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In this paper the stability of the non-uniformly rotating cylindrical plasma in the axial uniform magnetic field with the vertical
temperature gradient is investigated. In the approximation of geometrical optics a dispersion equation for small axisymmetric
perturbations is obtained with the effects of viscosity, ohmic and heat conductive dissipation taken into account. The stability criteria
for azimuthal plasma flows are obtained in the presence of the vertical temperature gradient and the constant magnetic field. The
Rayleigh-Benard problem for stationary convection in the non-uniformly rotating layer of the electrically conducting fluid in the
axial uniform magnetic field is considered. In the linear theory of stationary convection the critical value of the Rayleigh number

Ra_ subject to the profile of the inhomogeneous rotation (Rossby number Ro ) is obtained. It is shown that the negative values of
the Rossby number Ro <0 have a destabilizing effect, since the critical Rayleigh number Ra, becomes smaller, than in the case of

the uniform rotation Ro =0, or of the rotation with positive Rossby numbers Ro > 0. To describe the nonlinear convective
phenomena the local Cartesian coordinate system was used, where the inhomogeneous rotation of the fluid layer was represented as

the rotation with a constant angular velocity Qo and azimuthal shear UO (x) with linear dependence on the coordinate x . As a result

of applying the method of perturbation theory for the small parameter of supercriticality of the stationary Rayleigh number a
nonlinear Ginzburg-Landau equation was obtaned. This equation describes the evolution of the finite amplitude of perturbations by
utilizing the solution of the Ginzburg-Landau equation. It is shown that the weakly nonlinear convection based on the equations of
the six-mode (6D) Lorentz model transforms into the identical Ginzburg-Landau equation. By utilizing the solution of the Ginzburg-
Landau equation, we determined the dynamics of unsteady heat transfer for various profiles of the angular velocity of the rotation of
electrically conductive fluid.
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JocnimkyeTbes CTIHKICTh HWTIHAPUYHOI TUIA3MH, OI0 HEOTHOPITHO 00epTaeThcA B aKCialbHOMY OJHOPIJHOMY MArHiTHOMY TIOJI 3
BEPTHKAIGHUM TPaJiCHTOM TeMIlepaTypd. Y HaOMMKEHHI TeOMETPHYHO! ONTHUKM OTPHMAHO AUCIIEPCIHHE PIBHAHHSA UL MAalllX
OCECHMETPUYHIX 30ypeHb 3 ypaxyBaHHSAM e(EKTIB B'I3KOCTi, OMIYHOI Ta TEIUIONPOBIIHOI AucHIAIi. 3HAWICHO KpHUTEpii CTIHKOCTI
a3MMYTaJIbHUX TEYill IUIa3MH NMPU HASBHOCTI BEPTHKAIBLHOIO I'paJicHTa TEMIIEpaTypH i MOCTIHHOro MarHiTHOro mois. PosrmsHyTto
3anaqy Penes-Benapa 1 cranioHapHOi KOHBEKILT B IIapi €IEKTPOIPOBIIHOT PIANHH, 1[0 HEOTHOPITHO 00EPTAETHCS B aKCiaIbHOMY
MarHiTHOMy momi. Y miHiifHil Teopii cTarioHapHOT KOHBEKIil OTpMMaHO KPHTHYHE 3HAa4eHHsS uncia Penes Ra, B 3almexHOCTI Bif
npodino HeomHopigHoro obepranus (ducna Poc6i Ro). Tokaszano, mo HeratusHi 3HaueHHs uucna Poc6i Ro <0 wamaioth
Aectalinizytounii edekr, ocKinbkd KputudyHe 4uciao Peness Ra, crae MeHmuM, Hix y pasi ogHopigHoro obepranus Ro =0 a6o

obepTanHs 3 Mo3UTUBHUMH yuciamu Pocoi Ro > 0. Jlns onucy HeniHIMHUX KOHBEKTUBHHX SIBHII BHKOPHCTOBYBAJIACS JIOKAIbHA
JIEKapTOBa CHCTEMa KOOPAMHAT, B SKiii HEOXHOPiIHE OOCpTaHHS APy PiAMHU MPEICTABISETHCSA y BUIIIAAI 00epTaHHS 3 MOCTIHHOIO

KyToBOIO MmBHAKiCTIO (), i asumyramsruM mupoMm U,(x), mpodils MIBUAKOCTI SKOTO € JOKAIbHO JNiHiHHWUM. B pesynsrari

3aCTOCYBaHHS METOAY Teopii 30ypeHb 3a MajliM MapaMeTpOM HaJKPUTHYHOCTI CTalioHapHOTO 4mcia Penes oTpuMaHO HelniHiiHEe
piBastHHA THIY 'iH30ypra-Jlanaay, 1mo omrcye eBoJIONio KiHIeBOI aMIIiTy a1 30ypeHs. [TokazaHo, o po3risHyTa ciaboHeiHitHa
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KOHBEKIIisI HA OCHOBI PiBHSIHB HIecTH-MOJ0BOI (6D) momeni JlopeHIa mepeTBOPIOETECS B ieHTHYHE piBHAHHS ['1H30ypra-Jlanmay.
BukopucroBytoun pitteHnst piBusHHs ['iH30ypra-Jlangay, My BH3HAUWIM JUHAMIKY HECTAL[iOHAPHOTO MEPEHOCY Terula Ul Pi3HHX
podisiB KyTOBOT MBUIKOCTI 00EPTaHHS EJIEKTPOTIPOBIAHOT PITUHH.

KJIFOYOBI CJIOBA: marniTooOepTanbHa HECTiHKiCTh, KOHBEKLis Penes-benapa, crnaboHemniniliHa Teopis, piBHAHHS [1H30ypra-
Jlannay
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HUccnenyercs yCTOHYMBOCT HEOJHOPOAHO Bpalaolieiicss IMINHIPHYECKON IUIa3Mbl B aKCHAJILHOM OJHOPOJIHOM MarHUTHOM II0JIE€ C
BEPTHKAIBHBIM I'PaJUEHTOM TeMIlepaTypbl. B mpuONImkeHnH reoMeTpruueckod ONTHKU MONyYeHO NHUCIIEPCHOHHOE YpaBHEHUWE IUIS
MaJIbIX OCECHMMETPUYHBIX BO3MYLICHHUH C y4eToM 3((EKTOB BS3KOCTH, OMHYECKOW M TEIUIONPOBOJHOW muccunauuu. HaiineHs
KPUTEPHU yCTOHYMBOCTH a3MMYTaJbHBIX TEUCHWl IUIa3Mbl NIPY HAJIWYHK BEPTHKAIBHOTO IPaJAMEHTa TEMIIEPATyphbl U HOCTOSHHOIO
marHuTHOro nons. Paccmorpena 3anmaua Panes-benapa nnst craunoHapHONW KOHBEKIMM B HEOJHOPOIHO BpalllAIOIIEMCs ClOe
3JIEKTPONPOBOSAIIEH KUIAKOCTH B aKCHAJIBHOM OJHOPOAHOM MAarHUTHOM moJie. B nuHeNWHOW Teopuu CTallMOHApHOW KOHBEKLHU

