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Nonlinear traveling waves of the Klein-Gordon equation with cubic nonlinearity are considered. These waves are described by the
nonlinear ordinary differential equation of the second order having the energy integral. Linearized equation for variation obtained for
such waves is transformed to the ordinary one using separation of variables. Then so-called algebraization by Ince is used. Namely, a
new independent variable associated with the solution under consideration is introduced to the equation in variations. Integral of
energy for the stationary waves is used in this transformation. An advantage of this approach is that an analysis of the stability
problem does no need to use the specific form of the solution under consideration. As a result of the algebraization, the equation in
variations with variable in time coefficients is transformed to equation with singular points. Indices of the singularities are found.
Necessary conditions of the waves stability are obtained. Solutions of the variational equation, corresponding to boundaries of the
stability/instability regions in the system parameter space, are constructed in power series by the new independent variable. Infinite
recurrent systems of linear homogeneous algebraic equations to determine coefficients of the series can be written. Non-trivial
solutions of these systems can be obtained if their determinants are equal to zero. These determinants are calculated up to the fifth
order inclusively, then relations connecting the system parameters and corresponding to boundaries of the stability/ instability regions
in the system parameter place are obtained. Namely, the relation between parameters of anharmonicity and energy of the waves are
constructed. Analytical results are illustrated by numerical simulation by using the Runge-Kutta procedure for some chosen
parameters of the system. A correspondence of the numerical and analytical results is observed.
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The nonlinear Klein-Gordon equation appears in different physical problems, namely, in problems of wave
propagation through a region of weak superconductivity so-called Jefferson transition), motion of dislocations in
crystals, propagation of waves in ferromagnetic materials, propagation of laser pulses in a two-phase medium, studying
surfaces with negative Gaussian curvature, relativistic effects etc. [1-4]. Besides, it can be considered as useful
mathematical model to describe a behavior of various types of traveling waves. Among the articles on the stability of
nonlinear traveling waves, we highlight the paper [5], where the stability of traveling waves in some general distributed
nonlinear system is considered, and the paper [6], where the stability of traveling waves in some nonlinear chain is
analyzed. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their
properties in [7]. In the presented paper the Klein-Gordon equation with cubic nonlinearity is used to represent new
method for studying the stability of traveling waves. Namely, the so-called Ince algebraization [8] is used. Note that this
approach was successfully used earlier in study of the stability of nonlinear normal vibration modes in nonlinear
systems with a finite number of degrees of freedom [9-11]. Besides, this procedure is similar to one proposed in the
paper [5] for the stability of traveling waves problem, but results on such stability problem for concrete systems are not
presented in this publication. The Ince algebraization is based on a choice of the new independent variable, determining
the traveling wave under consideration. An advantage of the proposed approach is that we do not need to use a specific
form of the solution under consideration in analysis of the stability problem.

The present paper aims at contributing of the Ince algebraization to the problem of nonlinear wave stability. Our
task is to use the proposed approach in regard of the equations in variations for the traveling waves of the nonlinear
Klein-Gordon equation. Numerical simulation illustrates obtained theoretical results.

THE GENERAL MODEL. STATIONARY TRAVELING WAVES
One considers the Klein-Gordon equation with cubic nonlinearity:
Pu_ 0%
atz 0 gx2
Stationary traveling waves are presented in the following form:

+ wo?u = —qud (1)

u = ®(p): where ¢ = kx — wt 2)

where ¢ is the wave phase. Substituting (2) into equation (1), we obtain the following ordinary differential equation for
describing traveling waves:
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The energy integral here is written as follows:

1 (do\? @2 ot
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In addition, from equation (3) we can obtain the following relation, which will be used later in analysis of the traveling
wave stability:

a2 —weld—qd3

10? = Twrcrkr ®)
Besides, from the equation (4) we get the following relation which will be also used later:
ae\? _ 2(’1‘“’02‘1’72“7%4) 6
(E) - w?-cy2k2 ©)
EQUATION IN VARIATIONS

To study the stability of stationary waves, we write out, first of all, the linearized equation in variations V (t, x)
obtained for the solution (2). One has from the equation (3) the following:

a%v 2 0%V

m =Cy 9x2 - V(woz + 3q(p2)9 (7)
where the function @ (¢) is determined by the equation (3).

