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Vibrations within infinite and semi-infinite monoatomic and diatomic chains in approximation of nearest and next nearest neighbors
have been considered. Phonon dispersion relations in an infinite and a semi-infinite cubic crystal have been studied. Calculations
have been carried out using a unitary methodology based on solving the difference equations. The following methodology is of broad
generality and can be used for studying of both continuous and discrete spectrum in crystal models close to real systems. For cubic
crystals volume vibrations zones and localized states representing surface waves have been calculated.
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HNOBEPXHOCTHBIE KOJIEBAHUS B TIOJTYOI'PAHUYEHHBIX HETTIOYKAX C YYHETOM
JAJTBHOJEVICTBHA Y B KYBHYECKNX KPUCTAJLIAX
M.C. Kiouko', A.A. Mamanyii , K.A. Munakosa ™, A.A. Poxkop™, E.C. Cbhipkun’
* duzuro-mexnuyeckuil uncmumym Huskux memnepamyp HAH Ykpaunvt um. B.U. Bepxuna
2. Xapvkos, np. Jlenuna, 47, Yepauna
** HayuonanoHwlil mexHuueckuil ynueepcumem «XapbKoSCKUll NOTUMEXHUECKUL UHCTNUMYM »
2. Xapvkos, yn1. @pynse, 4, Ykpauna
W3zydens! konebaHns B OECKOHEYHBIX U MOIyOTPAHHYEHHBIX OJHO- U JBYXaTOMHBIX IETIOYKAX B MPHOIIKEHHN IEPBBIX U BTOPBIX
coceneil. MccnenoBaHbl 3aK0OHBI AUCTIEPCHH (DOHOHOB B KyOM4ECKOM OECKOHEYHOM U MOJyOTrpaHWYEHHOM KpHCTaie. Beraucnenus
IIPOBEIEHBI C IIOMOIIBIO €ANHON METOJMKH, OCHOBAHHOM HA PEIICHUH Pa3sHOCTHHIX ypaBHeHHH. Mcnons3yemast MeToauka obragaer
IIMPOKOH OOIHOCTBIO U MOKET OBITH UCIIOIB30BaHA B MOJEIISIX, OJIM3KHMX K PEIbHBIM CHCTEMaM, ULl H3y4EeHHs KaK HEeIPEPHIBHOTO,
TaKk ¥ JIUCKPETHOro CIeKTpa KonebaHuili kpucramia. s KyOMUecKMX KPHCTAUIOB HAiJIeHBl 30HBI OOBEMHBIX KoJieOaHWH WU
BBIYHMCJICHBI JIOKAJIU30BaAHHBIC COCTOAHMNA, COOTBETCTBYOIIMUE IMTOBEPXHOCTHLIM BOJIHAM.
KJIOUEBBIE CJIOBA: ¢(oHOHBI, JIOKaJIM30BaHHOE COCTOSIHHUE, MOBEPXHOCTHBIC BOJIHBI, MATpPHLA CHJIOBBIX ITOCTOSHHBIX,
a71copOUpOBaHHBIN MOHOCIIOHN, TaTbHOAEHCTBHE.

TOBEPXHEBI KOJINBAHHA Y HAIIIBOEMEKEHWX JIAHITIO)KKAX 13 YPAXYBAHHSAM JTAJBHOIIT
TA Y KYBIYHHUX KPUCTAJIAX
M.C. Kiouko', A.O. Mamaayii™, K.O. Minakosa™", O.A. Poxkos™", €.C. Cupkin*®
* Dizuxo-mexuivHutl incmumym Huzvkux memnepamyp HAH Yxpainu im. b.1. Bepxina
M. Xapxie, np. Jlenina, 47, Yxpaina
** Hayionanohuti mexniunuil ynisepcumem « XapKigCoKuil NOAMeXHIYHUL IHCIUNymy»
M. Xapkie, eyn. Ppyuze, 4, Vrpaina
PosrnsiHyTO KONMMBaHHS, IO BUHHUKAIOTH y OE3KIHEYHHMX Ta HAMiBOE3KIHEYHHX OFHO- 1 JABOATOMHHUX JIAHIIOXKKAX 13 YpaxyBaHHSAM
B3a€MOIl MK MEPIIMMH 1 APYTHMH CyCilaMH, a TaKOX IpH ypaxyBaHHI JanbHOAIl. JlocmimkeHo 3aKkoHU mucriepcii (GOHOHIB y
KyOiYHOMY O€3KiHEYHOMY Ta HaIiBOE3KIHEWHOMY KpHCTaii. Po3paxyHkm Oyno MpoBeIEeHO 3a JOMOMOTH €IMHOI METOIUKH, L0
OCHOBaHA Ha PO3B’SI3aHHI PI3HUIEBUX DIiBHSAHb. BHKopHcTaHa MeTOJWKa Ma€ MIMPOKY CIUIBHICTH 1 MOXe OyTH BHKOpHCTaHA y
MOJIENAX, OJIM3BKHUX 10 PealbHUX CHUCTEM, JUISl BUBUCHHS SIK Oe3MepepBHOTO, Tak i JUCKPETHOTO CHEKTPY KOJIMBAaHb Kpucramna. s
KyOIYHHX KPHCTAJiB 3HAHIEHO 30HM 00’€MHMX KOJMBaHb Ta BHPAaxyBaHO JIOKAJi30BaHi CTaHMW, IIO BiJIIOBIJAalOTh MOBEPXHEBUM
XBUJISAM.
KJIIOUYOBI CJIOBA: ¢GoHOHH, JIOKaNi30BaHUI CTaH, MOBEPXHEBI XBUII, MATPHUII CHIOBHX KOHCTAHT, aJCOPOOBaHUI MOHOIIAp,
JATbHOMIS.

The main purpose of the article is the use of one-dimensional models, as it is of definite interest, since they can be used to find
out the basic properties of more complex physical objects close to reality. And, in addition, to provide a solution in closed form,
which can be used to control the interpretation of the approximate and numerical solutions obtained in the expansion of real systems.

