 9s
reg(5) hi reg(5) ha reg(5) hs3 reg(5) hy reg(5) hs
Py uy Py s Py us Py Uy Py us S : (115)

U1 V2 U3 Vg Us
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Now we have an additional case with two intact elements {iq and two multiplications {,, = 2 as

s (91, hi, g2, b2, 93] g1 92 g3
reg(5) hS reg(5) hl reg(5) h2 reg(5) hS
s p = s , 116
P s [hs, v3, ug, V2, U] P up | P4 uy | P4 u3 (116)
U1 (%1 V2 U3

with changing arity from n =5 to n’mg = 3. In addition to (116) we have 3 more possible regular multiactions

due to associativity of us, when the multiplication brackets in the sequences of 6 elements in the first two rows
and the second two ones can be shifted independently.
For n > 3, in addition to left, right and middle multiactions, there exist intermediate cases. First observe

that the i-translations with ¢ = 2 and i« = n — 1 immediately fix the final arity n!_, = n. Therefore, the

re
composition of multiactions will be similar to (115), but with some permutations in l.h.éq.

Now we consider some multiplace analogs of regular representations of binary groups [109]. The straightforward
generalization is considering the introduced regular multiactions (110) in the r.h.s. of (107). Let G,, be a finite
polyadic associative system and KG,, be a vector space spanned by G,, (some properties of n-ary group rings
were considered in [113,114]). This means that any element of KG,, can be uniquely presented in the form
w=>,a;-hi, ay €K, hy € G. Then, using (110) and (107) we define the i-regular k-place representation
by

g1
HZE“’(” : (w) = Zal CHkt1 (91 - Gic1haGivr - - Gk - (117)
Ik !

Comparing (110) and (117) one can conclude that all general properties of multiplace regular representations
are similar to those of the regular multiactions. If i = 1 or ¢ = k, the multiplace representation is called right
or left regular representation correspondingly. If k is even, the representation with i = k72 + 1 is called
amiddle regular representation. The case k = 2 was considered in [19] for ternary groups.

MULTIPLACE REPRESENTATIONS OF TERNARY GROUPS

Let us consider the case n = 3, k = 2 in more details paying attention on its special peculiarities, which
corresponds to the 2-place (bi-element) representations of ternary groups [19]. Let V' be a vector space over K
and End V' be a set of linear endomorphisms of V. From now on we denote the ternary multiplication by the

square bracket only, as follows u3 [g1, g2, 93] = [919293], and use the “horizontal” notation IT ( zl > =1I(g1,92)-
2
A left representation of a ternary group G,[]) in V is a map II* : G x G — End V such that

115 (g1, g2) o T1¥ (g3, 94) = T1* ([919293) , 94) » (118)
" (g,9) = idv, (119)

where 9,91,92,93,94 € G.

Replacing in (119) g by g we obtain IIZ (g, g) = idy, which means that in fact (119) has the form ITX (g, g) =
I1* (g,9) = idy, Vg € G. Note that the axioms considered in the above definition are the natural ones satisfied
by left multiplications g — [abg|. For all g1, g2, 93,94 € G we have

1% ([919293)  94) = II* (g1, [929394]) -
For all g, h,u € G we have
1" (g, h) = I1* ([gua], h) = 11" (g,u) o 11" (7@, h) (120)

and
1" (g,u) o II* (w,g) = II* (u,g) o I1* (g, u) = idy, (121)

and therefore every IT* (g, u) is invertible and (I1% (g,u)) ' — 11% (@, 9). This means that any left representation
gives a representation of a ternary group by a binary group [19]. If the ternary group is medial, then

11" (g1, g2) o 1" (g3, 94) = 11" (g3, g4) o 11" (g1, g2) ,

i.e. obtained group is commutative. If the ternary group (G, [ ]) is commutative, then also II* (g, h) = II* (h, g),
because

" (g,h) = 11" (g,h) o 11* (9,9) = 1" ([ghg], 9) =" ([hgg], g) = 11" (h,g) o 11" (9, 9) = 11" (h, g).
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In the case of the commutative and idempotent ternary group any its left representation is idempotent and
(11 (9, )
groups.

Let (G,[]) = der (G,®) be a ternary group derived from a binary group (G, ®), then there is one-to-one
correspondence between representations of (G, ®) and left representations of (G, [ ]).

Indeed, because (G,[]) = der (G, ®), then g ® h = [geh] and € = e, where e is unity of the binary group
(G,®). If 7 € Rep (G, ®), then (as it is not difficult to see) I1* (g, h) = 7 (g) o 7 (k) is a left representation of
(G,[]). Conversely, if IT* is a left representation of (G,[]) then 7 (g) = II” (g, e) is a representation of (G, ®).
Moreover, in this case I1¥ (g, h) = 7 (g) o 7 (h), because we have

Yot (g, h), so that commutative and idempotent ternary groups are represented by Boolean

1" (g, h) = T1" (g, [ehe]) = 11" ([geh], e) = 11" (g, ) o II* (h,e) = 7 (g) o m (h).