As the first step, we now introduce the independent variables ¢, t instead of the variables x, ¢. The variational
equation (7) in the new variables is rewritten as follows:

2%y a%v
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2
Z—q)‘; (w? — cy?k?) — 2w = —V(wy? + 3qP2). 8)

Then we use the separation of variables as V=e*t Z(¢) and the additional transformation:

2(p) = e®*W, (€))

S

where A = szkz As a result, instead of the equation (8) we get the following ODE in variations:
—Cto

ZZTVZV(wz —¢o%k?) = =W (B — wy? — 3q®?), (10
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where B = ————.
Co2kZ—w?

Note that since the parameter s? is presented in equation (10), in the case of real values of the parameter s, they
can be both positive and negative. In view of the transformation (9), this leads to increase of the variations, that is, to
instability. Thus, stability can be observed only under the condition that s> < 0. One has from here that for the stability
there should be the following inequalities:

B>0,ifcy?k? — w? < 0and B<0,if cy?k? — w? > 0. (11)
Then, as a new independent variable, instead of ¢, the variable @, determining the traveling wave under
consideration, is chosen. Now, after some transformations, the equation of variations can be presented as,

d*w
do?

2 4
2 @ @

daw
2 (h — w22 - qT) — 2 (o?® + 3qD%) + W(B — wy? — 3q?) = 0, (12)

whose singular points are obtained when coefficient near the second derivative is equal to zero. One has the following:

@2 %
h— a)(z, ——q— = (® — D,)G(D, Dy)=0, (13)

2 4

where @, is a root of this equation.
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The transformation to the equation in variations to the form of equation with singular points (12) is the so-called
algebraization by Ince of the stability problem which was first presented in [8]. An advantage of this approach is that an
analysis of the stability problem does no need to use the specific form of the solution @(p).

CONSTRUCTION OF BOUNDARIES OF THE STABILITY/INSTABILITY REGIONS
It is shown in [8] that boundaries of the stability/instability regions in the parameter space of the variational
equation with singular points are determined by solutions presented in the following series:

W=z"(ag+a.z+). (14)

Here r is one of two indices of the variational equation singularity [12], and z = (& — @;). To determine the
indices of the singular point @, we introduce the series (14) into equation (12). Collecting the terms with the lowest
degree of z, we obtain the following equation to determine these indices:

r(r = D(—wo’®y — qP3) — 1(we’®o + 3qP5) = 0. (15)

It follows that
2qd3
wo2+qd3’ (16)
Substituting now the series (14) corresponding to the zero index to the equation in variations (12) and equating the
coefficients with the same degrees by z, we get the following infinite recurrent system (17) of linear homogeneous
algebraic equations to determine coefficients of the series:

2 4a, [h — wid,? — %(%4] — a,(Powd + qPy° — B + wd + 3q®,°) — a, (—B + w§ + 3qP,* + 34)04) =0

=0 and r,=-

2
z": 12as4 (h — %CDOZ - %<D04) — ay(4®owE + 4qPy° + 203 + 6qP,°) + a,(B — 2wk — 6qP,*) — 6ayqP, = 0
7% -15a3(Powd + Po3q) + ay(B — 5wd — 12q®,*) — 9a,q®, — 3a0q = 0, (17)

etc.

The system (17) has a non-trivial solution if its determinant is equal to zero. This determinant was calculated up to
the fifth order inclusively, and, thus, the relation connecting the system parameters was obtained; as a result, boundaries
of the stability/ instability regions in the system parameter space can be constructed. Note that boundaries obtained by
calculation of determinants of the fourth and fifth orders are close, so, we did not calculate determinants of the highest
order than five.

