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In this paper we present a theoretical investigation of the magnetostatic volume wave propagation in bilayer structure consisted of two
ferromagnetic layers. The magnetic anisotropy field is assumed to be different in the two layers, and hence the magnetization in one
layer can be aligned at an angle with respect to the magnetization direction in the other layer. The case of cubic and indused uniaxial
anisotropy have been considered. Numerical calculations for YIG (yttrium-iron-garnet) ferrites show anisotropic propagation of the
volume magnetostatic wave in that structure. Dispersion curves for YIG bilayer structure are shown to illustrate the effects of angle
between the magnetization vectors in the magnetic layers and propagation direction on the properties of magnetostatic waves.
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MATHUTOCTATHYECKHUE BOJIHbI B CTPYKTYPE C IBYMSA AHU3O0TPOITHBIMH CJIOSAMU C
HEKOJLLIMHEAPHOM OPUEHTALMEN HAMATHUYEHHOCTER
A.D. Byxanbko
Joneyxuit pusuxo-mexnuuecxkuu uncmumym HAH Yrpaunovl
ya. PJlhokcembype 72., 83114, /loneyx, Ykpauna

B oTOli cTathe MpEACTaBIEHO TEOPETUUECKOE HCCIENOBAHUE PACHPOCTPAHEHUS MAarHUTOCTaTHYECKUX OOBEMHBIX BOJH B
JBYXCIIOWHOM CTPYKTYype, COCTOsIIEH 13 IBYX (peppoMarHUTHBIX ciioeB. [IpeamnonaraeTcs, 4To mojie MarHUTHONH aHH30TPOIHH B 3THX
CIIOAX PA3JIUYHO U CIEAOBATEIHHO HAMATHUYEHHOCTh B OJTHOM CJIO€ MOXET OBITh HEKOJUTMHEapHA HAMAarHMYEHHOCTH B IPyTOM CIIOE.
Paccmotpen ciy4ait kyOndeckoit U MHIYIUPOBAHHON OMHOOCHOH aHM30Tporuu. YncneHnslid pacuer mst XKUT (5kene30-UTTpueBbIi
rpaHaT) MoKa3aj, YTO PpacHpOCTPAHEHNE MATrHUTOCTATHIECKHX OOBEMHBIX BOJH B JAHHOM CTPYKTYpE SIBIISIETCSI aHM30TPOIHBIM. JI1st
WIIIOCTPALUY BIMSAHMS YIJa MEKAY BEKTOPAMU HAMAarHUYEHHOCTH MAarHUTHBIX CJIO€B U HaNpaBlICHUS PAacIpOCTPAHEHHs Ha
CBONCTBAa MAarHUTOCTATUYECKUX BOJH IPUBE/EHBI JUCIIEPCUOHHBIE KpuBbIe 1isl AByXcloiHON XKUI' cTpyKTypBbI.

KUJIIOUYEBBIE CJIOBA: marHuTOCTaTH4eCKUE BOJHBI, ABYXCJIOHHas CTPYKTypa, HEKOJUIMHEAapHas OpUEeHTALusl, aHU30TPOIusd,
JIMCIIEPCHOHHOE COOTHOILICHHE.

MATHUTOCTATHYHI XBUJII' Y CTPYKTYPI 3 IBOMA AHI3OTPOITHUMMH IHAPAMMU 3
HEKOJIIHEAPHOIO OPIEHTAIIEIO HAMATHIYEHOCTER
A.®. Byxanbko
Jloneyvkuil izuxo-mexuiunuii incmumym HAH Ykpainu
eyn. P. Jlokcembype 72, 83114, [oneyvk, Yrpaina