TOJY4EHO KPUTHYECKOe 3HaueHue yucia Paness Ra, B 3aBHCHMOCTH OT IpoQHIIs HEOJHOPOAHOTrO BpalieHus (duciaa Poccou Ro).
IMoka3zaHo, 4TO OTpULATENbHbIEe 3HaYeHus drcia Poccou Ro <0 oxassBaroT necTabuIm3upyonmii 3pdexr, Tak Kak KPUTHIECKOE
ancio Pames Ra, CTaHOBHUTCSA MeHbIIE, 4eM B CIydae OIHOPOAHOro BpameHus Ro =0 wim BpalieHHs C IOIOXHTEIbHBIMH

yucinamu Poccou Ro > 0. I[.]'IS{ OIMCAaHUS HEIMHEHHBIX KOHBEKTHUBHBIX SIBJICHUH HCIIOIb30Bajach JIOKaJIbHAS JCKapToBad CUCTEMA
KoopJauHaTt, B KOTOpOﬁ HCOJHOPOAHOE BpalllCHUE CJIOA XKXKUIAKOCTH NPEACTABSIETCA B BUAEC BpallCHUSA C TOCTOSTHHOM yl".]'IOBOfI

CKOpOCTBIO L)) M a3UMyTalbHBIM LIHPOM Uo(x), npouIb CKOPOCTH KOTOPOTO JIOKAJIBHO JIMHEEH. B pesynbrare mpuMeHeHHs
MeToJa TEOpUH BO3MYLIEHHH II0 MaJoMy IapaMeTpy HaAKPHUTHYHOCTH CTAIlMOHApHOTO 4YHCia Pames. moiydeHO HenMHeHHoe
ypaBHeHne Tumna [uH30ypra-JlaHmay, ONHMCHIBAIOIEEe OHBOJIIOIMIO KOHEYHOW AaMIUIUTYIbl Bo3MylueHuit. Iloka3aHo, uto
paccmaTpuBaeMasi ciabOHENMHEHas KOHBEKIMsS Ha OCHOBE ypaBHEHWil IIecTH-MomoBoii Mopenu Jlopenua mpeoOpasyercst B
uaeHTHYHOe ypaBHeHue [ mH30ypra-Jlanmay. Vcmomesyst pemienue ypaBHenust ['mH3Oypra-Jlanmay, Mbl ompenenian JHHAMHKY
HECTAlMOHAPHOTO MEPEHOCa TEIIa YIS Pa3IMYHbBIX IpoduIeH YIIoBoil CKOPOCTH BPAIEHHUS HIIEKTPOIPOBOASILEH KUIKOCTH.
K/JIIOUEBBIE CJIOBA: wMarHuTOBpamaTelbHas HEyCTOHYMBOCTb, KOHBEKIMS Panmes-benapa, crmaGoHennHeliHas Teopws,
ypaBreHune ['mu30ypra-Jlangay

Fluid flow caused by a temperature gradient in the gravitational field, known as the phenomenon of free
convection [1-3], plays an important role both in natural phenomena and in engineering and industrial applications. For
several decades, free convection in liquid layers or the Rayleigh-Benard convection has been theoretically and
experimentally investigated. Of particular interest are the problems related to the effect of rotation and magnetic field
on the Rayleigh-Benard convection, for example, because of their applications to the theory of vortex and magnetic
dynamo [4-6]. Convection, in which the axis of rotation of a medium and that of the uniform magnetic field coincide
with the direction of the gravity vector, was well studied in [1-2]. The case when the directions of the axes of rotation
and that of magnetic field are perpendicular to each other, and perpendicular to the direction of the gravity vector, is
also of interest for solving some astrophysical problems. Such a formulation of the problem corresponds to the
convection in the fluid layers located in the equatorial region of a rotating object, where the azimuthal magnetic field
plays a significant role. The linear theory of such convection was first formulated in [7-8]. The linear theory of rotating
magnetic convection for an arbitrary deviation of the axes of rotation and that of the magnetic field from the vertical
axis (field of gravity) was developed in [9]. The studies listed above constitute a linear theory that provides information
on the convection onset. It is obvious that linear models do not provide information on the final amplitude of
convection. This amplitude occurs when interaction between several perturbation modes takes place. Therefore, it is
important to realize the physical mechanism of nonlinear effects and to quantify the heat and mass transfer in terms of
finite amplitudes. Up to date, there is no rigorous nonlinear model that can be solved analytically. Currently, to
construct a nonlinear theory of convection, the perturbation method developed in [10] is widely used. This work shows
that the initial heat transfer by convection depends linearly on the Rayleigh number, and then, at higher Rayleigh
numbers, the heat transfer is slightly different from the linear case. The authors of [10] called this process weakly
nonlinear, where the nonlinearity depended on the linear case. The weakly nonlinear theory of convection was further
developed with regard to modulation of the parameters that control the convection process, what is very important for
solving many technological problems. Different types of modulation, such as rotation [11-14], gravity [15-17],
temperature [18-20] and magnetic field [21-22], were studied for stationary weakly nonlinear convection in various
media: porous media, nanofluids, and so on. In these papers [11-22] the effect of modulation of the parameters
(rotation, gravity, temperature, magnetic field) on the heat and mass transfer in convective media was determined.
Despite the enormous amount of works on the Rayleigh-Benard convection, there is still a certain gap in the study of the
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influence of inhomogeneous (or differential) rotation on convective processes. The interest to these studies is primarily
caused by various astrophysical problems. It is known that the majority of various space objects consisting of dense
gases or liquid (Jupiter, Saturn, Sun, etc.) rotate non-uniformly, i.e. different parts of the object rotate around a common
axis of rotation with different angular velocities. Differential rotation is also observed in galaxies, accretion disks, and
extended rings of planets. Besides, such large-scale vortex structures as typhoons, cyclones and anticyclones, etc. also
rotate non-uniformly.

The stability of the inhomogeneous rotation of the ideally conducting medium in the magnetic field was first
considered in [23-24]. These works also show that a weak axial magnetic field destabilizes the azimuthal differential

rotation of plasma, and when the condition dQ*/dR < 0 is satisfied, a magneto-rotational instability (MRI) or standard

MRI (SMRI) in the non-dissipative plasma occurs. Since this condition is also satisfied for Keplerian flows {2 ~ R_w,
the MRI is the most likely source of turbulence in the accretion disks. The MRI discovery stimulated numerous
theoretical studies. The first theoretical studies that dealt with the problem of accretion flows were carried out in the
approximation of a non-dissipative plasma with the radial thermal stratification [25] and the magnetization of the heat
fluxes [26] taken into account. In [27] the stability of the differentially rotating plasma in the axial magnetic field was
studied with simultaneous consideration of both dissipative effects (viscosity and Ohmic dissipation) and thermal radial
stratification of plasma. MRI in a spiral magnetic field, i.e. with nontrivial topology was studied in [28-29]. While
studying the MRI, the differential rotation of the medium is simulated by the Couette flow between two cylinders
rotating at different angular velocities (Fig. 1a), which is convenient for carrying out laboratory experiments [30].

R E 5 A
0z
LT - -
T
\\h_/——/ Qom R] } 47 .
Q e >
in d J gc
== =
SN— =
Roul ------- /
a) 0)

Fig.1. a) geometry of the problem for standard MRI: two concentric cylinders with radii R, = R, and R , = R, rotating with
velocities , =€, and Q
a layer of the electrically conductive fluid in the rotating magneto-convection.