Let (G, []) be a ternary group and (G x G, %) be a semigroup used to the construction of left representations.
According to Post [5] one says that two pairs (a,b), (¢,d) of elements of G are equivalent, if there exists an
element g € G such that [abg] = [edg]. Using a covering group we can see that if this equation holds for some
g € G, then it holds also for all g € G. This means that

HL(aa b) = HL(Cv d) — (aa b) ~ (Ca d)»
ie.
1% (a,b) = (¢, d) <= [abg] = [cdg]
for some g € G. Indeed, if [abg] = [edg] holds for some g € G, then
I (a,b) = 1" (a,b) o 11" (g,) = 11" ([abg], 9)
= 11" ([edg], g) = 11" (¢, d) 0 11*(g,9) = 11" (c, d).

By analogy we can define
A right representation of a ternary group (G, []) in V is a map II¥ : G x G — End V such that

1% (g3, g4) o I (g1, 92) = T1% (g1, [g2g394]) , (122)
11" (g,g) = idv, (123)

where 9,91,92, 93,94 € G.
From (122)-(123) it follows that

1% (g, h) = 1% (g, [umh]) = II¥ (@, h) o I1¥ (g, u) . (124)

It is easy to check that II%(g,h) = II* (h,g) = (IIX (g,h))_l. So it is enough to consider only left
representations (as in binary case). Consider the following example of group algebra ternary generalization [19].

Let G be a ternary group and KG be a vector space spanned by G, which means that any element of KG
can be uniquely presented in the form t = > | k;h;, k; € K, h; € G, n € N (we do not assume that G has
finite rank). Then left and right regular representations are defined by

erg (91792) t= Z kl [gnghl] 5 (125)
=1

IR, (91,92)t =Y ki [higiga] . (126)
=1

Let us construct the middle representations as follows.
A middle representation of a ternary group (G, |[]) in V is a map 1™ : G x G — End V such that

1Y (g3, hs) o IM (ga, ho) o I (g1, hy) = TI™ ([g3gagn] , [Rahahs]) (127)
11" (g,h) o IIM (g,h) =11 (g, k) o I (g, h) = idy (128)

It is seen that a middle representation is a ternary group homomorphism II" : G x G°? — der End V. Note
that instead of (128) one can use 11" (g,ﬁ) olIM (g, h) = idy after changing g to g and taking into account that
g = g. In the case idempotents elements g and h we have ITM (g, h) o 1™ (g, h) = idy, which means that the
matrices II" are Boolean. Thus all middle representation matrices of idempotent ternary groups are Boolean.
The composition TIM (g1, hy) o IM (go, hy) is not a middle representation, but the following proposition holds.
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Let II™ is a middle representation of a ternary group (G, [ ]), then, if [TX (g, h) = ITM (g, u)oITM (h, ) is a left
representation of (G, []), then IZ(g,h) o IIL (¢',n') = 1L ([gh'], '), and, if [1E(g, h) = TTM (u, h) o TM (7, g)
is a right representation of (G,[]), then IIf(g,h) oI (¢ n') = 11 (g, [hg’R]). In particular, IIL (IIF) is a
family of left (right) representations.

If a middle representation II™ of a ternary group (G, []) satisfies I (g,g) = idy for all g € G, then it is
a left and right representation and II1™ (g, h) = II™(h, g) for all g, h € G. Note that in general H%g(g,g) # id.
For regular representations we have the following commutation relations

107, (g1, 7) o T (92, ha) =TI (g2, ho) o T, (91, ha) -

Let (G,[]) be a ternary group and let (G x G,[]) be a ternary group used to the construction of the
middle representation. In (G, [ ]), and in the consequence in (G x G,[]'), we define the relation
(a,b) ~ (¢,d) < [aub] = [cud]

for all u € G. It is not difficult to see that this relation is a congruence in a ternary group <G x G, | ]'> For
regular representations IT2! (a,b) = ILY (c,d) if (a,b) ~ (¢,d). We have the following relation

a~a < a=[gdg] for some g€ G
or equivalently

a=~a <= ad =|[gag] for some g € G.