V wiit cTaTTi NpeacTaBiIeHo TEOPETHYHE JOCIIHKEHHS MOMINPEHHS] MArHITOCTATHYHNX 00'€MHUX XBUJIb B IBOIIAPOBIH CTPYKTYPI, IO
CKJIaaeThesi 3 ABOX (epomarHiTHMX miapiB. IlepenbavaeTbes, 10 MOJie MAarHiTHOI aHi30Tpomii B LUX IIapax pi3He 1 OTKe
HaMarHiueHiCTh B OJHOMY LIapi Mo)ke OyTH HeKoliHeapHa HAMarHideHOCTi B iHIIOMY Miapi. Po3risiHyTHI BHMagok KyOidHOI Ta
1HIyKOBaHOI OJHOBICHOI aHi3oTpomii. UucenpHuii pospaxyHok s 3II(3amizo-iTpi€BHi TpaHaT) MOKa3aB, IO HOUIMPEHHS
MAarHiTOCTaTHYHUX O0'€MHHX XBWIb B MHaHIA CTPYKTypi € aHi3oTpomHuM. Jlms imrocTpamii BIUIMBY KyTa MK BEKTOpaMu
HAMAarHiYeHOCTI MarHiTHUX IIapiB 1 HANPsAMY MOIIUPEHHS Ha BIACTHBOCTI MArHITOCTATUYHUX XBWJIb TPUBENICHI AUCHEPCIiHHI KPUBI
quis aomaposoi 31" ctpykrypu.

KJIFOYOBI CJIOBA: marHWUTOCTaTMYHI XBHJI, JBOXIIApOBa CTPYKTypa, HEKOJHEapHa OpI€HTAIlis, aHI30TpOMis, IHCIepCiiiHe
CITIBBIHOIIEHHS.

Over the last years the magnetostatic waves have attracted extensive attention on both theoretical and
experimental aspects. Their phase velocity is small compared to the speed of light and so in describing magnetostatic

waves we can use the equations of magnetostatics. If we take wave vectors in the region 30 cm'1<|k| <10° em™ the

dispersion relationship can be derived without taking exchange interactions and electromagnetic retardation into
consideration.

Magnetostatic waves have been studied at first by Damon and Eshbach [1]. These waves are separated into three
categories: magnetostatic surface waves (MSSW's) and magnetostatic backward-volume waves (MSBVW's) for the in-
plane-magnetized film case and magnetostatic forward-volume waves (MSFVW's) for the perpendicularly magnetized
film case. It should be pointed out that the exchange effects are not very important for backward-volume waves.

Increased interest in multilayer structures with noncollinear orientation of magnetization vectors associated with
the fact that the external magnetic field applied in the plane of a film allows characteristics of the system to be easily
changed by varying the angle between the magnetization vectors in the layers [2]. From the application point of view,
having a bilayer with noncollinear orientation of magnetization vectors instead of a single film offers more degrees of

© Bukhanko A.F., 2013




58
«Journal of Kharkiv National University», Nel041, 2013 A.F. Bukhanko

freedom for tailoring special properties. Moderately simple and proficient control of properties magnetostatic modes in
that structure by means of applying an external magnetic field open up fresh opportunities for their practical
implementations.

A deficiency of magnetic or nonmagnetic ions in YIG can give rise to anisotropic terms different from cubic
symmetry. The authors [3] found for YIG disks that can be uniaxial in-plane induced magnetic anisotropy as a result of
the lattice mismatch. Also, the Bi-doped YIG film have strong induced magnetic anisotropy. For Bi-doped YIG, by
controlling the factors affecting the induced magnetic anisotropy one can make the easy axis be either perpendicular or
parallel to the structure.

Various authors have considered the influence of anisotropy on magnetostatic waves [4-7]. A substantial amount
of work has been devoted to the analysis of magnetostatic waves in multilayers composed of ferromagnetic materials
and dielectrics [8-12]. In [7] the theory is developed for dispersion characteristics of spin waves in ferromagnetic films
taking into account both dipole-dipole and exchange interactions, crystallographic anisotropy and mixed exchange
boundary conditions on the film surfaces.

So far as we know for the investigation of the magnetostatic waves such geometry of structure was employed only
by Sun K and Vittoria S. [6]. In [6] the spectrum of MSSW has been studied for structure with noncollinear orientation
of magnetizations (M, # M,) but no consideration has been given to volume magnetostatic waves.