=Q,. B, - axial magnetic field directed vertically upwards; b) Convective Busse dynamo model for

out

In [31] various models of thermal convection in rapidly rotating fluids penetrated by strong magnetic fields are
discussed. A special attention is paid to the probability, that the magnetic field can be supported by the dynamo action,
but not by the electric currents applied externally. In [31] an overview of two dynamo models is given. This is the
Childress-Soward flat layer model [32] and the annulus model by Busse [33]. The Childress-Soward model operates in
the convective flat layers of fluid located in moderate and subpolar latitudes (Fig. 2a) of the space object.

For the terrestrial dynamo, the Busse model operates in the equatorial layers, where the azimuth magnetic field
plays a significant role. The electrically conductive fluid rotates in the annular region located between the solid core and
the Earth crust. The theory of this process was developed in [33—35], where the model of rotating cylinders was used.

According to this theory [35] the outer cylinder rotates at a constant angular velocity €2, , while the inner one remains
stationary €2, =0 (Fig. 1b). Convective flows (Benard cells) occur in the fluid layer between the cylinders due to the

cylinders 7, , > 1, . The difference in the heights of the

temperature difference between the inner 7, and outer 7, out

out
inner /1, and outer 4, cylinders leads to a similar effect of the Coriolis force on ﬂ -plane.

These models do not completely solve the problems of geodynamo, for example, the problem of magnetic field
inversions. Unlike the Childress-Soward and Busse models, the stability of a non-uniformly rotating layer of the

electrically conducting fluid in the axial magnetic field, in which the lower surface of the layer (7 d) is hotter than the

upper one (Tu) (Rayleigh-Benard problem): T, > T , was studied in [36] (Fig. 2b). In [36] a chaotic regime based on

the nonlinear dynamics equations of a six-dimensional phase space was studied. The analysis of these equations
revealed the existence of a complex chaotic structure — a strange attractor. Besides, a convection mode was determined,
in which some chaotic change in direction (inversion) and amplitude of the perturbed magnetic field occurs, with the the
medium inhomogeneous rotation taken into account.
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Fig.2. a) A layer (thickness h) of the electrically conductive fluid of the astrophysical object that rotates at a non-uniform velocity

Q(R) in the axial magnetic field Eo (analogous to the Childress-Soward dynamo model); b) geometric description of the

convective dynamo simulated by Couette-Taylor flow in a thin layer of the electrically conducting fluid.

The aim of this work is to study local instabilities in rotating flows in the presence of a constant vertical magnetic
field and the temperature gradient in the field of gravity, as well as the development of a linear and weakly nonlinear
theory of the stationary convection in a non-uniformly rotating layer of the electrically conductive fluid in the axial
uniform magnetic field.

The results obtained in this work can be applied to various astrophysical and geophysical problems, which
consider magnetic convection in rotating layers of the Earth interior, the Sun, hot galactic clusters, accretion disks and
other objects.

LOCAL INSTABILITIES IN A MAGNETIZED ROTATING FLOW WITH
WEAK TEMPERATURE STRATIFICATION
Basic equations of small perturbations evolution
Let us consider the flow dynamics of a non-uniformly rotating conductive fluid (plasma) in a constant

gravitational g and magnetic B, fields with a constant vertical temperature gradient VTO = const = —Ae, where

A >0 is a constant gradient, e is a unit vector directed vertically upwards along Z axis. The stationary flow of the
non-homogeneously rotating fluid will be simulated by the Couette-Taylor flow, located between two rotating cylinders

with the angular velocity of rotation L2(R) :

Qsz2 _QIRIZ + (€2, _Qz)RfRz2
R -R'  RR;-R)

Q(R)=

where R, =R, ,R, =R
cylinders, respectively.
To describe the motion of a viscous incompressible electrically conducting fluid we use the equations of magnetic

hydrodynamics in the Boussinesq approximation [1-2]:

o> $2 =€, ,Q, =€ - radius and angular velocity of rotation of the inner and outer

- 2

a—v+(vV)v = —iV(P+B—)+ ! (BV)B+ég T + W% (1)
ot X 87" 4np,

%—f+ (VV)B—(BV)y =nV’B )

aa—€+(\7V)T = V'T 3)

divB=0, divv=0 ()
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where [ is the coefficient of thermal expansion, 0, = const is the density of the medium, V is the coefficient of

kinematic viscosity, 7] = c*/4ro is the coefficient of magnetic viscosity, O is the coefficient of electrical
conductivity, } is the coefficient of the medium thermal conductivity.
We assume that the uniform (constant) magnetic field Eo is directed along the axis OZ . The field will be further

called axial in the cylindrical coordinate system (R, @, z) . The direction of the magnetic field coincides with the axis
of rotation of the fluid Q || OZ , which rotates in the azimuthal direction with velocity vy = RQ(R)€, . The stationary
state of the system satisfies the following equations:

2
QZR:L%’ L%:_&B]’O, a1, 7;0 =0. 5
P, AR~ p, dz dz

Equation (5) shows that the centrifugal equilibrium is established in the radial direction, and the hydrostatic one —
in the vertical direction.

Our main task is to consider the problem of the stability of small perturbations of physical quantities (, b ,p,0)
against a background of the stationary state (5). By representing all the quantities in equations (1)-(4) as the sum of the
stationary and perturbed parts V=V, +u ,E = Eo +b, P=p,+p, T=T,+6, we obtain the evolution

equations for small perturbations in the linear approximation:

o, - W+ M, +v,-V BV ez B p+Bo‘b
4mp, u v 4
~B,-V o, —nV> =M, +,-V 0 bl=—| 0 |, (6)
4@ 0 0. — V47,V le] Pl o
where indication M, for the matrix of the non-uniform rotation is entered [28]:
0 -Q 0
dQ
M,=1Q+R— 0 0.
dR
0 0 O
Perturbed fields i, l; also satisfy the solenoid condition:
divb =0, divii=0. (7)

As long as the medium is stratified by temperature and rotates with an inhomogeneous angular velocity, a justification
for the applicability of the limit of geometric optics on the bases of the asymptotic WKB (Wentzel - Kramers —

Brillouin) method [37] should be provided.

Asymptotic WKB method and geometric optics approximation
Let us consider the limit of the medium weak stratification when the spatial scale of the medium heterogeneity

T, dz

(L>A) an approximation of geometrical optics is performed, and therefore all the perturbed quantities in equations

-1
1 dT, , . 2 .
L=|——"| far exceeds the typical perturbation scale (wavelength) A = m: L>/ . In the short-wave limit

(6-7) can be represented by the dependence of the form: exp(ilgf + t), where k is the wave vector, ¥ is the

amplification (or attenuation) factor of the disturbances [38].
According to [28-29] we present a more rigorous justification of the short-wave approximation using the
asymptotic WKB method. For this purpose we represent the solutions of the linearized system of equations (6) in the

form of an asymptotic series in the small parameter € (0 <& < 1):
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i 0 ety £ (1)
b — /Pnye b (x,0)+ eb™ (x,0)+-- ©
p pO(x,t)+ep (x,6)+---
0 09 (x,1)+6M (x,t)+---

where X =(R,@,z) are the cylindrical coordinates recorded in vector form; ®(x,?) is a scalar function, called the

phase (or eikonal) of the perturbed quantities oscillations; (=) , 5 (=) , 6" , p(") (n=0,1,...) are the amplitudes of
disturbances. The dissipative processes, when using the asymptotic expansion (8), have an effect in the second order of
£ smallness [28-29], ic. V=€V, =€1T, y =€ . For convenience, we introduce the indication for the
derivative along the fluid flow lines:

D 0
_=
Dt ot

7,-V.