Substituting the series (14) corresponding to the root 7, into the equation in variations (12) and equating the
coefficients with the same degrees by z, we obtain the infinite recurrent system of linear algebraic homogeneous
equations for determining the expansion coefficients. Due to bulkiness of these algebraic equations, we present here
only two first ones of them by equations (18):

421 2[h wz% _qq’_o4 { 299§ [ 2993 _1]+ 299§ 2}a1—20lo 299§ [ 2994 _1] [(w2d, + qd,)] -
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2q®,%)+a, —“’—‘2) — g2 ] (W3 @ + qD,%) (2 + 203®, + 2D¢°) + a; [-wi®, — qPy°| (03P, + qPo°) (2 +
203Py + 2qD,%) + a; —ﬂ — g ] [(2 + 403®, + 4P, (W5 + 39,2q)] + a,(2 + 203d, + 2D, %) (wWid, +
qP,°) + @ [40F + 1202 [ - wz"l— ]+ ay[~whdy — q0o*](4 + 403D, + 4qdy* ) +4a; [h — wf 2 ‘l"’

q¢TO] - ao[(l)o + 3¢0 q][w q)o + qq)o ] - al(woq)o + qq)og)[(l) d)o + qd)o ] - ao(l + w q)o + qq)o )[(J)O
30,%q] + ag[B — w3 — 3q®,*] = 0. (18)

The resulting system has a nontrivial solution if its determinant is equal to zero. This determinant was calculated
up to the fourth order inclusive, and, thus, the relation connecting the system parameters was obtained; so, boundaries
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of the stability/ instability regions in the system parameter space are constructed. Note that boundaries obtained by
calculation of determinants of the fourth and fifth orders are also close in this case.

Boundaries of the stability/ instability regions in some places of the system parameters are presented in Figs. 1,2.
Here we fix the traveling wave amplitude, namely, it is assumed that @, = 1; the frequency w = 1.5; ¢co = 1; k = 0.1.
The boundaries in the place of the parameters B, / for index r; are chosen in Fig. 1, where the parameter B varies in the
interval [2.9....3.2]; the system energy / varies in the interval [0..0.1]. Here and further the dimensionless parameter of
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Fig. 1. The boundary between stability/ instability regions
in the place (B, 4) for index r1.

Fig. 2. The boundary between stability/ instability regions
in the place (B, &) for index r2.

anharmonicity ¢ is calculated from the equation (13); cy2k? — w? = —2.24. The boundaries in the place of the
parameters B, h for index r; are presented in Fig. 2, where the parameter B varies in the interval [58....66.5]; the system
energy h varies in the interval [0..0.1]. In Figs. 1,2 regions of stability are situated on the left side of the obtained
boundaries. In Fig.3 the system parameters are chosen as @, = 1; w = 0.5; ¢y = 1; k£ = 0.6. The boundaries in the place
of the parameters (B, k) for index r, are chosen in Fig. 3, where the parameter B varies in the interval [-5...0]; the system
energy & varies in the interval [0...0.1]; the parameter ¢ is calculated from the equation (12); c¢o?k? — w? = 0.11.
Region of stability is disposed above the boundary showed in Fig. 3.
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Fig. 3. The boundary between stability/ instability regions in the place (B, /) for index r».

The Runge-Kutta test for the equation in variations (10) shows limited/ unlimited solutions when parameters are
chosen from the stability/ instability regions obtained earlier. The same fixed parameters as were used above are used in
the calculations. In Fig. 4 the limited solutions of the variational equation are shown. These solutions are chosen in the
stability region in the place (B, /) presented in Fig.1. Namely, the system energy /2 = 0.05, the dimensionless parameter
B =3.1, the dimensionless parameter ¢ = - 4.43 are used for Fig. 4a. Fig. 4b is obtained for #=0.04, B = 60, ¢ = -4.34.
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Fig. 4. Limited solutions of the equation in variations chosen in region of stability.
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Calculations are made for 2 =0.05, B = 3.1 (a) and for #=0.04, B = 60 (b). Other parameters correspond to ones used for Fig. 1.
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Fig. 5. Unimited solutions of the equation in variations chosen in regions of instability.
Calculations are made for #=0.08, B = 3.18 (a), for 2 = 0.06, B = 3.15 (b), and for 2 = 0.09, B = 66 (c). Other parameters correspond
to ones used for Fig. 1,2.

Increasing solutions of the equation in variations are presented in Fig. 5. Namely, the solution presented in Fig. 5a
is chosen in the instability region showed in Fig. 1; here 4=0.08, B = 3.18, ¢ = -4.18. The solution presented in Fig. 5b is
also chosen in this instability region; here #=0.06, B = 3.15, ¢ = -4.26. The solution presented in Fig. 5c is chosen in the
instability region showed in Fig. 2 when 4=0.09, B = 66, g = -4.1.