It is not difficult to see that it is an equivalence relation on (G, | |), moreover, if (G, [ ]) is medial, then this
relation is a congruence.
Let <G x G, | ]/> be a ternary group used for a construction of middle representations, then

(a,b) = (a’,b) <= d’ = [gag] and
b = [hbb] for some (g,h) € G x G
is an equivalence relation on (G x G,[]'). Moreover, if (G,[]) is medial, then this relation is a congruence.
Unfortunately, it is a weak relation. In a ternary group Zs, where [ghu] = (¢ — h + u) (mod 3) we have only

one class, i.e. all elements are equivalent. In Z4 with the operation [ghu] = (¢ + h + v+ 1) (mod 4) we have
a~a < a=d. But for this relation holds the following statement. If (a,b) = (a’,’), then

trITM (a, b) = tr IIM (d/, V).
We have tr(AB) = tr(BA) for all A,B € EndV, and
tr 1M (a, b) = tr 11" ([ga'g], [hb'R] ) = tr (TM (g, k) o IV (a', V') o 1IM (7, 1))
= tr (HM(g,E) oM (g, h) o TIM (o, b’)) =tr (idv o HM(a’b’)) =tr IIM (d/, V)

In our derived case the connection with the standard group representations is given by the following.
Let (G,®) be a binary group, and the ternary derived group as (G,[]) = der (G,®). There is one-to-one
correspondence between a pair of commuting binary groups representations and a middle ternary derived group
representation. Indeed, let 7, p € Rep (G,®), 7 (g)op(h) =p(h)om(g) and II* € Rep (G,[]). We take

Y (g,h) =m(g)op(h™"), m(9) =" (g,¢), p(g9) =11 (e,7).

Then using (127) we prove the needed representation laws.
Let (G,[]) be a fixed ternary group, (G x G,[]') a corresponding ternary group used in the construction

of middle representations, ((G x G)*,®) a covering group of (G x G,[]'), (G x G,0) =ret(,1)(G x G, ()). If
1M (a,b) is a middle representation of (G, [ ]), then 7 defined by

m(g,h,0) = 11" (g,h),  w(g,h,1) =TI" (g, h) o T1™(a, )
is a representation of the covering group [5]. Moreover
p(g:h) = HM(g’ h) o HM(a»b) =m(g,h,1)

is a representation of the above retract induced by (a,b). Indeed, (@,b) is the identity of this retract and
p(@,b) = 1M (@, b) o 1M (a,b) = idy . Similarly

p((g, h) < (uvu)) =p (<(g7 h), (a7 b), (u’u») =p ([gau], [Ubh]) =1 ([gau]7 [Ubh])) o HM(CL, b)
= HM(g’h’) © HM(avb) OHM(“?”) © H]VI(a’b) = p(g7h) op(u,u)
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But 7(g) = (g,9) is an embedding of (G,[]) into (G x G,[]'). Hence p defined by p(g,0) = 11" (g,7) and
wu(g,1) =11M(g,g) o1 (a, @) is a representation of a covering group G* for (G,[]) (see the Post theorem [5] for
a = ¢). On the other hand, B(g) = 1" (g,g)oITI™ (a, @) is a representation of a binary retract (G, -) = ret, (G, [ ]).
That § can induce some middle representation of (G,[]) (by Gluskin-Hosszi theorem [7]).

Note that in a ternary group of the quaternions (K,[]) (with norm 1), where [ghu] = ghu(—1) = —ghu
and gh is a multiplication of quaternions (—1 is a central element) we have 1 = —1, =1 =1 and g = g for
others. In (K x K, [ ]") we have (a,b) ~ (—a, —b) and (a, —b) ~ (—a, b), which gives 32 two-elements equivalence
classes. The embedding 7(g) = (g,9) suggest that 1M (i,7) = 7(i) # 7(—i) = M (=i, —i). Generally 11" (a, b) #
M (—a, —b) and 1IM (a, —b) # 1M (—a, b).

The relation (a,b) ~ (¢,d) <= [abg] = [cdyg] for all g € G is a congruence on (G x G, *). Note that this
relation can be defined as "for some ¢". Indeed, using a covering group we can see that if [abg] = [edg] holds
for some g then holds also for all g. Thus 71 (a,b) = I1X(c,d) < (a,b) ~ (c,d). Indeed

I1(a, b) = 11*(a,b) 0 I1*(g,5) = I1*([a b g]. 9)
= 11" (e d g],9) = 11*(c,d) o 11" (g, ) = 11" (c, d).
We conclude, that every left representation of a commutative group (G,[]) is a middle representation.
Indeed, - _ 7 _
11" (g, h) o I1*(g,h) = 11*([g h g],h) = T1*([g g k], h) = T1*(h, h) = idy
and

1% (g1, g2) o 11* (g3, g4) © 11" (g5, g6) = 11" ([[919295]9495], 96) = 11" ([[919392]9495], 96) = 11" ([9195[929495], 96)
= 11" ([9195[959492]1, 96) = 11" ([919595). [929296]) = 11" ([919395], [969492])-

Note that the converse holds only for the special kind of middle representations such that 1" (g, g) = idy .
Therefore,

There is one-one-correspondence between left representations of (G,[]) and binary representations of the
retract ret, (G, [ ]).