ATOMIC VIBRATIONS IN MONOATOMIC AND DIATOMIC CHAINS

A necessity of comparison the results with some reference physical models often rise in a process of studying the
excitation spectra of different quasiparticles in real crystalline structures. In this connection the exactly solvable models
can be used (for example, one-dimensional atomic or molecular chain) [1]. On one hand, these one-dimensional models
are of academic interest, since they may be used for studying of the basic properties of more complex physical objects
that are close to real systems. On the other hand, such model systems are also help to carry out the exact solutions used
© Klochko M.S., Mamalui A.O., Minakova K.A.,
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for comparison and interpretation of the approximate and numerical solutions obtained for real systems.

In this section we consider vibrations which take place in monoatomic and diatomic chains when considering the
nearest and the next nearest neighbours interaction. When taking into account an influence of the next nearest
neighbours a situation may occur when ¢, constant corresponding the next neighbour interaction is of different sign
with «, which is for interaction between nearest neighbours. This situation may be applied to so-called metamaterials
simulation [2]. Presence of a negative constant ¢, leads to a problem of solutions stability which can be resolved by
setting the restriction on the force constants. Consider now possibility of consideration a long-range interaction within
such chains. In this connection we use a model representation of force interaction close to the real one. Account of the

long-range interaction solves a problem of solution instability which arises when the long-range interaction is not
considered.

Acoustic vibrations in a monatomic chain within approximation of first and second neighbours
2 el - oY) ne?  med Consider an infinite one dimensional monatomic
7 7 7 x  chain which consists of atoms connected with each other
by means of force elastic interaction (Fig. 1). Consider a
to be the interatomic distance, «, is a force constant

i

Fig. 1. The monoatomic chain model corresponding for nearest neighbour interaction and «, is

for the next nearest one.
The motion equation for the displacement of any n-th lattice-point atom within approximation of first and second
neighbours is as follows:

mﬁn = al (un—l + un+l - 2”7[ ) + az (un—Z + un+2 - 2un ) (1)

The equation (1) is sought in the form of plane waves

u, (t)=u, exp{i(nka—ot)}. 2)
Here u, is a plane wave amplitude, w and & are frequency and wave number correspondently.
After substituting (2) into (1) we receive
ma’ =2¢, (1-coska)+2a, (1-cos 2ka) (3)
The dispersion equation (3) can be rewritten as:
mao’

= 4sin2@+4&sin2 ka )
Q 2 Q

mar' Introduce a  designation  p=a /o, .

X Dispersion curves for a monatomic chain in
approximation of nearest neighbours (p =0,

dashed curve) and second nearest ones (p = -1\2,
\ : / curve 1; p = -1\4, curve 2; p = 1\4, curve 3; p =

I3

. 1\2, curve 4) are shown in Fig. 2. An instability
solution takes place at negative values of Here
g the condition of instability of negative values of,

% ¥

R a,/a, < -1/4 which is also represented at Fig. 2

(curve 1, p=-1\2). This situation can be applied
B i . in the simulation of metamaterials. The system
= = considered is stable if o« /o, <-1/4 (a,is

positive, (4)).
In case of an oscillating (alternating)

. . . . . . I interaction a restriction imposed on force
Fig. 2. Dispersion curves for a one dimensional monoatomic chain with

accounting of nearest and next nearest neighbours (p =-1\2, -1\4, 0, 1\4, constants comgs Ol%t' . .
12). On considering interaction between the

third neighbours, the dispersion equation

=t

transforms as following:

2
mao o ka o, a  ,3ka
——— =4sin” —+4—2sin ka+4—3*sin” —. (5)
a 2 a a 2

1 1 1
Existence condition of a stable solution to implement in equation (5) is:
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a a
1+4—2+9—2>0. (6)
a a

1 1
Thus, when considering oscillatory (alternating) interactions a problem of system stability arises. It demands
particular restriction on force constants connection.

Acoustic oscillations in the one-dimensional monatomic chain with long-range interaction
It is of high interest to take into account an interaction that exponentially decays with distance increasing (i.c.,
long-range interaction). This fact was shown in [3,4]. Therefore, consider interaction between all the atoms in an
infinite chain. Motion equation is as follows
+00
mi = X (un+m'—un) (7

n m’z_(x)

The solution of equation (7) is sought in the form of plane waves (3). Thus,

+00

me’ = Z a, (1—6"""‘“). ®)

m'=—o0
From symmetrical reasoning @, = «, ., and we have

2 1o

mo- =2 X ay(l-cosim'ka). )
m'=—o0
Otherwise,
P —+00 '
meo =4 2 &k ,sinzmka,
__ m 2
m =-=0 (10)

km/ = am,/al, kl =1.
The given equation cannot be solved without choosing of an appropriate model of force constants ¢ , changing.

The further the interacting atoms are situated the weaker the interaction is.
Consider the following model

q/<1, (1n
which is an analog of RKKI exchange interaction which simplified obtaining of the magnetic materials excitation
spectra [5]. It allows one to take into account when solving the problem of finding the excitation spectrum of the
infinite-dimensional chain, the impact of long-range. Since in the model allows the existence of alternating force
constants, it can be used to solve problems in physics metamaterials.

Substituting (11) into (10) and summing the expression, we get:

ma? I+¢q 1—coska

— m'—1
am' =oq ’

:2 . . 12
a 1-g 1-2gcoska+q” (12)

Dispersion curves for a monatomic chain in
approximation of nearest neighbours (q = 0, dashed
curve) and for long-range interaction (q = -1\2, curve
1; q =-1\4, curve 2; g = 1\4, curve 3; q = 1\2, curve
4) are shown in Fig. 3. Account of the long-range
interaction removes the problem of solution
instability which appears when considering a finite
number of neighbours.