Then the limited and unlimited solutions of the variational equation obtained by the Runge-Kutta test are shown in
Fig. 6 for regions of stability/ instability presented in Fig. 3. Parameters used in numerical calculations are the same.
Namely, the limited solution from the region of stability is presented in Fig. 6a for #=0.01, B = -1, ¢ = - 0.42. The
unlimited solution from the region of instability is shown in Fig. 6b for #/=0.04, B = -4, g = -0.26.

13108 . : : . T T T T
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Fig. 6. Limited solution (a) and unlimited solution (b) of the equation in variations.
Calculations are made for #=0.01, B =-1 (a) and for #=0.04, B = -4 (b). Other parameters correspond to ones used for Fig. 3.

CONCLUSION

We can conclude that the Ince algebraization can be successfully used to analyze stability of nonlinear traveling
waves of the Klein-Gordon equation with cubic nonlinearity. Boundaries of the stability/ instability regions in place of
the system parameters are obtained by analysis of the linearized equation in variations which is transformed to equation
with singular points when the variable connected with solution under consideration is chosen as a new independent
variable. Solutions corresponding to these boundaries are constructed in power series. Numerical simulation illustrates
this analysis of the traveling wave stability. It seems that the method of algebraization can be used in the stability
analysis of other types of nonlinear traveling and standing waves.

ORCID-IDs
Nataliia Holoskubova "= https://orcid.org/0000-0003-2399-0177, Yuri Mikhlin = https://orcid.org/0000-0002-1780-9346

REFERENCES

[1]. G.B. Whitham, Linear and Nonlinear Waves, (Wiley, New York, 1999).

[2]. V. Benci and D. Fortunato, Varionational Methods in Nonlinear Field Equations. Springer Monographs in mathematics.
(Springer, Switzerland, 2014).

[3]. A.D. Polyanin and V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, (Boca Raton, Chapman & Hall/CRC,
2004).

4]. O. Waldron and R. A. Van Gorder, Physica Scripta, 92(10), 105001, 2017, doi:-10.1088/1402-4896/aa86fa.

5]. E.L Yakubovich, in: Heruneiinvie 6oanwt [Nonlinear waves], (Nauka, Moscow, 1979), 62-67. (in Russian)

6]. N. Budinsky and T. Bountis, Physica D, 8(3), 445—452 (1983), doi: 10.1016/0167-2789(83)90236-1.

7]. A. Ghazaryan, S. Lafortune and V. Manukian, Philosophical Transactions of The Royal Society A. Mathematical Physical and
Engineering Sciences, 376(2117), 20180001 (2018), doi: 10.1098/rsta.2018.0001.



10
EEJP 22019 Nataliia Goloskubova, Yuri Mikhlin

[8]. R.L.Ince, Ordinary Differential Equations. (Longmans Green, London, 1926).

[9]. Yu.V. Mikhlin and A.L Zhupiev, Int. J. of Non-Linear Mechanics, 32(2), 393-409, (1997), doi: 10.1016/S0020-
7462(96)00047-9.

[10]. Yu.V. Mikhlin, T.V. Shmatko and G.V. Manucharyan, Computer & Structures, 82(31), 2733-2742, 2004,
doi: 10.1016/j.compstruc.2004.03.082.

[11]. K.V. Avarmov, Yu.V. Mikhlin, Heaunetinas ounamuxa ynpyeux cucmem. T.1. Modenu, memoowl, serenus (Mzoanue 2-e
ucnpagnennoe u oonoanennoe) [Nonlinear Dynamics od Elastic Systems, V.1] (IKI, Moscow-Izhevsk, 2015). (in Russian)

[12]. A.F. Vakakis, L.I. Manevitch, Y.V. Mikhlin, V.N. Pilipchuk and A.A. Zevin, Normal Modes and Localization in Nonlinear
Systems, (Wiley, New York, 1996).