Substituting decompositions (8) into the system of equations (6), we obtain the system of local differential

equations for £ 'and €° orders:

Solenoid conditions (7) take the form:

b VO =0, V-5 +ib" -V =0

DO (B,VE)
Dt 4rp, 7O
—(B,-V®) Do 0 |-|p®@ ve
Dt 9 Po
0 Do
Dt
Do (BVE)
Dt 4rp, 7O
:i-| =(B, - V®) Do o |-|p® +1V_d>
Dt (1) pO
0
) Do
Dt
04 304 5O
V4
+
Po
i Vo=0, V-i?+iu" Vo =0,

B .50
© 4 Bo b

P 4
0
0
B,-b"
M 4 2o
P 4

)

(10)

)

Next, multiplying equations (9) alternately by V® , u® , b and applying equations (11) we obtain the following

relations:

Po

(VD) -(p“” N 1

4

DD

—b" Vo =0,

(, .z;«»)j:o, -~

DP g0 ve o,
¢
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bo 050 _ (B, V@) Do 9 .5

BO .50 =, DD o) o _ (B, VO i =0, 2~ =0,
Dt 47p, Dt Dt
DO oz (ByV®) ro) o _ 0, DD o) o —(B, - V®)i® -5 =0, DD yo po g,
Dt 4rp, Dt Dt

Due to the fact that VO # 0, i@ #0, O % 0, 62 #0 we obtain:

p© :_ﬁ(go.gwg, %zo, B, V®=0. (12)

According to (12) the system of equations (10) becomes much simpler.

B V) - ; B .50
(£+V(Vd>) +M ] o BV ~—0 b0 —Egpe? = _Vo pV +—B° b
Dt 47p, yor 4r

(%H?(VCI)Y —MQJE“” (B, V)i = (13)

D
= (VD) |00 —4-6-7® =0
(Dt X( )j e-u

The second relation in (12) is the Hamilton-Jacobi equation with the initial condition: ®(x,0) =® (x). Acting on

this equation by operator V we obtain the eikonal equation:
VD +V (¥, -Vd)=0

or

oV +e¢,

t

Q(R) e Q(R)

——+ =0
oR 0¢ ORJ¢ R a¢ 0z0¢

[ag oD PR J ) I’P PR
2

the initial condition for this equation is: V®(x,0) = V® (x). It is known that the phase gradient V® is by
definition a wave vector:

k=VO®=eik,+ek,+ek,,
then for the components of vector k£ we obtain the following equations:

oQ ok, ok
k,= ky,+Q(R)R ky=—Q(R ko k. =-Q(R)R—2.
d kg (a (R) Aa (R) ¢8 (R) o (14)

From these equations it follows that for the axisymmetric perturbations (& 6 aq)/Ra¢ = () the wave vectors

ky and k_ do not depend on time, i.e. they can be considered constant. Besides, it is known (see, for example, [37])
that geometric optics is approximated locally, where the amplitude and direction of the wave remain almost unchanged

at the distance of the order of the wavelength A , hence the wave vector k (or phase gradient V® ) can be considered

constant: |k |= const . Since the approximation of geometrical optics is well satisfied for the axisymmetric

perturbations, the perturbations Tha , b p© 9(0) in equations (13) can be represented as plane waves:

U
=0 _
b g exp(yt +ik,R+ik z). (15)

P
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After substituting (15) into the system of equations (13) we obtain the system of equations for the amplitudes of the
perturbations U , H ,0,P:

_i(kB)H, _iky 5

(y+w)U, —ZQ% (16)
47p, Po
i(kB,)H,
(r+0)U,+2Q(+Ro)U, =—— (17)
4mp,
(kB)H, ik, -
(r+au, -8 Kby o po )
47p, Po
(7+@)H, = i(kB,)U, (19)
T 0Q
(}/4‘(()’7)1‘1(/j :l(kBO)U¢+Ra—RHR (20)
(y+@)H, = i(kB,)U, 1)
(7+CUZ)®=AUZ (22)
kUp+kU. =k,Hy+k H =0 (23)
| o 5_ . B HY T
In equations (16)-(23) the indications for the total pressure P = P+ 4 , viscous @, =V | k|”, ohmic
T
@, =1 k P and heat conductive ®,=x| k |? dissipation frequency (| k [*= k; +k’) are introduced, Ro is the
R 0Q
hydrodynamic Rossby number, characterizing the heterogeneity of the medium rotation: Ro = E?)_R .

Using the method of elimination of variables, the system of equations (16)-(23) is reduced to the equations for

Up U, U

D \2 2
7+a)v+—(kB°) UR—2Q]£—Z2U¢+g,B—fikaRUZ =0 (24)
4mp,(y+ @,) |k | k[ (r+o,)
D \2 D \2
20(1+ Roy+ — B 921y, o v B U,=0 25)
D \2 2
2Qkik§ U,+| 7+, + (kB,) - J%rﬂAkR U.=0 (26)
|k | dmpy(y+@,) k[ (y+w,)

So, the task to provide the stability of a rotating magnetized flow with temperature stratification leads to the
problem of finding the eigenvalues of ¥ from the system of equations (24)-(26).

Analysis of the dispersion equation
The condition for solving the system of equations (24)-(26) is that its determinant equals zero, then we obtain the
dispersion equation:

[((r+o)rro)+@ | (o) r+o)y+o)+ @ (r+o)-N(1-Erto) |+
FNIEA-EVy+ o) [ (r+ @) + (7 - 4Q) |+ £ [ (r + 0) + B (7 - 427

<7+ o)+ o)y +0,)+d(y+0)-N(1-E)y+0,)|=0 @7
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k’B;
Here @, is Alfven frequency, a)j = kzz Ci ==z0 N 4= gPA is Vaysel-Brent frequency, dependent on the
0

kZ
k|

Equation (27) after simple algebraic transformations splits into two dispersion equations of the following form:

temperature gradient, kX = 2Q+/1+ Ro is epicyclic frequency, & =

(y+o,)y+a)+0,=0 (28)
o )(r+o)y+a)+ @) +E(r+0,) + @) -4QE 0 - (29)
—N(1-EYy+a)ly+ )y +a,)+a]=0

The dispersion equation (28) describes the attenuation of Alfven waves in plasma with viscous and ohmic
dissipation. In this equation, the influence of rotation and temperature stratification on the perturbation increment is not
observed, therefore, we begin to analyze the dispersion equation (29). In some extreme cases, this equation gives the
results, which are known by this time.

1). Let us consider the purely hydrodynamic limit, when the medium is homogeneous by temperature (4 =10),
non-dissipative, and rotates at the angular velocity €2 =C(R) (Couette flow) in the absence of the magnetic field,
then from equation (29) we get:

Y+ =0 (30)

From the above it follows that the necessary and sufficient condition for the stability of the rotating shear flow

(Rayleigh criterion, see, for example, the review in [39]) is the reality of the epicyclic frequency K° >0 or the

realization of the inequality Ro > —1. For the flow with the Rossby profile Ro =—1, the axisymmetric perturbations
in this extreme case are neutrally stable ¥ = 0.