Stability analysis of the equation (12) leads to
the conclusion that solutions within the whole ¢

range of definition are stable. When interaction
between second and third neighbours is not
considered a stability solution range narrows. As for
=t ' only second neighbours consideration p should be p
= [-1/4; 1]. Thus, consideration of the long-range

Fig. 3. Dispersion curves for a one dimensional monoatomic chain in
approximation of nearest neighbours and when considering long-

range interaction (q = -1\2, -1\4, 0, 1\4, 1\2). restrictions imposed upon the stability range of

interaction (when |q|<1) allows removing the
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dispersion equation solution.

Acoustic vibrations in an infinite monoatomic chain having a point defect
Consider an infinite chain consisting of atoms with m masses (Fig. 4) and a point defect with m' one within
approximation of nearest neighbours interaction ¢ . Maximum value of a square frequency for monoatomic ideal
infinite chain is:

4a
0= (13)
m
Let us study conditions of appearing and characteristics of so-called local vibrations.
-3 -2 -1 0 1 ) 3 4

m W m M m m m m

U L leq
Fig. 4. An infinite atomic chain within which there is an impurity
atom.

Without losing generality suppose that a defect atom is located in the grid origin. Solution is sought in the
following form
m'iiy =—a(u, +u_, —2u,)
mii, = —a(u, +u, —2u,)
mii_, =—a(u,+u_,—2u_)

As for the other motion equations, they correspond those of the volume atoms (located far from the impurity one).
We seek the solutions that coordinate the amplitudes decreasing on the sides of the defect atom, i.e.

{uZ_ulqﬂ |q|<l. (14)
u,=u_q,
In (11) we had g for interaction decreasing parameter and in (14) it is an amplitude displacement parameter.
Considering (14) we obtain a system below (we should take into account that u ~ exp(—iwt) , see eq.(2))
m'e* o -u, = {2uy —u, —u_,},
ma’ Joc-u; = {2u, -u, —u,q},

ma)z/a U, = {Zufl -u, —uflq},

which has nontrivial solution if

(m'e* o) -2 1 1
1 (mo* [a)-2+q 0 =0. (15)
1 0 (ma* [a)-2+q

Equation (15) is an equation for ¢ expressed in terms of m®’. Besides of it, we need the following equation to
find gq:

mwjza{2—l—q}. (16)
q
Hence,

g=¢/(¢-2), (17)

where &=m'/m. From (17) it is obvious that |q| <1 if m'/m<1 which means that local vibrations appear without a

threshold.
After substituting ¢ into (16) we have:

A (8)
a e(2-¢)
Ratio of local and maximum frequencies (13) is:
w’ 1
4= - 1. (19)

@ e2-¢)

m

Dependences of @’ /@’ on ¢ and ¢ on & are given in Fig. 5 (a and b respectively).
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40 -

w2lwmax™2

! 1 T -1 1 1

0 0.5 1 0 0.5 1

Fig. 5. Dependence of @’ /e’ on ¢ (a)and of gon & (b).

Local vibrations in one-dimensional semi-infinite chain having an impurity boundary atom
Consider a one-dimensional semi-infinite atomic chain consisting of atoms with m masses (Fig. 6) and one
impurity m’ boundary atom. Let us assume that m' < m . Similarly to the discussed above case of an infinite chain,
local excitations will take place in the considered model. These local states are an analogue of the surface waves in one-
dimensional system.

-4 -3 -2 -1 0
m m m m “'l’ x
U,

Fig. 6. A semi-infinite monoatomic chain having an impurity
boundary atom.

We have obtained the following system in the given model
m'iiy =—a{u_, —u,},
mii_| = —a{ufz +u, —2u, } ,
mii_, =—a {u73 +u_ —2u, }
As we did in (14) let us rewrite this system in a following form
me[ouy ={u —u,},

20
me’ fo-u_, ={u_q+u,—2u_}, 20

which has a non-trivial solution on a condition that

(m'e? Ja)-1 1 ~
( 1 (ma)z/a)—2+q)_0' 2D

For the second atom we have mii_, = o {u_, +u_, —2u_,}.

Hence,
ma? =a{2—l—q} 22)
q
and

g=——, lq|<1. 23)
-1

So, we can see that ¢ is negative at & =m'/m < 5 It is also obvious that local vibrations arise if mass of an

impurity boundary atom is twice lighter than the host one [6].
After substituting ¢ into (22) we have:

mo, 1 24)
a e(l-¢)
Its maximum value is:
ol a=4/m. (25)

Ratio of local and maximum frequencies is:
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Dependences of o’ /o’ oi/g(2ndk) on & are given in Fig. 7 (a and b respectively).

o, _
@ de(l-¢)

2
1

m

w2 wmax”2

‘a

1
0 02

Fig. 7. Dependence of o’ /a); o1l /g(Qyand of g on ¢ (b).

Diatomic infinite chain in model of the second-neighbour interaction
Consider a diatomic chain (Fig. 8). Assume the even numbers to be those of atoms with M

numbers to be those with m ones.

&

04

22 el

Fig.8. A diatomic chain.

Znwf

(26)

ok

=03

—1r

0

Zn2  2nd

1
02

&

{muzn =0, (Uy, +ity, = 2u,,) + 0y (U, Ty, —2u,y,),

Mi,, ., = (u,, +ty,., =21, )+ 0y (Uy, |+, 5 —2u,,.,). (27)

The system equations are sought in the form of plane waves

u,, =u, exp{i(2nka—ot)},
u2n+l = uZ exp {l([zn + l]ka - a)t)} .
Substituting (28) into (27) we get

{ma)zul =20, (u, —coska-u,)+2a,(1-cos2ka)u,,

M o’u, =2a,(u, —coska-u,)+2a}(1—-cos 2ka)u,.

This system has non-trivial solutions for u, and u, if

—2q, coska

20, —m’ +4a, sin® ka

—2a, cos ka

=0
20, - Mo’ +4a) sin’ ka

After evaluating a determinant obtained we get a dispersion relation for a diatomic chain.

where

Ak) = jli

Solutions of (29) are as follows

o (k)= %A(k) i%«/Az(k)—4B(k).