We now consider this problem for the volume magnetostatic waves. The purpose of this paper is to investigate the
effect of anisotropy on magnetostatic wave propagation in the layered structures with noncollinear orientation of
magnetization vectors. As will be seen, these effect is of more interest in the case of the noncollinear magnetizations as
compared to the parallel one. Our investigation have been restricted to the case of magnetization in the plane of the slab.

MODEL AND METHOD
Let us consider the magnetic structure consisting of two ferromagnetic films separated by a nonmagnetic interlayer
(Fig.1), where equilibrium orientation of the magnetization vectors in the magnetic layers is supposed to be in the film
plane and make a certain angle y between each other. The film is assumed to be magnetically anisotropic. An external
static magnetic field H is applied in the film plane at an angle ® relative to the X -axis so that the total internal
magnetic fields also lie in the planes of the layers. For simplicity assume that thicknesses of the ferromagnetic layers
d, =d,. Fig. 1 shows a bilayer structure placed in X-Y-Z coordinate system so that the plane of the film coincides with

the X-Y plane. The vector k and angle ¢ designate the in-plane wave vector and propagation angle, respectively.
For YIG the X-,Y,Z- axes represent
(L) the crystallographic directions for the cubic
single crystal.
* We make the simplifying assumptions
(1 that the film is infinite in the X- and Y-
----------- directions and has a thickness d in the Z-
direction. An additional x-y-z coordinate
(o system is also shown (the x-axis is along the
B M, vector).
3 The saturation magnetization vector
2 M, coincides with vector H and the
- T saturation magnetization vector M, is at
e HE ) some angle @ relative to the X-axis. The

internal fields H" and H* also lie in the

plane X-Y. The quantities H” and H'” can
r H
\‘! be expressed in terms of the external field
H, the static cubic anisotropy field
components H'’ and H'”, and the static-

induced  in-plane  anisotropy  field

Fig.1. Film, field and magnetizations geometry. a .
component H;’, where the superscripts (1)

and (2) denote the layers corresponding to M, and M.

We use the macroscopic phenomenological theory: Maxwell's equations, considering the boundary conditions of
the structure and the Landau-Lifshitz equation of motion for the magnetization. The macroscopic approach treats the
total energy in terms of the magnetization. The magnetostatic dispersion relationship may be expressed in terms of
permeability tensor elements for each rnagnetic layer.

The Landau-Lifshitz equation of motion for the magnetization of film i (i=1,2) is written as
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where F, - magnetocrystalline anisotropy free energy density, H, — total internal field, H - external static magnetic

field.
An magnetocrystalline anisotropy free energy density is written as

F, =K, (1I-M} /M}) + K, (MiM] + MM, + MOM? ) 2)
where K, denotes a uniaxial anisotropy energy density parameter, K, denotes a first order cubic anisotropy energy

density parameter.
The internal H'” consists of the static effective field H, and dynamic effective field h components, that contain

anisotropy terms in the dynamic response for magnetostatic waves. Also, the magnetization is written as the sum of a
static part M and a fluctuating part m. For layer (1), in the small signal limit in which
Im(r,t)l << M, (M, —saturation magnetization ) is satisfied, m has only transverse components m,, and m,,.

In order to obtain the magnetostatic dispersion relations, one has to find the permeability tensor elements for each
layer.

By linearizing the Landau-Lifshitz equation (1), after some algebraic manipulations, the dynamic permeability
tensors are obtained. For layer (1), where the lowest order terms in a small amplitude dynamic response involve only
the y- and z- components of the total magnetization vector M, it is given by