Indeed, let I1%(g,a) is given, then define p(g) = II*(g,a) is such representation of the retract which
can be directly shown. Conversely, assume that p(g) is a representation of the retract ret,(G,[ ]). Define
11(g, k) = p(g) o p(h)~", then TI*(g, h) o II* (u, u) = p(g) o p(h) ' o p(u) o p(@) ™! = p(g® (h) ™" o @u) o p(uw)~" =
p([lgalahal]au]) o p(@ ' = pllghg]) o p(@)~* = UE([ghul,u),

MATRIX REPRESENTATIONS OF TERNARY GROUPS
Here we give several examples of matrix representations for concrete ternary groups. Let G = Z3 > {0, 1,2}
and the ternary multiplication is [ghu] = g — h + u. Then [ghu] = [uhg] and 0 = 0, 1 = 1, 2 = 2, therefore
(G,[]) is an idempotent medial ternary group. Thus I1*(g, h) = I1¥(h, g) and

1% (a,b) = I*(c,d) <= (a — b) = (c — d)mod 3. (129)
The calculations give the left regular representation in the manifest matrix form
1 0 0
L
Hreg (0’ 0) = HrLeg (2’ 2) = erg (1’ 1) = Hﬁeg (07 0) = Hﬁeg (27 2) = Hﬁeg (17 1) = 010 = [1] S [1] D [1]7
0 0 1

(130)

01 0

L
Iy (2,0) =17, (1,2) = I, (0,1) =107, (2,1) =I5, (1,0) =TI, (0,2) = { 0 0 1
1 0 0
1 V3
—me|l 2 2 |=qe Yolnle-l L (131)
- VA 2 2" 2 2"V
2 2
0 0 1
L
Iy (2,1) =107, (1,0) = 107, (0,2) =T, (2,0) = 1177, (1,2) = I, (0,1) = | 1 0 0
01 0
1 V3
—me| % 2 |=Mo|-s-1iv3|0|-s+iv3 (132)
- Vi1 | 2 2 2 2"V
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Consider the middle representation construction. The middle regular representations is defined by

LY, (g1,92) t = ki lgihiga] .

i=1
For regular representations we have
Y (g1, h1) o 1L, (g2, ho) = 11, (ho, hy) o ILY (g1, 92) (133)
H%g (gla hl) o erg (927 hQ) - erg (gla 92) o Hrj’vf{g (hQ& hl) : (134)

For the middle regular representation matrices we obtain

1 0 0
H%Q(O,O):H%g(lﬂ):l'[%g(zl): 8 ? (1) ’
01 0
H%g(oal):H%g(170):1_[%g(272): (1) 8 (1) ’
00 1
Y (0,2) =12, (2,0) =117, (1,1) = (1) (1) 8

The above representation I} of (Zs,[]) is equivalent to the orthogonal direct sum of two irreducible
representations

[ -1 0
I (0,0) =1, (1,2) = IRL, 2. D) =[] & | o | |,
L
H%g (07 1) = H%g (170) = H%g (272) = [1} S 3/3 % )
L2 2
(1 V3
H%g (072) = H%g (270) = H%g (17 1) = [1} D \;g 21 ’
L 2 2

i.e. one-dimensional trivial [1] and two-dimensional irreducible. Note, that in this example 11 (g, g) = 1M (g, g) #
idy, but I (g, h) o 1™ (g, h) = idy, and so I are of the second degree.

Consider a more complicated example of left representations. Let G = Z4 > {0,1,2,3} and the ternary
multiplication is

[ghu] = (g + h +u+ 1) mod 4. (135)
We have the multiplication table
1 2 3 0 2 3 01
2 3 01 3 0 1 2
[g>h70}_ 3 0 1 2 [g,h,l]— 01 2 3
01 2 3 1 2 3 0
3 0 1 2 01 2 3
01 2 3 1 2 3 0
2 3 01 3 0 1 2

Then the skew elements are 0 =3, 1 =2, 2 =1, 3 =0, therefore (G,[]) is an (non-idempotent) commutative
ternary group. The left representation is defined by expansion erg (g1,92)t = > ki [g192h;], which means
that (see the general formula (117))

Ik, (g, h) |u >= |[ghu] > .

reg

Analogously, for right and middle representations

I, (9,h) [u>=[[ugh] >, T}, (g,h) |u>=|[guh] > .

reg reg
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Therefore | [ghu] >= | [ugh] >= | [guh] > and
L, (g,h) =10

reg

reg (9, 1) [u>= 112, (g,h) |u >,

so Ik, (g,h) = TE (g,h) =11 (g,h). Thus it is sufficient to consider the left representation only.

reg reg Teg
In this case the equivalence is 11¥(a,b) = I1*(¢,d) <= (a+b) = (c¢+ d)mod 4, and we obtain the following
classes

T'eg (O 0) T'eg (1 3) T'eg (2 2) T'eg (3 ]')

reg (0 1) reg (1 O) reg (2 3) reg (3 2)

L L L L _
1 (07 2) Hreg ( ) Hreg (27 O) Hreg (37 3) -

reg

erg ( ) erg ( ) erg ( ) Hfﬂg ( ) =

O OO HOOODO O OO OO O
OO RO OO0 HPOOO O oo
O OO OO OOk +»HOOoOo
H OO0 OO0 OO OO o

It is seen that, due to the fact that the ternary operation (135) is commutative, there are only one-dimensional
irreducible left representations.