+Ma .
L (m+M)+4m—az—alsm2 ka,
M mM

4o}
B(k)=—"2
(k) .y

o' — A(k)a” + B(k) =0,

. a +al . l6a. ! .
sin® ka + 8a, —*—2sin” ka + —22sin" ka.

masses and the odd

(28)

(29)

(30)

€2))

Dispersion curves for a diatomic chain in approximation of nearest neighbours (p = 0, dashed curve) and second
nearest ones (p = -1\2, curve 1; p = 1\2, curve 2) are shown in Fig. 9. Here optical modes are marked with thin curves
and acoustical ones are marked with thick curves.

Such plots demonstrate a condition of instability appearing for the acoustic vibrations within negative values of
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%< —i (p=-1\2). This result may be applied in simulation of metamaterials in acoustics.

(24
ma’ There are optical and acoustical vibrations in a
t, diatomic chain (unlike a monoatomic one which doesn’t
A = have them). In our work we marked a)+(k) as for optical

modes and @ (k) as for acoustical ones. Solutions of

N ,"/ . oo (30) are stable if A(k)>0, 0< B(k)< A (k).
Considering the form of A(k) and B(k), these

4 conditions bind both force constants and masses of various
LTS WA atoms. There is a gap between optical and acoustical
6725 »
F

v hES : " S excitations that appears in an infinite diatomic chain
- Sele? ~ consisting of atoms of different type. The gap width can
= ,WD_\ S~ " be estimated according to the dispersion curves form.
K The lowest border is an optical mode which is
Fig. 9. Diatomic infinite chain with accounting of nearest , m+M
and next nearest neighbours. (p=-1\2, 0, 1\2). @ | min™ M and the upper one responds for

1 1
acoustical vibrations @ _ 2= 5 A(k) - 7 A2 —4B_ .

2 4
Here A4, = v (a(m+M)+2(ma, + M az' ), B, = Y (@, +2¢, (a, + az' )+ 40(20!2’ if accounting the next

nearest neighbours.

Infinite diatomic chain with taking a long-range interaction into account
As for two types of atoms we have the following equations of motion:
mao’u, =2u, 3 o, (1-cos(2ska)) + 23 o, ,, (u, —u, cos[(2r + )ka]),
- - (32)
M&'u, =2u,y a, (1-cos(2ska)) + 23 a,,,, (u, —u, cos[(2r + 1)ka)).
s=1 r=0
It is convenient to make a replacement
{ma)zul = F(ka)-u, + G(ka)-u,,

2 (33)
Mo u, = G(ka)-u, + F(ka)-u,,

where F =23 a, (1-cos(2ska)), G=2% a, ,,(1—cos[(2r + )ka]).
s=1 r=0

Equation system (33) has non-trivial solutions for «; and u, if
F (ka) - mao’® G(ka
(ka) ) |_, G
G(ka) F(ka)-M o

Thus, we obtain
o — A(ka)o® + B(ka) =0, (35)
m+M F?(ka)— G’ (ka)

where A(ka) = F(ka), B(ka)=————— Weget F(ka) and G(ka) .
mM mM

Hence,
coska(1-g*)
+q* —2¢* cos2ka’

2a, (cos2ka—q’)-q

F(ka) = N

-2, 7 > ,
—q 1+q" —2qg° cos2ka

Solution of (35) is
o’ (ka) = %A(ka) * %\/Az (ka)—4B(ka),
A and B are presented above.

Dispersion curves for a diatomic chain in approximation of nearest neighbours (q = 0, dashed curve) and second
nearest ones (q = -1\2, green curve; q = 1\2, red curve) are shown in Fig. 10. Here optical modes are marked with thin
curves and acoustical ones are marked with thick curves.

Account of the long-range interaction removes the problem of solution instability which appears when considering

a finite number of neighbours. Long-range interaction takes away a restriction that o, < 0.

Glka) =201 -
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Fig.10. Diatomic infinite chain with accounting of nearest and next
nearest neighbours. (¢=-1\2, 0, 1\2).

INFLUENCE OF SURFACE PLANE ORIENTATION ON DYNAMICS OF VIBRATIONAL STATES IN
A SEMI-INFINITE CUBIC CRYSTAL

Different theoretical and experimental studies of surface states of various nature (including elastic surface waves)
cause deep interest both in the context of fundamental studies and technological applications. Pure shear surface waves
having a horizontal polarization are of special interest. Such waves depend on surface characteristics much stronger
than waves possessing Rayleigh polarization, for example [7, 8]. This comes from the fact that penetration depth of
purely shear surface wave exceeds that of the Rayleigh wave within the long wavelength limit. If geometry of a studied
crystal is of sufficiently high symmetry, pure shear surface waves split from the Rayleigh waves then.

Thus, without losing generality it is possible to study such surface waves using the so-called scalar models
characterized by one displacement direction. For example, spin waves in magnetically ordered systems in the magnon
approximation are described using this model.

In our paper we studied dispersion relations of phonons in a cubic crystal. For our calculations we used
methodology stated in [9, 10]. The following methodology is of broad generality and can be used for studying of both
continuous and discrete spectrum in crystal models close to real systems.

In a microscopic assumption we have studied zones of volume vibrations and properties of the single-component
surface waves split off the volume zone, depending on surface orientation, direction of two-dimensional wave vector
and its values in a two-dimensional Brillouin zone.

Volume vibrations
The equation of atomic motion for an ideal crystal in scalar model in harmonic approximation is as follows [11]:

mii(n,t) = —zn,(i)(n,n’)u(n’,t). (36)
Here u(n, t) is a time-dependent displacement of the atom in the n = (n,,n,,n,) site from its equilibrium position,

®d(n,n") is a force matrix and m is an atomic mass. Solution of (36) is sought in the form

u(n,t) — u(ﬂ}) . ei(kana—wt) . (37)
Here k,_ are the components of a three-dimensional wave vector along a,,a,,a, (the unit vectors), o =1,2,3; o

is the wave frequency.