AJITEBPAIZAIIS B 3AJAUI CTIMKICTI CTAIIIOHAPHUX XBU.JIb PIBHSIHHSI KJIEMHA-ITOPJIOHA
H.C. TI'onocky6oBa, F0.B. MixJin
Hayionanvruti mexuiunuil ynigepcumem ““Xapxiecvkuil nosimexuiunuu incmumym *,
61002, Yxpaina, m.Xapxie, eya. Kupnuueea 2
Po3risinyTo HemiHidHI Oiryui xBmimi piBHsHHA Kieiitna-T'opmona 3 xy6idnoro HemiHiiHicTro. L{i XBmII ONMUCYIOTBCS 3BHYAHHHM
JudepeHIiaIbHIM PIBHSHHAM JPYTrOro IMOpsIKyY, 10 Mae iHTerpan eHeprii. JlineapizoBaHe piBHSHHS y BapialisxX Ui TAKMX XBHIIb
TpaHcHOpMyeThCs y 3BHYaliHe audepeHniabHe PiBHAHHS 33 JIONOMOIOI0 PO3NOAIICHHS 3MiHHUX. [10TIM BHKOPHCTOBYETBCS TaK
3BaHa anreOpaizauis 3a AifHCOM. A came, y PIBHSHHS B BapiallisXx BBOAWTHCS HOBA HE3aJe)KHA 3MIHHA, L0 MOB’s3aHa 3 PilLICHHSM,
sike po3risaaeTsest. [1ix yac Takoi TpaHchopMarii BUKOPUCTOBYEThCS IHTEIpajl SHeprii Juis CTallioHapHUX XBUIIb. [lepeBara Takoro
MiAXOMy 3B’s3aHa 3 THM, L0 JUIA aHaJi3y mpoOiieMH CTIMKOCTI He Tpeda BUKOPHCTOBYBATU CIEHU(DIYHWN BHUIIIAN PIMICHHS, L0
posrisanaeThesa. B pesynpraTi Takoi anreOpaizamii piBHSHHS y Bapiamifx 31 3MiHHHMH 32 9acOM KOe(ii€eHTaMH MEPEeTBOPIOETHCS Y
PIBHSHHS 3 OCOOJNMBUMHM TOYKAaMH. 3HAHCHO iHAEKCH 0coOMMBUX TOUOK. OTpHMaHO HEOOXiAHI YMOBH CTIHKOCTI XBHIb. PimreHHs
PIBHSIHB y Bapiallisix, IO BiJIIOBIJalOTh MEXaM PEriOHIB CTIHKOCTI / HECTIMKOCTI B NMPOCTOpI MapaMeTpiB CHCTEMH MOOYHOBaHO Y
BUIII CTCNICHEBHX PsAIB 32 HOBOIO HE3IEKHOI 3MIiHHOIW. MOXyTh OyTH BHMIHMCaHI HECKiHYCHHI PEKYPEHTHI CHCTEMH
anreOpaiyHUX PIBHSAHB JUIS PO3paxyHKy KoediuieHTiB mux psuiB. HeTpuBiaiabHi po3B’sI3KHM TaKUX CHCTEM MOXYTh OyTH OTpHUMaHi,
SKIO TX BU3HAYHMKH JOPIiBHIOIOTH HyJ0. L{i BUSHAYHUKM PO3Pax0OBaHO /IO I’ATOTO MOPAAKY BKIIOYHO, @ IMOTIM OTPUMAHO 3B SI3KH
MDK [apaMeTpaMH CHCTEMH 1 BiJIOBiJHI MEXi PErioHiB CTiMKOCTI/ HECTIHKOCTI B IUIOLIIMHI HapaMeTpiB CHCTeMH. A caMme,
BCTaHOBJICHO 3B’S3KM MDK IapaMeTpaMH aHTapMOHI3MY Ta €Heprii XBHJIi. AHAJIITHYHI pe3ylbTaTH MPOUTIOCTPOBAHO HYHUCEIHHUM
MOJICITIOBaHHAM 3a JToroMororo npoueaypu Pyrre-Kyrtu. Crioctepiraerbes BiIMOBIIHICTh YHCENBHUX Ta aHATITHIHUX PE3yIbTATIB.
KJIIOYOBI CJIOBA: piusuns Kieitna-I'opnona, CTifiKicTh CTaIllioOHapHUX XBHIIb, anredpaizaris 3a AifHcoM

AJITEBPAM3AIINA B 3AJJAUE YCTOMUNBOCTH CTAIIMOHAPHBIX BOJIH YPABHEHUS KJAEMHA-TOPIOHA
C KYBUYECKON HEJTUHEMHOCTbIO
H.C. I'osocky6oBa, F0.B. Muxiaun
Hayuonanvnviii mexnuyeckuil ynusepcumem ‘“Xapoko8cKuil NOAUMexHU4ecKull uncmumym *
61002, Yxpauna, e. Xapwvkos, yn. Kupnuyeea 2