2). Taking into account the stratification by temperature (4 # 0)and Vv = y =1 = 0, from equation (29) we get:

Y +&x-NI=L=0 (1)

In this case, the temperature stratification can either stabilize (N3 <0) or destabilize (N >0) the stable
Couette flow ( >0 ), depending on the direction of the temperature gradient.
3). Within the limits of the ideal magnetic hydrodynamics (V=) =1n7=0) with 4=0, Eo #0, Q=0 ,

Chandrasekar [23] and Velikhov [24] have shown that the magnetic field destabilizes the Couette flow. Indeed, from
equation (29) for this case we have:

(V' +@) + &K (V' + @) - 4Q°¢ @, = 0 (32)

or

2,2 4
7Z+a)j+§2 :J_r\/54 +4Q° 8w, (33)

From the above it follows that at moderate amplitudes of the magnetic field @, <2, the cumulative effect

determined by the magnetic field is destabilizing, i.e. the development of instability currents at K> > 0is assumed to be
possible. This effect is the cause of the standard MRI.
4). With the temperature stratification taken into account, the equation (32) will take the form:

(P + @) +(E - N (1-E)P + @) - 4QEw =0 (34)

For the radially temperature-stratified plasma, when replacing —Nj(l—f 2) by & ’N?

r

1 dp, d
(N ’= ——ﬂ—[ln &J , I is the adiabatic exponent), this equation was derived in [25] and actively studied
0
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5). With only the rotation and the magnetic field in a homogeneous ( A = 0) dissipative medium taken into account,
the equation (29) is transformed into the dispersion equation of the following form:

(r+@)r+@)+ @) +E(r+ @) + @) - 4w, =0 (39)

This equation was studied in detail in [41-43], and its generalization, with the radial thermal stratification of the
medium taken into account, was presented in [27].
6). In the absence of the rotation and the magnetic field, in the case of a nonconductive medium, from equation (29)
we obtain the dispersion equation:

Y +y(e,+o)+o0,-N;(1-5)=0 (36)
14

When utilizing the dimensionless variables ¥ — — ¥, kyh — k, k.h — 7m in equation (36), we obtain the
h

Rayleigh equation describing free convection in the liquid layer with thickness /. Its solution has the form, given
in [2]:

Rak?

_ (1+Pr)
Pr(k* + 7°n*)’

! 2Pr

(Pr—1)

37
2Pr @7

2
(K’ +r’n*)+ ( j (k> +7°n*)* +

where 7 is an integral number characterizing the scale vertically. The magnitude of the instability increment %,

AL 14
gh. , Prandtl Pr=— and the wave number
|74 X

K =~ k*+7’n’ . The condition for the stability of small perturbations lies in the positiveness of the radicand, which

depends on the dimensionless numbers of Rayleigh Ra =

corresponds to the Rayleigh numbers Ra > 0.
In contrast to [27], the dispersion equation (29), which we derived, takes into account the thermal dissipation

(terms with w,) and vertical stratification (terms with /N ;) by temperature in the field of gravitation. Let us analyze

the stability by writing down the dispersion equation (29) in the form of the fifth degree polynomial relative to ¥ :

P(y) = a0y5 +al;/4 + a2}/3 +a37/2 +a,y+a,=0, (39)

where the coefficients a,,a,,a,,a,,a,,a; have the appropriate form:
a, =1,
a,=2(w,+0,)+ a0,
a, = (0, +w,)’ + 20, + 0,0,) +45*Q*(1+ Ro) - N3 (1- &) +20,(0, + @),
_ o 2032 2 w,
a;, =2(0, + o), + 0,0,) +8£°Q°(1 +Ro) @, +®,/2)+ 0, (0, + )" +20,(0,+ 0,0,) -
-N;(1-Qw, +w,), (39)
a, = (0, + 0,0,)" —4E°Q* @, + 45°Q% (1+ Ro)(@, + @) +8E°Q* (1+ Ro)w,m, + 20,070, —
2 2N 2 2
-N,(1-& N, +20,0, + @),
— 2 202,72 202 2 2 2
a;=0,(w, + 0,0,) +4&°Q'w; +4E°Q*Ro(w, + @) - N;(1- &) 0,0, + w,,).
The dispersion equation (39) is the equation of the fifth degree relative to ¥, so the analytical determination of its
roots in general case is not possible. However, the conclusion about stability of the perturbations described by equation
(39) with real coefficients can be made without solving it, but only by analyzing its coefficients using the Routh-

Hurwitz or Lienar-Shipar criteria [44]. In the latter criterum the number of determinant inequalities is approximately
half as much as in that of Routh-Hurwitz, therefore its application is advisable. The Liénard-Chipart criterion for the

perturbations asymptotic stability, described by the algebraic equation (38), is as follows. For P(¥) polynomial to
have all roots with negative real parts, it is necessary and sufficient that:
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a) all the coefficients of P(}) polynomial were positive: @, >0, n=0...5;

b) the inequalities for the Hurwitz determinants were satisfied: A, >0, A ;>0 .., where A, denoted

the Hurwitz determinant of 7 order:

Cll a3 aS
a, a4, da,
A, =10 a a
0 a, a
am

By using the algorithm of Leenard-Shepard we obtain necessary and sufficient conditions for stability of the non-
uniformly rotating plasma with the constant temperature gradient:

a,>0, n=0...5, A,>0, A,>0 (40)

Here, the determinants A, and A, are correspondingly equal:
a, a,

A, = =a,a, —a,,

a a, as 0

1 a, a

_ _ 2
A= 0 =a{a;,(aa, —a,)—aja, +2aas} - agia)(aa, —a;) +as} (41)
a d; 4

0 1 a a
Substituting the values of coefficients a, from (39), into the conditions of (40) we find the following
inequalities:
(a,>0) = 2(@,+@,)+®, >0, this inequality is performed automatically;

k2
2)(a,>0)= (@, + ) + 20, + 0,0,) +4£°Q* (1+ Ro) + 20, (0, + ®,) > N ‘ 1€R|2
This inequality shows that viscous, ohmic and thermal conductivity dissipation naturally lead to stabilization of the
plasma flows stability. The stabilizing factors are also: the uniform magnetic field (Alfven effect), non-uniform rotation

(if the profile of the angular velocity of rotation is close to Q(R)~ R (&°>0) and the temperature gradient

at A <0 . In the limits of the nondissipative and homogeneous electrically conducting fluid in the uniform magnetic
field this inequality transforms into the well-known Velikhov stability criterion [24]:

&K

2
), + )

0;
3) inequality a; > 0:

2w, + )@, + ©,m,) +8E°Q*(1+ Ro)( @, + ®,/2) +
2

+0, (0, +a),7)2 +2a);[(a)f1 +0,0,)> N? | /?]2 Qo,+a,)

does not contain any new conditions for stabilization of disturbances;
4) inequality a, > 0:
(& +0,0,) +20,0.0,+4EQ* Row, +
2

k
+4&5°Q°(1+ Ro)(@), +2w,0,) > N | kR|2 (@, +20,0,+ @})

5)as>0, or
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1-Ro | Ro, ki @0, + 0,0, >0, Ro __(@i+00) +45Qq)
Ro, Ro, K (@ +ad)w, 40°8 (0 + @)

The parameter Ro,, in inequality (42) corresponds to the critical value of the Rossby number Ro for the standard MRI

(42)

(SMRI), which was obtained in [29]. The dimensionless parameters: Ro, = N /21/492 = Ra/TaPr is the thermal

number of Rossby, the numbers: Ra = gBAL'/vy — of Rayleigh, Ta = 4Q>L}/v> — of Taylor on the typical scale
of stratification L , Pr =W/} is the Prandtl number.