b\ a(h)\ (1+k, —iv\(h
Vl=pl Y= bl
b, h, v vk |k

©00-07 T 00 -0 Q,0,-0
H
Q — OJ/’Y , Qq 6 — a.p
4nM T 4nM
where
sin® (2@
H, =Hcos(©—-®)+H, cos’ (P)+H, 1—¥
2 4)
Hg = H cos(®—®)+ H, cos(2®)+ H , cos(4D)
For layer 2 it is given by:
b, h, 1+ sin’(y) —k® cos(y)sin(y)  ivsin(y) \(h,
b, |= n h, |=| =k cos(y)sin(y)  1+k cos’(y)  —iveos(y) || A,
b, h, —ivsin(y) ivcos(y) 1+ k> h
Q Q 5
ka — o = k[5 _ B —, V= Q _ ( )
Q,0,-0 Q,0Q,-0 0,0,-Q
H
Q= (D/Y 5 ap o s
4TM P 4
where
sin’ (20)
H, =H+H,|1-——
2 (6)

Hy = H +H  cos(40).
The fluctuating part of the dipole field h and the magnetization m must satisfy the magnetostatic form of Maxwell's
equations
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div[h+4mm]=0, roth=0. (7)
Under the magnetostatic approximation h:grad[\yexp(—iwt)] , where y is a magnetic scalar potential. The problem is

now reduced to finding the propagating normal mode solutions for the scalar potential ¢ which satisfy the condition (7), that

gives simple equation:

) Oy Oy oy oo Oy
0 0 ) 0 _
My o + Uy o + U3 o +2u;, oxdy =0
)
where
i =Lug =1+ k0 ng =1+ k" ul) =0
Y =1+ kD sin® ()05 = 1+ A cos® ()l =1+ &5 wi3) = =k cos(y)sin(y);
The scalar potential functions y"? are taken in the form:
y? = (a“’z)exp (k;l’z)z) +b"exp (k;l’”z)) exp (iKE(l’z)X) exp (iK(yl’z)y) )
k"* parameters are related to the propagation wave number K:\/ k2 42 = \/K(Xm +x? through Eq.(8):
KD =iy~ (14 k0 sin* (@) [(1+K), K2 =i [~(14 2 sin(y—)) /(1+ &7 ) (10)

Under the magnetostatic approximation, by imposing the usual electromagnetic boundary conditions, a set of
homogeneous equations is generated. The condition for the existence of a nontrivial solution yields the dispersion
relation.
F(Q,xd)F, (Q,kd)-e ™" P (Q,kd)P, (Q,kd)=0 (11)
where
F(Q,x) = x+ix, u) + k"l [ (Bexp(2kd,) -1)/(Bexp(2k"d,) +1) |

Fy(Qk) = k=i 12 - i 1 - kU@ [(7 exp(2k ) (d, +d,)) -1/ (V exp(2k (d, +d,) + 1]

B(Q,x) = k-ik 1) -k ul [ (Bexp(2kd,)-1)/(Bexp(2kd,) +1) |
P(Q,x) =k +it 1) ik, 1) + kP [ (7 exp2k (d, +d,) -1 /(7 exp(2k(d, +d,)+1) |

N I AR () @@ e 1@ e @
K-k Uy, + k1 _ k.7 ps; - K-IK Uy - IK sy @) _ (D/Y
T M oMM V= @), N NG exp(-2k; (2dl+dﬁ))’Q_ :
K U5+ - K k. 7Wsy + K IK UG +iK ) 4nM

The dipersion relation includes two parts. One is the product of the individual dispersion of each layer. The other
is the coupling term due to the interaction between the two ferromagnetic layers. As the separation between the
ferromagnetic layers goes to infinity, than one can obtain the individual dispersion relation for each layer.

NUMERICAL RESULTS
Numerical calculations have been performed to investigate the magnetostatic volume wave properties. The
following thicknesses of layers are used:d, =1 um, d,=1 pm, d =20 nm. Specifically, the case of YIG ferrites have

been considered (H =800 Oe, HY =-900e, H{’ =-860e, ©=57°,H{ =200 Oe) [5]. For Fig. 2 and Fig.3, which
show the dispersion curves, M, =M, =1750G . Fig.4 shows other example of the effects of anisotropy for
ferromagnetic layers with different static magnetizations M, =1750 G, M, =1256 G [6].