Let us “algebralize” the above regular representations in the following way. From (118) we have for the left
representation

Mg (i,4) o Mg (k1) = 1L (i, [5K1)) (136)

reg reg
where [jkl] = j —k+1, i,5,k,1 € Z3. Denote ~* erg (0,%), i € Zs, then we obtain the algebra with the
relations

VU = i (137)
Conversely, any matrix representation of v;v; = viy; leads to the left representation by IIY (i, j) = Vj—i- In
the case of the middle regular representation we introduce ’yk_H = Hreg (k,1), k,l € Zs, then we obtain

FYZJW’Y]IMWIJCW W[Jgkb i7j7k € ZB' (138)

In some sense (138) can be treated as a ternary analog of the Clifford algebra. As before, any
matrix representation of (138) gives the middle representation IIM (k,1) = 4.

TERNARY ALGEBRAS AND HOPF ALGEBRAS

Let us consider associative ternary algebras [2,115]. One can introduce autodistributivity property [[zyz] ab] =
[[zab] [yab] [zab]] (see [72]). If we take 2 ternary operations { , , } and [, , ], then distributivity is {[zyz] ab} =
[{zab} {yab} {zab}]. If (+) is a binary operation (addition), then left linearity is

[(z + 2),a,b] = [zab] + [zab] . (139)

By analogy one can define central (middle) and right linearity. Linearity is defined, when left, middle and
right linearity hold valid simultaneously.

An associative ternary algebra is a triple (A, 13, 77(3)), where A is a linear space over a field K, us is
a linear map A® A® A — A called ternary multiplication us(a ® b ® ¢) = [abc] which is ternary associative
[[abc] de] = [a[bed] €] = [ab [cde]] or

pz o (p3 ®1d®id) = ps o (Id®pus ®id) = pz o (Id®id ®us) . (140)

There are two types [45] of ternary unit maps n® : K — A:
1) One strong unit map

[i3 © (n(3) 7% ® id) = 3o (n(g) ®id ®77(3)) = pugo (id on® @ n(g)) =id; (141)
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2) Two sequential units 7753) and 775’) satisfying

pso (nf @l @id) = o (n* @iden?) = ps o (ien® @ nf’) = id; (142)

In first case the ternary analog of the binary relation 7 (z) = x1, where z € K, 1 € A, is
n® (z) = [z,1,1] = [1,1,2] = [1,z,1]. (143)
Let (A, a,na), (B, up,ns) and (C, uc, nc) be ternary algebras, then the ternary tensor product space

A® B ® C is naturally endowed with the structure of an algebra. The multiplication pagpgc on A ® B ® C
reads

[(a1 ® b1 ® c1)(as ® ba ® c2)(a3 ® bs @ c3)] = [a1a2a3] @ [b1b2b3] ® [c1eacs3], (144)

and so the set of ternary algebras is closed under taking ternary tensor products. A ternary algebra map

(homomorphism) is a linear map between ternary algebras f : A — B which respects the ternary algebra
structure

flzy2]) =[f (@), f (y), f (2)], (145)
f(1a) =1p. (146)

Let C be a linear space over a field K.
A ternary comultiplication A() is a linear map over a field K such that

As:C—>C®C&C. (147)

In the standard Sweedler notations [37] Az (a) = .1 | af ®a] ® ' = a1y ® a2y ® a(3). Consider different
possible types of ternary coassociativity [45,46].

1. A standard ternary coassociativity
(Az ®id®id) o Az = (id®A3 ®id) 0 Az = (id ®id ®A3) o Ag, (148)
2. A nonstandard ternary X-coassociativity (Gluskin-type positional operatives)
(A3 ®id®id) o Ay = (id® (0 0 Az) ®id) o Ag,

where 0 0 Az (a) = Az (a) = a(1)) ® A(s(2)) @ a(e(3)) and 0 € X C S3.

3. A permutational ternary coassociativity
(A3 ®id®id) o Az = 7o (id ®A3 ® id) o Ag,
where 7 € II C S5.
A ternary comediality is

(A3 ® A3 ® Az) 0 Az = Opmedial © (A3 ® Az ® Ag) 0 Ag,

where Opedial = (Tacanonny) € So. A ternary counit is defined as a map e® : C' — K. In general, ¢® # ¢®

satisfying one of the conditions below. If A3 is derived, then maybe £(3) = () but another counits may exist.
There are two types of ternary counits:

1. Standard (strong) ternary counit

e® 2e® ®id) oAz = (¥ @id®e®) 0 Az = (id®e® @ e®)) 0 Az =1id, (149)

2. Two sequential (polyadic) counits 5§3) and 5&3)

(3)

P 2l @id)oA = (P ®ideel’) oA = (id2e® ® () 0 A = id, (150)

Below we will consider only the first standard type of associativity (148). The o-cocommutativity is
defined as 0 o Az = As.
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A ternary coalgebrais a triple (C7 Ag, 5(3)), where C'is a linear space and Agj is a ternary comultiplication
(147) which is coassociative in one of the above senses and £(®) is one of the above counits.