Now we turn to the stability conditions b) consisting of inequalities with Hurwitz determinants (40). For the

determinant A, >0 we get:
2

2w+ @) +8w,0, (0, + @, + 0,) + 30, (@] + @) +20,(0, + @,) 2w,0,

w, +, o, +w,

In this inequality a new destabilizing term (the second fraction) has appeared, which has a significant impact,

provided that the Prandtl number Pr<1 is small. Under the condition Pr=1 and Pr>>1 the perturbations

stabilization by the magnetic field in a dissipative medium takes place. After substituting the values of coefficients a,

kZ
> gﬂAk—‘; (43)

into the expression for the Hurwitz determinant A, , we obtain the last of the stability conditions: A, > 0. We do not
give the explicit form of inequality A, >0 because of the cumbersome form of the included expressions. However,

note that the stability criterion A, > 0 contains the previous stability criterion (43).

RAYLEIGH-BENARD PROBLEM FOR A THIN LAYER OF THE INHOMOGENEOUSLY ROTATING
MAGNETIC PLASMA
Formulation of the problem and basic equations
The system of equations (6) obtained in the previous section will be used to describe convective phenomena in the

thin layer of the inhomogeneously rotating conducting medium (plasma) with thickness & << (R, —R. ). The

out
temperature of the lower part of the layer is denoted by 7,, and the upper one — by 7, while 7, > T, is the heating
from the bottom (Fig. 3).
Z 4

p.

! T R. R

d in out

=
vg

Fig. 3. The geometry of the problem for the inhomogeneously rotating magnetoconvection. The electrically conductive fluid fills the

layer between two rotating cylinders with angular velocities Qin and € respectively. The bottom surface of the layer has the

out >

temperature 7| 4 » and the top one - T;‘ - T e Tu .

Such a formulation of the problem generalizes the classical Rayleigh-Benard problem for free convection. For this
problem the typical scale of the medium inhomogeneity in the horizontal plane is larger than in the vertical direction

L;>L, . Therefore, we will be able to apply the local WKB method for the disturbances depending on the horizontal
coordinates (R,@). We expand all the quantities into the Taylor series in the vicinity of the fixed points (R,,d,),

leaving the terms of the zero order in the local coordinates R=R- R, , 9=@—@,. As a result, we obtain the

system of differential equations (6) with constant coefficients. In this case the following relations will be taken into
account:
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2
Q,=QR,), V' 5D’ + a~2 +ii+izi~2, p=2 :
OR R, OR R, 0P dz

), el )% (o)
b)), be) R:0¢\b,| R2\b,
2 0 (u 1 (u
VZ u :VZ u¢ - v R _ ¢ )
[ LJL [1% +R§ 0p\by) Ry \ b,

Like in the previous section, our studies will be restricted to the axisymmetric perturbations 0/ a¢ =(. Then all the

perturbations in the system of equations (6) can be represented in the form of plane waves.

i) (U(2)
l; = g((;) exp(yt +ikR) (44)

p) (P(2)

then, in the short-wave approximation k>>RL, neglecting the terms LA —, we obtain
0 o Ry

(D* - y-#*)U, +~TaU,, + Pr Pm™ Ha’ DH,, — ikP = 0 (45)
(D*-y-k*)U,~Ta(1+ Ro)U, + Pr Pm™ Ha’ DH,, = 0 (46)
(D* —y—k*)U, +PrPm 'Ha’DH, + Ra®—DP =0 (47)
(D* = Pmy—k*)H, +Pr™ PmDU, =0 (48)
(D? = Pmy—k*)H, + Pt PmDU,, +~TaPmRoH , =0 49)
(D* = Pmy—k*)H,+Pr” PmDU_ =0 (50)
(D*-Pry-k*)O+U. =0, (51)
DU, +ikU, =0, DH_+ikH, =0, (52)

The system of equations (45)-(52) is written down in a dimensionless form, in which the dimensionless values retain the
form of dimensional ones:

2072, (U U U, )= ph™ (U U, U, (Hy Hy H,) = By (H o H,, H),

0 O(4h)", P - 15( L ] ‘= t(iz),i—/’—zi
PV, h*) ot v ot
In equations (45)-(52) the following dimensionless parameters are introduced Pr =V/}y is the Prandtl number,
Pm =V/7 is the Prandtl magnetic number, the numbers: Ta = 4Q,°h*/V? is of Taylor, Ha = B/ \J4mp,vn is
of Hartmann, Ra = g,BAh4/ VY is of Rayleigh on the scale /. Then, instead of the Hartman number Ha we will use
the Chandrasekhar number Q = Ha*. Using the equation of the solenoidal character of fields (52), we exclude
pressure P from equations (45) and (46):
DO  ikTa

'Bz_k2+52_k2' ?

(53)
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In order to reduce the number of variables, we introduce indications for Zz-component of the vortex -
&= (rotU), =ikU,, of the current - { = (rotH), = ikH , and for z-component of the velocity -W =U . With

the new indications taken into account equations (45)-(52) will take the form:

(D* —k*)(D* — k> — )W + O(D* —k*)DH_ —~\TaD{ = k*Ra®© (54)
(D> = k> = )¢ +Ta(1+ Ro)DW + ODE =0 (55)

(D* — Pmy—k*)H_+Pr™ PmDW =0 (56)

(D* — Pmy—k*)é+Pr™ PmD{ —JTaPmRoDH, =0 (57)
(D*-Pry—k>)O+W =0, (58)

where O = Pr Pm™'Q. We complete equations (54)-(58) with the following boundary conditions:

for "free" (free-free boundaries) surfaces at z=10,1:
W=0=DH_=0,D’'W=D{=£=0 (59)
and for “rigid” (rigid-rigid boundaries) surfaces at z=10,1 :
W=0=H_=0,DW=¢,=DE=0 (60)

Equations (54)-(58) with boundary conditions of (59)-(60) describe the linear (for small perturbations) convection in the
thin layer of the non-uniformly rotating magnetized fluid.

STATIONARY CONVECTION FOR FREE BOUNDARIES
Chandrasekhar variation principle

Let us consider the stationary convection mode, i.e. when the system is in a neutral state = 0. In this case, the

problem of the eigenvalues of equations (54)-(58) lies in finding the critical Rayleigh numbers Ra that satisfy the
following equation:

[(132 — i) ((D* = k*)* =0D*) + Ta(1+ Ro)(D* —k*)* D* - TaRoPmQﬁ“}W = (61)
=—k’Ra((D*-k*)’ —QD*)W

with boundary conditions: W = DPW =0 (p=2,4,6,8,10) at z=0.1. According to these boundary conditions, the

even derivatives of the function W at the surface boundaries z =0 and z =1 should become zero.
We formulate the problem of finding the eigenvalues (the Rayleigh number Ra ) of equation (61) using the

Chandrasekhar variational principle. For this, from the system of equations (54)-(58), provided that = 0, we exclude

the perturbations for the components of the vortex f and current g“ . As aresult we get:

L(D* = k*Y*W +QL(D* —k*)DH_ —~NTaDL{ = k*RaL® (62)
L¢ =—Ta(1+ Ro)(D* —=k*)DW —\[TaQ Pr RoD*H (63)
(D’ —k*)H_+Pr™ PmDW =0 (64)