In order to study the surface waves, we examine first the situation where the chosen orientational plane is located
deep in the crystal. Consider (001), (110) and (111) orientational planes. With (1) and (2), dispersion relations for each
of the orientational planes in SC, FCC and BCC can be obtained.

o Simplecubic:

o] (001) plane

2
may,

=6-2cos[ka,]—2cos[k,a,]—-2cos[k,a,]. (38)
a

Let us construct a diagram for volume vibration zone as a function of two-dimensional wave vector y(k,,k,) at

fixed k, (see Fig. 11, shaded area). For SC crystal lower and upper borders are as follows
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m ((0; )min
——— . =6-2cos[k,]-2cos[k,] -
“ (39)
———% = 6-2cos[k;]-2cos[k,]+2.
a
01 1o 13 20 2 ) 1k ky)
&)
Fig. 11. A diagram of volume vibrations (shaded area) for (001)
surface orientational plane in SC crystal.
Similarly, it is possible to find volume vibration zones for any other orientational plains.
o] (110) plane
Equation for volume vibrations is
maoy,
aV =6—4cos[K, \/_]cos[K3 \/_] 2cos[K,a,]. (40)
And, hence, for lowest and highest boundaries we have (see Fig. 14, shaded area)
2
MO _ 6 4cos[K, 11— 2cos[K,a, ],
J—
m(w;) “h)
——om — 6+ 4cos[K, —2cos[K,a,].
« Nel
o] (111) plane
As for (111) orientational plane we have
may, a,
=6-2cos[K —L1-4cos[K, —=]cos[K, K,—], (42)
« R AR U A
and (Fig. 12, shaded area)
m(@;) a4
—Lmin = 6-2cos[K, —=]—4cos[K, —=]cos[K, —=],
a «f f V6 “3)
m(w;) a,
—Lm = 6+ 2c0s[K, —=]+4cos[K, —=]cos[K, —=].
« N B
mwz
@

0.5 1.0 1.5 2.0 2.5 3.0 x(kl kzj
a,

Fig. 12. A diagram of volume vibrations (shaded area) and surface
wave for (110) surface orientational plane in BCC crystal.



38
«Journal of Kharkiv National University», Ne1041, 2013 M.S. Klochko...

e Face-centred cubic:
o] (001) plane

Similarly to what was calculated for simple cubic crystal, for FCC with (001) orientational plane we have

2
"%y =12—4cos[k, —=]*cos[k

« et et

The lowest and the highest boundaries are as follows (Fig. 13, shaded area):

—21- 4cos[k1 ]cos —21-4cos[k cos[k3 (44)

oot 51

2
m(a)V )mm

=2—4cos[k, —=]*cos[k —4coslk, —4cos[

f J’ 5t

—~1+4cos[k,

\/_

=2—4cos[k, —=]*cos[k,

(45)

2
MOy ) e —21+4cos[k

(=5
2\/5'

P N

B N

0.3 1.0 T3 20 s a0 7k k)

Fig. 13. A diagram of volume vibrations (shaded érea) and
surface wave for (001) surface orientational plane in FCC crystal.

o] (]JO)plane
mo; 2cos[K,

- 2\/—
2

O s _ 15 _ 9 cos[K. 2
” 2ﬁ
2

MO D _ 15 2cos[K,

a 2\/_ \/E]

The corresponding diagram is shown in Fig. 14, shaded area.

%o &
5 \/E]cos[lg > ) (46)

Jeos[K, —o],

02

——=]—-2cos[k, —=]—8cos[K, —=]cos[K,

J— 2(

%-1-2cos[k, a_o] —8cos[K, %

202 22

+8cos[K, ¢

_0
NP

(47)
—]—2coslk,

Z
o

a

0 i 15 0 23 BEr I(kl Xs)
4y

Fig. 14. A diagram of volume vibrations (shaded area) and surface
wave for (110) surface orientational plane in FCC crystal.

o] (111) plane
In this case equations for volume vibrations are

;/_ —4cos[K,—~]cos[K, a";/g] (48)

30)\/_ \/_

moy_y, 2cos[K -4cos[K, "Of] os[(K,

" 1\/_ 2cos[(\/_+K)\/_
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and (see Fig. 15, shaded area):

2
MO s _ 15 _ 5 cogK,

« o

2
U D _ =12 -2cos[K,

-
a "22

RIS aO]—4cos[Kl#] os[K, “°f

NG

—=]-4co Jeos[K, it

K%
K V2

——=]+4co s[K1

f

(49)

2 cos[ ] +4cos[K, #] cos[K, os[K, #].

NG

2J_ «/—

Fig. 15. A diagram of volume vibrations (shaded area) and surface wave for
(111) surface orientational plane in SC crystal.

e Base-centred cubic:
o] (001) plane
As for BCC, we have

=8—8cos[k, S0

NG

Thus, dispersion equations for the lowest and the highest boundaries are as follows (see Fig. 16, shaded area)

2
MO D _ g g cos[k, 2] coslk, ]

P J§ ﬁ

2
O Do _ =8+38 cos[k1

« N

- J-costh, ~eosll, 2. (50)

(51
2] cos[k2

Nl

Fig. 16. A diagram of volume vibrations (shaded area) and surface
wave for (001) surface orientational plane in BCC crystal.

o] (110) plane
Similarly,

ma;

=8 4cos[K, = TleosiK, D _1-4cos[K, %O]COS[K

;i 1, (52)

a

32ﬁ
a

%o ]-4cos[K, 70]

NG

2
O i _ =8— 4cos[K
o

> (53)
LGN =8—4cos[K a_o]

9
a - l2 22\/5

%
[Kl 7]
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The following diagram is shown in Fig. 12, shaded area.
o] (111) plane
In the following case, we have

2
mZ)V =8— 4cos[§](la0 1-4 cos[ga0 (K, —%)] cos[glgao] 54)
and (Fig. 17, shaded area)
mwz
a

05 ' '1.0 '1.5 2.0' 1.5' ' 30 Ix(kpk),}

a
0

Fig. 17. A diagram of volume vibrations (shaded area) and surface
wave for (111) surface orientational plane in FCC crystal.