Let (A, ,u(3)) be a ternary algebra and (C, A3) be a ternary coalgebra and f, g, h € Homg (C, A). Ternary
convolution product is

[f.g.h], =P o (f@g@h)ol; (151)

or in the Sweedler notation [f, g, h], (a) = [f (a(1)) g (a@2)) h (a))].
A ternary coalgebra is called derived, if there exists a binary (usual, see e.g. [37]) coalgebra Ay : C —
C ® C such that

Az der = (Id ®A2) ® As. (152)

A ternary bialgebra B is (B, 13 G As, 5(3)) for which (B, ), n(3)) is a ternary algebra and (B, Ag, 5(3))
is a ternary coalgebra and they are compatible

Azopu® =13 oAy (153)
One can distinguish four kinds of ternary bialgebras with respect to a “being derived” property:

1. A A-derived ternary bialgebra

Az = Az ger = (Id®Ag) 0 Ay (154)
2. A p-derived ternary bialgebra
0, =12 = i o () 1) a5

3. A derived ternary bialgebra is simultaneously p-derived and A-derived ternary bialgebra.

4. A non-derived ternary bialgebra which does not satisfy (154) and (155).

Possible types of ternary antipodes can be defined using analogy with binary coalgebras.
A skew ternary antipod is
1@ o (8% @id®id)o Ay = pu® o (i[d@SP)  @id)o Az =pu® o (ideideS) JoAs=id.  (156)

If only one equality from (156) is satisfied, the corresponding skew antipod is called 1left, middle or right.
Strong ternary antipod is

(u@) ® id) o ((d@S%) | ®id)o Ay =1@id, (id ®M<2>> o ((d@id®SP), )0 Ay =id@l,

where 1 is a unit of algebra.
If in a ternary coalgebra the relation

AgOS:T130(5®S®S)OA3 (157)

3
1

A ternary Hopf algebra (H, 13 G Ag B 5(3)) is a ternary bialgebra with a ternary antipod S) of
the corresponding above type .

Let us consider concrete constructions of ternary comultiplications, bialgebras and Hopf algebras. A
ternary group-like element can be defined by Az (g) = g ® g ® g, and for 3 such elements we have

hold valid, where 113 = (:1,)3 ), then it is called skew-involutive.

A3 ([919293]) = Az (91) Az (92) Az (g3) - (158)

But an analog of the binary primitive element (satisfying A® (z) = 2 ® 1 + 1 ® z) cannot be chosen simply
as As(z) =zr®Re®e+e®@r®e+e®e® x, since the algebra structure is not preserved. Nevertheless, if we
introduce two idempotent units e, es satisfying “semiorthogonality” [ejejes] = 0, [eaezer] = 0, then

As(z)=2Re1 Qe+ eaR@RrRe;+e1Rea®a (159)
and now A3 ([.271.’1321‘3]) = [Ag ([El)Ag (1‘2)A3 (I‘g)] USiIlg (159) 6(:17) = O7 5(6172) = 1, and S(S) ($) = —x,

S(3) (e1,2) = e1,2, one can construct a ternary universal enveloping algebra in full analogy with the binary case
(see e.g. [39]).
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One of the most important examples of noncocommutative Hopf algebras is the well known Sweedler Hopf
algebra [37] which in the binary case has two generators z and y satisfying

p? (z,x) =1, (160)
1 (y,y) =0, (161)
Uf) (zy) = -0 (2y). (162)
It has the following comultiplication
Ay (z) =2z, (163)
A (y)=yor+1ey, (164)

counit ) (z) =1, ¢® (y) = 0, and antipod S (z) = 2, S® (y) = —y, which respect the algebra structure.
In the derived case a ternary Sweedler algebra is generated also by two generators x and y obeying

1@ (2, e,0) = u® (e,2,2) = p® (x,2,¢) = e, (165)
o? (lyey)) =0, (166)
o ([wey)) = =0 ([vey)). (167)

Az(z)=2z@zQx, (168)
As(y) =yRr0r+eRydr+eRe®y, (169)
e® () =@ (x)=1 (170)
W (y) =Py =0 (171)
SO (z) =8P (z) = x, (172)
S (y) = 8 (y) = —, (173)

and it can be checked that (168)-(170) are algebra maps, while (172) is antialgebra maps. To obtain a non-
derived ternary Sweedler example we have the possibilities: 1) one “even” generator z, two “odd” generators y; 2
and one ternary unit e; 2) two “even” generators x1 2, one “odd” generator y and two ternary units ey . In the
first case the ternary algebra structure is (no summation, i = 1, 2)