(D> -k*)O+W =0, (65)

where the operator is L = (D* —k*)* —OD>.
We multiply the equation (62) from the left by # and integrate it by z :

1 1 1
jWZ(132 — kY Wdz+0 IWZ(D2 —k*)DH_dz + Ta(1+ Ro) jW(b2 —k)D*Wdz + (66)
0 0 0
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1 1
+TaQPrRo[WDH. dz = k’Ra [WLOdz
0

With equations (64) and (65) taken into account, equation (66) takes the form:
1 2 1
j W (L +Ta(1+ Ro)(D* —k*)D* ) Wdz + IP;LTaQRoj[(DZzLIZ)2 —k*H_D*H dz =
0 m 0
1
= _k*Ra j (D* - k*)OLOdz (67)
0

In equation (67) we carry out partial integration for several times using the boundary conditions of (59). As a
result, we obtain' the expression for Ra , as the ratio of positive definite integrals:

2
Ra=—| 1 +Ta(1+Ro)- I, + *TaQRo 1, | (68)
I Pm

4

where indications for integrals /,,,, > 0 are introduced:

I = j [(D*W)? +6k*(D*W)* +4k*(D*W)* + 4k (DW ) + k*W*1dz +
+20 j [(DW)? +2k*(D*W)* + k*(DW)*1dz + O* j (D*W)*dz,

L= [[(D'W) +k>(DW Yz, I, = [[(D*H.) +k*(DH.)1dz

1
I, = [[(D'©) +3k*(D°0)’ +3k* (DO’ +k°©’ + Qj[(D 0’ +k*(DO) dz.
0

Now we will consider the variation of the Rayleigh number ORa subject to the variations OW , OH s 00 . In the

first order of the variations smallness we get:

1 Pr?
ORa = 3 {é]l +Ta(1+ Ro)-dl, +ﬁTaQR0-&3}—

—| I, +Ta(1+ Ro)- 1, +P—2TaQR 1, d, = (69)
Pm kzlf

{5[ +Ta(l+ Ro)-dl, +P—TaQR0 O, —k’Ra - 67}
k] Pm

Next, we find variations of the integrals d/, , , -

1 1
51, = 2jZZW W dz, 51, = 2]132([)2 — kKW - SW dz,
0 0
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1 1
S1,=2[D*(D* ~k*)H, - 8H.dz, 51, = -2[(D* - k*)LO- 3dz,
0 0

and then we substitute them into equation (69). Using equations (64)-(65) and boundary conditions of (59), we obtain
the final expression for ORa :

2
ORa = X 70
a k214 (70)
l R2 N7 22 12\2 A2 4 P oWdz
X (D" =k )L'W +Ta(1+ Ro) D™ —k”) " D'W —TaRoPmQODW + k" RalLW |- ————
0 (D*—k?)

From the above it follows that ORa = 0 for any arbitrary variation OW # 0 , if
(D> —k*)*W + Ta(1+ Ro)(D* — k*)> D*W — TaRoPmQD*W = —k*RaL W,

i.e. equation (60) is satisfied. Then the function W, by which Ra is expressed (see equation (68)), is a solution for the
problem of the characteristic values of equation (60).

Exact solutions to the problem of characteristic values
We choose a function W , that satisfies the free boundary conditions of (59), in the following form:

W=Wysinnm (n=1,23..), (71)

where W, = const is the disturbances amplitude of z - velocity component.

By restricting to the single-mode approximation (# =1), while substituting (71) into (76), we obtain the
expression for the critical value of the Rayleigh number Ra, of stationary convection:

_ (T’ +k*) N (7t + k)0 N (P + k) Ta N *TaRo((7* + k)’ + °OPm)
¢ k? K k(2> +k°) +7°0) K (7> +k°) +7°0)

In the new variables

Ra (72)

K’ 0 Ta Ra,
xz?, Ql:?’ TIZF’ R1:?,

introduced by Chandrasekhar [1], equation (72) takes the form:

_(1+0)((1+x)*+0) +(1+x)’(1+ Ro)T, + RoPmQT,

R 73
| (1) +0) ™
The function R,(x) takes extreme values for the corresponding x, which satisfy the following equation:
1+x)' —(x* -1 RoPmQ,T,((1+ x)(1+3x)+
2x3+3x2_1:QI+Tl(1+RO)'( x) (X )Ql+ o le 1(( X)( 3X) Ql) (74)

(1+x)°+0)’ (1+x)°+0)’

Figure 4 shows diagrams of the dependence of the stationary Rayleigh number R, , determined by equation (73),

on the wave numbers X = k°/7r” for the fixed parameters of the magnetic field O, and of the rotation 7. Curves

1,2,3 in Fig. 4 correspond to the case of the uniform (or solid-state) rotation Ro =0, and they completely agree with
the results of Chandrasekhar [1].
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Fig. 4. Dependence of the Rayleigh number R, on the wave numbers x = k*/m* for the Rossby numbers Ro = 0 with constant
parameters: curve 1 — O, =40, T, =10°; curve 2~ Q, =100, 7, =10°; curve 3— 0, =200, 7, =10°.

The diagrams in Figures 5 and 6 show the dependence of the Rayleigh number Ra, on 7tk , and are plotted for
different Rossby numbers Ro . The diagram in Fig. 5 corresponds to the parameters Ta =500, O =100 . Here we can

see that with an increase in the positive profile of the Rossby number R0 , the minimum value of the critical Rayleigh
number also increases, i.e. the threshold of the instability development rises. On the other hand, for the negative rotation

profiles: of Keplerian (Ro =—3/4) and of Rayleigh (Ro =—1), we observe a decrease in the critical Rayleigh
number, i.e. a lower threshold of the instability development, as compared to the case of the uniform (Ro =0) and
non-uniform (Ro = 2) rotation. The diagrams in Fig. 6a,b are plotted respectively for Taylor numbers Ta = 10* and

Ta =10’ . From these diagrams it follows that with the rotation increase (Taylor number 7@ ) with a negative Rossby
profile (Ro < 0), no extreme values of the Rayleigh number are observed.
Now let us find out how the inhomogeneous rotation affects the process of stationary convection by calculating the

derivative dR,/dRo :

dR, _ T((1+x)*+Q,Pm)
dRo  x(1+x)’+Q,))

fx)=

Ra
C

8000

6000

4000

2000

0.0

Fig. 5. Dependence of the Rayleigh number Ra, on 7i/k for different Rossby numbers Ro with constant parameters: Q =100 ,

Ta =500. The Prandtl magnetic number is assumed to be equal to one: Pm =1.

The function graph f(x) is shown in Fig. 7. It shows that with the increase in the Taylor number 7; (from 5000 to
10°) at the fixed value of the magnetic field 0, =100, the rate of variation of the value dR,/dRo increases towards

small x (long-wave disturbances ~ k'), which is true for positive values of the Rossby number Ro > 0.
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Ra, Ra,
20000 120000
100000
15000
80000 P o
Ro=0
N Ro=-3/4
10000 60000 S do
40000
5000
20000
o0 ' ' ‘ ' 2 m/k 0.0 0.2 0.4 0.6 0.8 /k
a) 6)

Fig. 6. Dependence of Rayleigh number Ra, on 7'k for different Rossby numbers Ro with constant parameters: a) Q =100,
Ta=10* b) 0=100, Ta =10’. The magnetic Prandtl number is assumed to be equal to one: Pm =1 .
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Fig. 7. The diagram of the dR,/dRo variation rate dependence on the wave numbers x = k*/7z” for different values of the Taylor

number 7, with constant parameters O, =100 and Pm=1.