2
_ K
MO s _ g 4 cos[2 K a, - 4 cos| > a, (K, ~22)]
a 9 9 J2 (55)
(o), 2 2 K
# = 8—4005[5 K]a0]+4c0s[§ a, (K, —T;)]

Surface waves in cubic crystals
We use a Lifshitz Rosenzweig model [12] for describing a surface. In an infinite crystal we lay a plane that
corresponds the needed orientation and then just “throw away” one of the halves of our crystal.
From (1) and (2) for surface plane we get

mar*u(ny) =Y, Dln,nisn,n,), (56)

Here <i>(n,n3';n] ,n,) is a reduced dynamic matrix. Equation (56) are linear equations in finite differences of order
2s which set a sequence of U(n)(n=0,1,2,...). It follows from the theory of finite difference equations [13] that,

beginning from n = N,U(n) can be presented as a sum of geometric progressions
um) =3 V4 (57)

Here V; are amplitudes of 2s partial waves, characterized by ¢, parameters which determine degree of decrease

(increase) of the partial wave with penetrating into crystal depth. ¢, are solutions of the algebraic equation of 2s
degree (in scalar model):

mo’ =" ®(nk)g" =0 (58)

As for 0 <n < N+ atomic motion equations for atoms situated in defect and intermediate layers (see (57)) play

the role of boundary conditions and are used to determine relationship between the V; and atomic vibrational

amplitudes in defect layers. There are s summands left in (58) in case of SC, |q| =<1 for all of them. It was interesting
for us to determine values of ¢ and mw?/«a for different orientational surfaces.
Boundary conditions (motion equations for defect and intermediate layers) form a system of N +s homogeneous

linear equations for ¥, and u(n)(n=0,1,...N —1). The number of equations and unknowns are equal. Equating the

determinant of this system to 0, we arrive to the equation for SC structure dispersion relation. Mathematically, the
matter is to solve an algebraic equation and there is no need in integration over a continuous spectrum.

dispersion relations for phonons in cubic crystal with different orientational surface have been studied. So let us
illustrate the technique used on some specific models.
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(001) plane
e Simplecubic structure (SC).
There are one defect n=0(s =1) and one intermediate planes n =1(N =1) for (001) surface plane in a SC crystal.
Surface wave may be presented in the form of u(n)=V4". For a n=1 intermediate layer and a n=0 surface defect layer
equation system (58) transforms into:

2
MO _ 6-2 coslk ay -2 cos[k,a - (g ), n>1,
a q
mao’ (59)
~— =5-2cos[k,a,]-2cos[k,a,]—-q, n=0.
(04

Here V is an atomic vibrational amplitude; s is a solution for a SC structure and @, is its frequency. From the
expression for n=0 it’s obvious that surface atoms have 5 neighbours, while those situated in any other layer inside the
crystal have 6 neighbours.

An equation for n=0in (59) plays the role of a boundary condition for surface waves. From (59) we obtain:

=1

ma) =4-2{cos[k,a,]—cos[k,a,]} (60)

Thus, for the considered surface orientation equation o, (k) , a surface wave corresponds the lowest boundary of
volume vibration zone (see (38)). For such a situation we have ¢ =1 which means that there are no surface vibrations
for (001) orientational plane in SC. It is illustrated in Fig. 11.

(D)) i _ m_wvz

a a

A splitting value A= is a difference between dispersion relations for volume and surface

2 2
mws — m(a)V)min
o (04

vibrations. As for the considered situation it equals A=0, as =4-2cos[ka,]—2cos[k,a,]

e Face-centred cubic structure (FCC).
Consider unit translation vectors and a two-dimensional vector o be as follows, respectively: 4, = 4, =a, / V2,
k, =k, . Then, we get:

ma)

a
=12—4cos[k, —~=]cos[k -2(q+ ){cos 1+ 4cos[k, —=]}, n >
a f f et
ma)2 (61)
=8—4cos[k,—]cos[k —2q{cos[k, ]+4cos[k ]} n=
Values for me? /o and q are obtarned frorn (61):
(cos 1+ cos[k % )
\/— 2 \/z
ma)2 a (62)
* =8—4cos[k, —=]cos[k, —=]—cos’ [k, —=]+ cos’[k, —=
In Fig. 16 the line beneath the shaded area corresponds to a surface wave. For (001) orientational plane in FCC
m(wy) me?

crystal we have the following splitting value: A = min _ 7 = 4(1-¢)*, which shows that a surface wave exists in
a

a
such an orientation.
e Base-centred cubic structure (BCC).
For defect n=0 and intermediate n=1 layers we have:

ma =8 —4cos[k,—=]cos[k 1(g + ) n>1
« oot 5]
. ; (63)
5 =8 —4qcos[k,—~]cos[k, —~],n=0
f '3
= cos[k, Jcos[k &]
- f JE
me? a (64)
=4 —4cos’[ Jcos’[k, —=
p \/— [k \/5]
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In Fig. 13 a curve beneath the shaded reach corresponds to a surface wave. The splitting value is:

5 2
N =%_m7@=3(1_|q|)2 :

a
(110) plane

e SCdtructure.
As for (110) surface orientational plane in simple cubic crystal we choose unit transition vectors as follows

| =a, / V2 (110) A, =a,(001). The two-dimensional wave vector will have the following components then

K, =k / V2 (liO) K, =k,(001) . Number of defect and intermediate layers are s = N =1. Equations for atoms in n>1

and n=0 are
mao,
=6-2cos[K, \/_](q +—) 2cos[K,a,], n>1
e’ (65)
=4-2gcos[K —2cos[K,a =0
p q \/, ol n
a.ls 1.Io 1.I5 1.Io l.lj s.le ;"-(kl :klj
%
Fig. 18. A diagram of volume vibrations (shaded area) and surface
wave for (110) surface orientational plane in SC crystal.
A solution for (65) is
a
g = cos[K, —=]
V2
‘ (66)

2
i =4-2cos’[ —2cos[K,a,]

a f
From (66) it follows that there is a surface wave for such a surface orientational plane. The penetration depth of
the wave considered varies from a minimum value in X, =k, / J2(110) direction up to infinity when spreading in