[zzx] = e, (174)

[yiyiyi] = 0, (175)

o (lyiwy]) = ot ([ayia]) = 0, (176)
[vey:] = — [zyie],

lexys] = — [yiwe], (177)

eyix] = — [yiex], (178)

o (raya]) = = (yraya)) . (179)

The corresponding ternary Hopf algebra structure is

Az(z)=2@zQx, Az3(112) =122 +e12Q0Y21 T +e12Q€21 Y21,

)

In the second case we have for algebra structure

[ixjx] = 6ij0i05ei,  [yyy] =0, Uf) ([yziy]) = 0, O’f) ([ziyxs]) =0,
@ (yizya]) =0, 0P ([yrzya)) = 0, (181)
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and the ternary Hopf algebra structure is

As(x;) = 2, @ z; ® xy,

Az(y) =yRu1 @1 +6 QYyQrs+e Qe Y, (182)
e® (z;) =1, (183)
B (y) =0, (184)
SO (2;) = i, (185)
S (y) = —y. (186)

TERNARY QUANTUM GROUPS
A ternary commutator can be obtained in different ways [116]. We will consider a simplest version called
a Nambu bracket (see e.g. [2,30]). Let us introduce two maps wgf’) ARARA—- AR A® A by

WP @®bR®)=a®b@ctbOc®atcRadb, (187)
W(fg)(a®b®c):b®a®0+c®b®a+a®c®b. (188)

Thus, obviously (%) owgf ) = a(i?’ Jo 1), where af ) € S denotes sum of terms having even and odd permutations

respectively. In the binary case wf) =id®id and w(_g) = 7 is the twist operator 7 : a®b — b®a, while () ow(_2)

is permutation 0(_2) (ab) = ba. So the Nambu product is w](\:;’) = wf) — w(_s), and the ternary commutator is

[7 JN = 05\?) = Uf) — 0(73)7 or [30]
la,b, c]y = [abc] + [bea] + [cab] — [cba] — [acb] — [bac] (189)

An abelian ternary algebra is defined by vanishing of Nambu bracket [a, b, ¢] ;, = 0 or ternary commutation

(3)
+

relation o)’ = a@. By analogy with the binary case a deformed ternary algebra can be defined by

Jf) = g0 or [abc] + [bea] + [cab] = g ([cba] + [acb] + [bac]) , (190)

where multiplication by ¢ is treated as an external operation.

Let us consider a ternary analog of the Woronowicz example of a bialgebra construction, which in the

(2) @) (

binary case has two generators satisfying xy = qyz (or o} (zy) = g™’ (2y)), then the following coproducts

Ay(z)=2®@07 (191)
Ar(y)=y®z+1xy (192)

are algebra maps. In the derived ternary case using (190) we have

o{? ([zey]) = g0 ([zey)), (193)

where e is the ternary unit and ternary coproducts are

As(e)=e®e®e, (194)
As(z) =z, (195)
Az3(y) =yRz@r+eRy@r+eRedy, (196)

which are ternary algebra maps, i.e. they satisfy

o\ (A5 (2) As (€) A (9)]) = 0@ ([A5 (2) Az (e) As (1)) - (197)

Let us consider the group G = SL (n,K). Then the algebra generated by aé» € SL (n,K) can be endowed by
the structure of ternary Hopf algebra (see e.g. [117] for binary case) by choosing the ternary coproduct, counit
and antipod as (here summation is implied)

Ag(a}) =af @af @dl, &(ai) =6 SO (a}) = (a—l); . (198)

This antipod is a skew one since from (156) it follows

1 o (8®) @id®id) o Ag (af) = S (a,) afaé- = (ail)i afaé» = 5;@; =d). (199)
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This ternary Hopf algebra is derived since for A(?) = a§ ® ai we have
Ay = (i0A®) © A® (o)) = (i02A®) (0} © af) = af © AP (aF) = af @ of @ ). (200)

In the most important case n = 2 we can obtain the manifest action of the ternary coproduct As on
components. Possible non-derived matrix representations of the ternary product can be done only by four-rank

n X n X n xn twice covariant and twice contravariant tensors {a?jl} Among all products the non-derived ones

are only the following a}’ib%c?f and ai]}cb%cf’l” (where o is any index). So using e.g. the first choice we can define

the non-derived Hopf algebra structure by

A (a})) = aity @ ajf @ af, (201)
- 1/ .
e (al) = 5 (1] + 1)) (202)
and the skew antipod szl =56 (a%) which is a solution of the equation sff;)a};;’ = 5;5,‘:5;’.
Next consider ternary dual pair k (G) (push-forward) and F (G) (pull-back) which are related by k* (G) =
F (G) (see e.g. [118]). Here k (G) = span (G) is a ternary group algebra (G has a ternary product [ | or ug’))

over a field k. If u € k (G) (u = u'z;,x; € G), then
[uow], = u'viw [z2;2)], (203)

is associative, and so (k (G),[],) becomes a ternary algebra. Define a ternary coproduct As : k (G) = k (G) ®
k(G)®k(G) by
As(u) =u'e; @ x; @ x4 (204)

(derived and associative), then Az ([uvw],) = [Az (u) As (v) Az (w)],, and k(G) is a ternary bialgebra. If we
define a ternary antipod by S,(f) = u'Z;, where 7; is a skew element of x;, then k (G) becomes a ternary Hopf
algebra.