PaccMmoTpensl HenuHeliHBIe Oerymue BOJNHBI ypaBHeHus KireliHa-I'opmoHa ¢ KyOWMuYecKOHW HEIMHEHHOCTBIO. OTH BOJHBI
OIUCHIBAIOTCS OOBIKHOBEHHBIM AW (EpeHINaTbHEIM YPaBHEHHEM BTOPOTO IMOPAAKA, KOTOpOE HMEeT HWHTEerpal SHEprHH.
JIuHeapu30BaHHOE ypaBHCHUE B BapHAIlMIX AN TAKUX BOJH Ipeobpasyercs: B 0OBIKHOBEHHOE AU depeHINaIbHOE YPaBHEHHE IPU
TIOMOIIY pa3elIeHus IIePEMEHHBIX. 3aTeM HCIIONB3YeTCs Tak Ha3bIBaeMasl aiareOpamn3arus o AHHCY. A HIMEHHO, HOBas He3aBUCHUMAast
IIepEeMEHHasi, KOTOpas CBs3aHa C pEIICHHEM, KOTOpOe paccMaTpUBAeTCs, BBOAUTCS B ypaBHEHUE B Bapuauusx. llpum stom
UCIIOJIb3YETCsl MHTErpaJl SHEPruM Ui CTalMOHApHBIX BOJH. IIpeMMyInecTBO Takoro mnojaxojia COCTOMT B TOM, YTO JUIsl aHailu3a
npo6IeMbl YCTOHYNBOCTU HE HYXKHO HCIIOJIb30BaHUE Creru(puueckoi GpopMbl peleHHs, KOTopoe paccMaTpuBaercsi. B pesynbrare
H0I00HOH anredpau3auny ypaBHEHHE B BapUALMAX C HEPEMEHHBIMHU 110 BpeMeHH KoddduuueHTaMu npeodpasyercst B ypaBHEHHE ©
0coOpIMH TOYKaMHU. HaliZIeHbl HHAEGKCH OCOOBIX TOYEK. PeleHns ypaBHEHHUH B BapHaNUsiX, KOTOPbIE OTBEYAIOT TPpaHULAM 00JIacTei
YCTOMYMBOCTU/HEYCTOMYMBOCTH, TOCTPOCHBI B BHJIE CTCIEHHBIX PSIOB IO HOBOH HE3aBUCHMOW MepeMeHHOH. MoryT ObITh
BEIITICAHbI OSCKOHEUHbIE PEKYpPPEHTHBIE CHCTEMBI alreOpandecKuX YpaBHEHHI Ul ompeneNieHus Ko3()(GHIUEHTOB STHX PSJIOB.
HerpuBnanbHble pelleHHs TaKUX CHCTEM MOTYT OBITH IIOJIy4eHBI, €CIIH WX ONPENCNHTCNIN PaBHBI HYIIO. JTH OIpPEASIIUTENN
BBIUMCIIIFOTCA JI0 MATOrO IOpPsJKa BKJIIOUUTEIBHO, 3aT€M 3aBUCHUMOCTH MEXIy IapaMeTpaMH CUCTEMbl U COOTBETCTBYIOILUE
rpaHunbl 00JacTel yCTONYMBOCTH/HEYCTOWYMBOCTH OBUTM IOJNy4eHBl. A MMEHHO, YCTaHOBJICHBI CBSI3M MEXIy IapamMeTpaMu
AQHIaPMOHU3MY M €HEPruM BOJHBL. AHAIUTHYECKHE PEe3yIbTaThl MIUTIOCTPUPYIOTCS YHCIEHHBIM MOJAEIHUPOBAHUEM IPU IOMOLIH
npouenypsl Pynre-Kytrel. HabmronaeTcs: cOoTBETCTBHE YHCIEHHBIX M AHATUTHYECKHUX PE3yIIbTaTOB.

KJIFOYEBBIE CJIOBA: ypaBHenus Kneitna-I'opaoHa, ycTOHYHBOCT CTAIMOHAPHBIX BOJH, allreOpan3anus mo AnHCy