=k,(001) direction. In Fig. 18 a curve beneath the shaded area corresponds to a surface wave. The splitting value is:

A e MOL
a a

e FCCdructure.
From the equations forn>1 and n=0:

ma? a a a a 1
S =12-2cos[K, —=]-2cos[K, —=]—4cos[K, —=]cos[K, —=](g+—), n>1,
a ‘2\/5 22 "2V2 2277 g 7
me? a a a '
L =8-2cos[K, —=]—2cos[K, —=]-4gcos[K, —=]cos[K, —=], n=0
o [ \/— [ \/E] q [ 12\/5] (K, 2\/5]

We get values of o,
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q =cos[K, Jcos[K. Zi],|q|-<l,
J_ 22 68)
ma) a
—= =8-2cos[K,—=]—2cos[K —4cos[K, Jeos[K, —]
« N 207 el s
Splitting of a surface wave from the continuous spectrum is shown in Fig. 14 and equals
A= m(a)lz)min _ ma)rz :4(1_q)2‘
a
e BCCstructure.
2
MO —8—4cos[K, L cos[K, —2—]-2 cos[K, = g+ )n>1
* ? Zﬁ (69)
me’

—=6-4cos[K, ]cos[

a 2 2J—

For unit translation vectors 4, =a,/2(001), 4, =a, /272 (110) we obtain the following equation system for defect

2q cos[K, ,n=0
—=1—2gcos[K, 2]n

n=0 and intermediate n=1 layers:
Hence,

ma? g (70)
—* =6-4cos[K, ]cos[K —21-2cos’[K, 70]

a
a 2 22

In Fig. 12 a curve beneath the shaded area corresponds to a surface wave. The splitting value is:
m(Wi;)min mW52

A= - =2(1-q)?
p po Q-9

which shows that a surface wave exists in such an orientation.

(111) plane
e SClattice.
In case of SC crystal with (001) orientational surface we choose the following unit vectors in coordinate and
impulse spaces: 4, = a, / V2 (110), A4, =a, / J6 a 15) ;K =k, / V2 (110),[(2 =k, / V2 (liO). The dynamic equations for
atoms located in defective (n=0) and intermediate (n=1) layers are as follows, respectively:

mwz ay 3K, -0
Ll+e “ﬁ),n21

iKza—0 3K, —=
L 6-4ge P Qcos[K, e Ryl f(zcos[
q

"2
—3iK, 2
0 _3_ge f(zcos[ o qye VY =0

‘2

Dispersion relation and ¢ values are as follows then

f (71)

ma)

—iK, 2
q—; f(zcos[K—]+e V2,

. V2 ~ (72)

o, =—(2 cos’[K, \/E] cos[K, aO]cos[Kz%])

2
The surface wave is shown in Fig. 15 as a curve splitting from continuous spectrum.
e FCCllattice.

Having 4, =a,/2~2(110), 4, = a, /246 (112) we get

ma) 3q, -iky = a =
=12 -2cos[K, —=] - 4cos[K, —=]cos[K, —=]— ge o 0 l+e 2P)-
2\/— 2ﬁ 26 "2\2
1 71(2—6 a, 731’1(2%
—e 1+e ), n=1 73
'35 (73)
mwz 3q —ik, - a 3iK, -2
=9—2cos[K, —=] - 4cos[K, —=]cos[K, —L]—ge 2 (2cos[K,—=]+e 2%), n=0.
J— J— NG '22
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From (73) we obtain

4

iKa—0 =3i
_, 2% 4 *246
g=e *°(Q2cos[K,—=]+e ),
1\/5

(74)
ma; E(2 —cos?[K, ~2 - cos[K, 22 ]cos[K 3i])
a 3 1 2 \/E 1 2 \/E 2 2 \/g
2 2
Splitting of a surface wave from the continuous spectrum (Fig. 17) equals A = % - % =2(1-¢)*.

Cubic crystals having an adsorbed surface monolayer
Consider a cubic crystal that has a simple cubic lattice and (001) surface orientational plane of the (001). Consider
now an adsorbed monolayer which consists of impurity atoms and is situated on the top of the surface layer. Equation
(38) allows one to write the dispersion relations for the adsorbed surface monolayer (#=0) and a boundary layer

located below it (n=1):

2
mO a)s

U, =(5—-2cos[ka,]-2cos[k,a,])U, -U,
(75)

2
mao;

U, =(6—-2cos[k,a,]—2cos[k,a,))U, —U,-U,q

Here m, is a mass of an impurity atom and m is a mass of a host one. We had the dispersion relation for n>1
layer given above (see (59)). From (75) we find the following determinant:

2
T 544 1
¢ . =0. (76)
1 L S
o

Hereinafter we introduce the following notation 4 = 2 cos[k,a,]+ 2cos[k,a,] . Equations (59), (76) are a system of

two equations having two unknowns, ¢ and ma; / a . For q in general case we have

= [y (6= A) = m(5 = A)] £ \[[my (6 = 4) = m(5 = AP +4m,(m—m,)

2(m—my,) (77)

A boundary transition should be hold: ¢ =1 at m, =m (see (51), a (001) surface orientational plane in SC
crystal). Denominator equals 0 then, so take a limit of (77). Let us set X =[m,(6 — 4A)—m(5—A4)], ¥ =4m,(m—m,).
Hence,

Y
_x+Jx2+7? -X+t(X+—)

2(m—my) = and g =lim, ,2m, ; —2m, ; 2X__Since |g|< 1, only a positive root matches, and we
0
get:
m, m
=—0_-" . 78
1=5% =% (78)

Thus, the boundary condition is satisfied. It is easy to obtain ma’ / a knowing ¢ .
Consider a situation when impurity atoms are lighter than the host ones m, < m . Consider also a situation of

heavy impurity atoms m, > m .