In the dual case of functions F (G) : {¢ : G — k} a ternary product [], or u(;’) (derived and associative)
acts on ¢ (z,y, 2) as

(120) @) = (@,2,2), (205)
and so F (G) is a ternary algebra. Let F(G) @ F(G) @ F (G) =2 F (G x G x G), then we define a ternary
coproduct Az : F(G) = F(G)® F (G) @ F (G) as

(Azp) (2,9, 2) = ¢ ([xy2] 7)), (206)

which is derive and associative. Thus we can obtain Az ([p19p203] z) = [A3z (¢1) A3 (p2) Az (¢3)] £, and therefore
F (G) is a ternary bialgebra. If we define a ternary antipod by

S () = o (@), (207)

where 7 is a skew element of z, then F (G) becomes a ternary Hopf algebra.

Let us introduce a ternary analog of R-matrix. For a ternary Hopf algebra H we consider a linear map
R®: HoH®H -+ H®H®H.

A ternary Hopf algebra (H, 3 G Ag B S(S)) is called quasifiveangular? if it satisfies

(A3 ®id®id) = RS RSLRSY. (208)
(d®As ®id) = R RE.RE. (209)
(id®id @A) = RELRERE), (210)

where as usual index of R denotes action component positions.
Using the standard procedure (see e.g. [39,119,120]) we obtain set of abstract ternary quantum Yang-Baxter
equations, one of which has the form

3 3 3 3 3 3 3 3 3 3
Ry R, RGE R RiGs = RiGRYS RS RYL R, (211)

4The reason of such notation is clear from (211).
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and others can be obtained by corresponding permutations. The classical ternary Yang-Baxter equations for
one parameter family of solutions R (¢) can be obtained by the expansion

RO M) =exexe+rt+0O (1), (212)
where 7 is a ternary classical R-matrix, then e.g. for (211) we have

7'342712571457135 1 T243T12571457135 + 7'2437°34271457135 + 7'243734271257135 1 7243734271257'145

= T13271457'2457345 + T123714572457°345 + 7"123713272457345 + 7"1237°13271457345 + T12371327°1457°245-

For three ternary Hopf algebras (HA,B,CH MS”)B,C, 77,(5)3 o Af}ac, Ef’)&C, Sf’,)ac) we can introduce a non-

>(3)

degenerate ternary “pairing” (see e.g. [119] for binary case) (, , : Hy x Hg x Ho — K, trilinear over K,

satisfying

(0 (@),b.c)"”
<b ) (b) ’C><3>
<a b, 77(3)( )>(3)

(0@ 0),e)" {an @) = (5 @ ,be)”
(05,520 (0@ @) = (a2 @)
(9 @.0e)” (0 @) = (0. @),

(3)
<ﬂf)(a1®a2®a3 ,b,C> a1®a2®a3,A()() C> ’
(

3)

(AD (a), b1 @ b2 @b, > a ) (b1 @ b2 @bs) c)

<a 1) (by ® by @ by) ,c>

(3)
<a7 Ag) (b) c1 ®ca® 03> a, Cl X co ® 03)> R

(3)
AS bCl ®C2®C3> R

(3)
,u3) (a1 ® as ® a3) b,c> ,

=
{
<a by ®b2®b3,A(3)( )>(3)7
(a:b
{
{

<a,b,ug) c1 ®co®cs >
)"

<a1 ® as ® as, b, A(

<sf43) @ C><s> _ <a’5§) ) 7C><3> _ <a,b, S (c)><3> ;

where a,a; € Ha, b,b; € Hp. The ternary “paring” between Hy @ Hy ® Hy and Hp ® Hp ® Hp is given
by (a1 ® as ® az, by @ ba ® b3>(3) = {ay, b1>(3) (a9, b2>(3) (as, b3>(3). These constructions can naturally lead to
ternary generalization of duality concept and quantum double which are the key ingredients in the theory of
quantum groups [39,120,121].

CONCLUSIONS

In this paper we presented a review of polyadic systems and their representations, ternary algebras and
Hopf algebras. We classified general polyadic systems and considered their homomorphisms and the multiplace
generalizations, paying attention on their associativity. We defined multiplace representations and multiactions,
gave examples of matrix representations for some ternary groups. We defined and investigated ternary algebras
and Hopf algebras, and give some examples. Then we considered some ternary generalizations of quantum groups
and the Yang-Baxter equation.
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