We can see from Fig. 2-4 the two set of dispersion curves corresponding to layer 1 and layer 2 with different
volume mode band limits (Fig. 5). Each set and volume mode band corresponds to the individual magnetic layer. It is
important to realize at this point that there is an infinite manifold of volume mod dispersion curves. For the range of kd
values, the dispersion curves cover the entire volume mode band for each set. All curves correspond to the roots of
transcendental equation (11). In the case of one layer (Fig. 3a), only one set of curves exist.

For YIG materials the volume mode band similar for the band for the isotropic film, except for a surviving band

width even at in-plane propogation angle ¢ =90° (as can be expected, in the limit — 90° the volume mod band has

reduced but has a nonzero width).

As seen from Fig. 2, the propeties of volume magnetostatic modes in that structure are substantially determined by
the angle between magnetization vectors in the magnetic layers and the rotation of the direction of propagation in the
plane of the film. We can see that splitting between the dispersion curves for layer (1) and layer (2) will rise with a rise
in-plane propagation angle ¢.
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L2

° kd

Fig. 2.Dispersion curves of reduced frequency Q vs. reduced wave number kd for three values of the propagation angle ¢.
a)for angle y=0; b)for angle y=13° (y — angle between magnetization vectors in the magnetic layers)
In Fig. 3(b) (for M, =M, =1750 G ) we can see that the dependence of wave number k from in-plane propogation
angle ¢ for layer (1) differs from that of layer (2).

a) b)
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Fig. 3.The reduced wave number kd as a function of in-plane propagation angle ¢ (reduced frequency Q=0.8)
a) for one layer, b) for bilayer
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Numerical calculations demonstrate that for ferromagnetic layers with different static magnetizations
M, =1750G, M, =1256 G the dependence of wave number k from in-plane propogation angle ¢ can have

qualitatively another character than for case ferromagnetic layers with equal static magnetizations.
Similar to Fig. 2, in Fig. 4, for a different propagation direction, the dispersion curves are different.

a) b)
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N 1
Kd Kd
Fig. 4.Dispersion curves of reduced frequency Q vs. reduced wave number kd .

a) for in-plane propagation angle ¢=0; b)for in-plane propagation angle ¢=43°

The volume mode bands as a function of in-plane propagation angle ¢ are shown in Fig.5. It should be pointed out,
that contrary article [13], (where the propagation characteristics for backward volume waves were described only for
propagation direction parallel to the bias field) in Fig.4 and Fig.5 one can see the overlapping of the volume mode
bands for the ferromagnetic layers without any discontinuous. Because of the different static magnetizations in the
ferromagnetic layers (Fig.4, Fig.5b), the volume mode band limits for magnetostatic wave excitation for layer (1)
strongly differs from that of layer (2).

In the case of the different static magnetizations in the ferromagnetic layers (Fig. 5b), overlapping of the volume
mode bands is substantially reduced as compared to Fig. 5a. Also, at that case, as seen from Fig.4 and Fig.5b, the
overlapping of the volume mode bands will fall with a rise in-plane propagation angle ¢.
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a) b)
Fig. 5.The volume mode bands as a function of in-plane propagation angle ¢

a)for M, =1750 G, M, =1750 G ,b) for M, =1750 G, M, =1256 G

CONCLUSION
This work deals with volume magnetostatic modes of bilayer structure with noncollinear in-plane orientation of
magnetization vectors. This is caused by the anisotropy field difference in the layers. The essential dependence of the
properties of volume magnetostatic modes is demonstrated on an angle between the magnetization vectors in the layers.
In the case of the different static magnetizations and induced in-plane anisotropy fields in the two different layers
the dependence of wave number x from in-plane propogation angle ¢ for layer (1) differs from that of layer (2).Also,
the difference between static magnetizations reduce overlapping of the magnetostatic waves volume bands.
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Since the angle between magnetization vectors in the magnetic layers y has a strong influence on volume

magnetostatic waves propagation the angle between magnetization vectors is a potential control parameter for
magnetostatic waves based devices.
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