For light impurity atoms (m, < m) . In this connection M _ % and 20 = 1 have been studied.
m m
2
MO 6+ A+~ 4 —84+20
m, 1 a
= . (79)
m 4—4—~A-84+20

q= )

At such ratio between masses of host and impurity atoms a surface wave splits off just from the highest boundary
of the continuous spectrum (see Fig. 19).
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ma?  105—-204+5V16 4% —1524+377
m_ 1, o 8 . (80)
m 2 q_19—4A—\/16A2—152A+377
8

Note that in both cases ¢ < 0. Let us determine a splitting value now. From Fig. 19 it is obvious that a surface

wave splits off the highest boundary of the continuous spectrum, so:

ma!  m(w))

A: s max >O, (81)
(24 o
ML A—g—a—2g-0, (82)
m 2
ﬂ:l;A=17—4A—5q>o. (83)
m 5
my 1
13k E_E

0E L

0.8

.
o4t ‘-\H—\""x

-oas | -
=010 -~
— 015 |

-8

—.00

g
Fig. 19. A diagram of volume zone vibrations and surface waves for m,/m=1/2 and

m,/m=2 (a); dependence of g on a two-dimensional wave vector if m,/m=2 (b)
and m,/m=1/2 (c). All considered for a (001) adsorbed surface monolayer in a SC
crystal.
Here g are the coefficients presented in (79) and (80) for each of the ratios. It’s obvious that in both cases A >0

because . ¢ <0, |q|-<1and A changes from -4 to 4 depending on the value of two-dimensional wave vector
x(k k)= [0,7[] .

m m .
For heavy atoms (m, > m ). Here —~ =2 and —- =5 have been considered.
m m
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ma;  3- A+ A -144+41
m
0op.4 @ 4 (84)
mn T—A—A* —144+41
q =
2
mo?  15-44+~164> —2004 +545
m
To_5.) @ 20 (85)
m 25-44-+164> —2004 + 545
q =
8
a) me;
Y oa mm_1
m 5
30

<)

xh. k)

o yla.k)

0EL
117 3 \
\_\ ﬂ = 5
o4k m
.
.-h""-—-—.__,_‘_\_
-\_‘_‘_—\_‘——
03 10 1.5
o o3 1o 1.5 a9 2.3
-0.2} e
.-"-H-FFFH-‘-
z"”lf
=04k ~
e
my, 1
-0s} m 3
=05 F
A
—1.00 |
q

Fig. 20. A diagram of volume zone vibrations and surface waves for m,/m=1/5 and

m,/m=5 (a); dependence of ¢ on a two-dimensional wave vector if m,/m=>5 (b) and

m, /m=1/5 (c). All considered for a (001) adsorbed surface monolayer in a SC crystal.

A surface wave splits off the lowest boundary of the continuous spectrum (Fig. 20), so the splitting value is as

follows:

2 2
— m(a)V )min _ ma)s — 0
(24 a

A

(86)
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For m,/m =2 we have a=3=4tq

From the form of (86) it isn’t clear if A >0 as A varies from -4 to 4. However, in case of y =0 and 4=-4 we
have ¢ =1 and A=0. With increasing of y from 0 to /2, g value decreases, and A>0 will always be true.
Therefore,

_3-A4+gq

A >0. (87)

As for my/m=35 we get

A 10-34+2q

(88)
g are given in (84) and (85). Similarly to m,/m =2 we find out that A >0 is realized for any y . Based on the above

stated, we conclude that, both in the cases of lights and heavy impurity atoms a surface wave splitting off the
continuous spectrum exists. Diagrams for the continuous spectrum and surface waves splitted are shown in Fig. 20.
With decreasing of impurity atoms mass a splitting value increases. However, when averaged over all three values

of wave vector k (k,,k,,k,) the surface waves frequency gets into continuous spectrum. However, there is a sufficiently

light impurity mass for a gap between volume zone and surface wave to appear. Let us find an appropriate ratio between
impurity and host masses.
From Fig. 19 it’s well seen that the lighter the impurity atoms are the greater the minimal surface wave frequency

is. As for SC (001) m(w;), . /a =12 (see Fig. 11). We need to find an appropriate m,/m at which a gap exists, i.e. at
e . We find ¢ from:

m(@}) ey [ =12=2~(q +1/q) (89)

q=75+\/2_z—1.101. (90)

which ma? [ = m(@;)

max

After substituting into (76) we get m,/m~11. Thus, a gap within spectrum appears if impurity atoms are lighter than
the host ones in about 11 times.

CONCLUSIONS
The paper is dedicating to consideration of dispersion relations of an infinite and semi-infinite atomic chains
consisting of similar and different types of atoms in approximation of the nearest neighbours. When taking to account
the next nearest neighbours interaction it turns out that as for the model chosen both attractive («, >~ 0) and repulsive

(a, = 0) interactions take place. In the first case of problems with the stability of solutions arise. There are no stability
problems for attraction, when there should be restriction imposed on ¢, in case of repulsion. In its turn, long-range
interaction removes restriction at «, < 0 .The same situation arises within diatomic chains. The features studied come
up to the foreground when considering altering-sign chains within metamaterials (a sign before ¢ alters)

Phonon and surface waves dispersion relations in cubic crystal are studied in the second section. Allowing for
interactions between the nearest neighbors, dispersion relations of volume and surface vibrations for pure shear waves
have been found in cases of (001), (110) and (111) surface orientations for simple cubic, face-centered cubic and body-
centered cubic crystals. Method described in [14], has been used.

Furthermore, we have considered a monolayer adsorbed on crystal surface both having lighter atoms than those
the crystal has, and having heavier ones. For the lighter atoms, consideration was given tom, /m =1/2 and m, /m =1/5

; for heavier atoms we studied m,/m=2 and m,/m=5 (here m, is a mass of impurity atom in the adsorbed

monolayer, m is a mass of one host atom). For light impurity atoms we have obtained splitting from the top edge of the
continuous spectrum; for heavy atoms surface wave splits off from the lowest edge. Surface wave amplitude decreases
monotonously in case of heavy atoms; in case of light ones amplitude decrease is oscillating (not monotonous). It has
been shown that a gap within continuous spectrum and surface wave appears if m,/m ~11.
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