Fig. 8 shows graphs of variations in the Rayleigh number R, from the value Ro in the interval [-1, 2]. These grahs

show that the rotation with a negative angular velocity profile Ro < 0 has a destabilizing effect on the development of
stationary convection.
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Fig. 8. Dependence of the Rayleigh number R1 on the Rossby number RO for various wave numbers X = ki 7 with constant

parameters: a) Q1 =50, T1 =100, szl;b) Ql =100, T1 =1000, Pm=1.

Without considering the thermal processes, i.e. when there is no preheating Ra =0, from equation (72) we

obtain the threshold value of the hydrodynamic Rossby number Ro for the standard MRI (SMRI) taking into account
dissipative processes (see, for example, [29]):
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a*(a*+7n*Ha’ ) +*a*Ta 2

Ro, = > R p— , a=k+rm
m'Ta(a” + 7 Ha” Pm)
, . , 7’ Ha’ @, rm'Ha’Pm @, Ta 4Q° 7’ )
When turning to the dimensional variables R R 2 — s TT T T 5 y f
a 0,0, a @ a @, " a
we find the expression for Ro,. [29]:
2 2 202
o _ (@i +0,0) +45'Q'g)
cr 2 g2 2
4Q°E (', + @;,)

Therefore, in the extreme case, when Ra = 0, a magneto-rotational instability arises in the inhomogeneously rotating
layer of the electrically conducting fluid in the continuous magnetic field.
Then, using solution (71) from equations (56) and (58) we define the expression for the perturbations of the

magnetic field /7_ and temperature © through amplitude W :

P .
ZZ%J/VOCOMZ, ®=%-sm7zz (75)
Pr(z”+k7) T +k

These solutions satisfy the free boundary conditions of (59). Then we find the expressions for the components of
the vortex é: and current f from equations (55) and (57), which, when using (56), take the form:

(D* = k*)¢ =~JTa(1+ Ro)Pr Pm™ (D* —k*)H_+ODE =0 (76)
(D* —k*)E +Pr PmD{ —~TaPmRoDH . =0 77)

Acting on equation (76) by operator D? —kz, and on equation (77) by operator Q[) , and then subtracting one

equation from the other, we’ll find the equation for the current g“ :
[(D*=K*Y =QD* |¢ —Ta(1+ Ro) Pr Pm™(D* —k*Y' H, +NTaQPrRoD’H. =0 (78)
Substituting the solution for /_ from equation (75) into this equation we get:

_ aNTa(1+ Ro)(x* +k°)’ + m’\TaQPmRo
(7> + 1) (7> + k) + 7°0)

4

W, cosmz (79)

Now we proceed to the definition of the equation for the vortex component f from equations (76)-(77). For this, we act

on equation (76) by operator Pr™' Pm , and on equation (77) by operator D> —k* , then subtracting one equation from
the other, we find the equation for é: :

[(D*=k?)’ =QD* | +/Ta (1+ Ro(1- Pm))(D* —k*)DH. =0 (80)
Similarly, for this equation too, using the solution for /_ from (75), we obtain:

7°NTa(1+ Ro(1— Pm))Pm
((7[2 +k°) + 7Z'2Q)Pr

63:_

W, sinmz (81)

The obtained expressions (79) and (81), respectively, for the components of the vortex and of the current, satisfy
the boundary conditions of (59).

Topological characteristics of stationary solutions
Note, that the stationary solutions obtained above for the hydrodynamic (W,§ ) and magnetic (H_, ; ) fields

have a non-trivial topology. The average hydrodynamic helicity H e vrotvdV has the meaning of a measure of
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“knotting” of the velocity field V and, similarly, the current helicity H_ = Iérotéd V' is defined as a measure of

“knotting” of the magnetic field force lines B [45]. We calculated the helicity of H < and H_ for the deterministic

fields (of the velocity and magnetic field) of stationary roll convection with averaging over the whole layer
volume (V). As the calculations show, the current helicity H_ has an opposite sign relative to the hydrodynamic

helicity Hg , and as a result, stabilizes the operation of the dynamo [46] due to generation of the hydrodynamic helicity

by rotating the electrically conductive fluid.

The hydrodynamic helicity plays an important role in & -effect onset, due to which large-scale magnetic and
vortex fields are generated (see, for example, [6]). In the theory of turbulent dynamo [45] the mean helicity of the
velocity field is the result of averaging over the ensemble of realizations of a random field in the given volume of fluid.
Helicity naturally arises in the turbulence of a rotating body. The physical mechanism of the helicity origin is described
in [47] by the example of the the Sun convective zone. In the northern hemisphere of the convective zone, the rising
substance will expand and rotate under the action of Coriolis forces, resulting in a left-handed spiral movement. The
sinking substance is compressed, and under the action of Coriolis forces is forced to rotate in the opposite direction, also
making a left-handed spiral movement. It is obvious, that in the southern hemisphere the right-handed spiral movements
will prevail. The uncompensated right-handed and left-handed movements lead to non-zero helicity. In other words, the
properties of the turbulent velocity field are non-invariable with respect to the parity transformation, i.e. transition from

the right coordinate system (X, y,z) to the left one (—x,—y,—z) (reflective non-invariance of the field Vv ). The

O -coefficient estimate values for the conditions of the Sun convective zone range from a few cm/s to 10* cm/s, what
means a greater degree of uncertainty when transferring the results of the calculations for the dynamo models to the real
solar conditions [48-49]. However, as the astronomical observations show [50], the Sun convective zone has an evident
orderliness, i.e. a developed cellular structure of different scale. In [49] a numerical simulation of cell-like flows, which
are similar to the really observed ones, were carried out, what allowed calculating directly the velocity field average
helicity. The helicity was averaged in [49] over the volume, and not over the ensemble of realizations, as long as the
velocity field in such a formulation of the problem is deterministic. The analysis of the helicity of such quasi-ordered
convective flows can reduce the spread in the estimate values, which are used in the theory of the medium fields
dynamo.

Thus, the results of the calculation of the average hydrodynamic and magnetic helicity of stationary fields give all
grounds for the development of the theory of convective dynamo in a non-uniformly rotating conducting medium with
the external magnetic field.

WEAKLY NONLINEAR STAGE OF STATIONARY CONVECTION
To describe the nonlinear convective phenomena in the inhomogeneously rotating layer of the electrically

conducting fluid, it is convenient to turn from the cylindrical coordinate system (R,,z)to the local Cartesian
(X,Y,Z)one. If we consider a fixed region of the fluid layer with a radius R,and angular velocity of

rotation ) = C(R,), then the coordinates X = R — R correspond to the radial direction, ¥ = R (¢ —¢,)- to
azimuthal, and Z = z - to vertical (see Fig. 9).
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B, X]y

T h —/ U

u QO
Y L O
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Fig. 9. a) Cartesian approximation of the problem for a non-uniformly rotating magnetic convection, inhomogeneous rotation in the

local Cartesian coordinate system consisting of rotation with constant angular velocity Qo and shearing velocity U, 0 || OY ;
b) Scheme of the shear flow in rotating flows, the flow being approximated in the local Cartesian coordinate system as a linear shift
with velocity U 0 (X)), with the value of the flow being limited by coordinates X € [0, L]and Z € [0, /], and by coordinate

Y being unlimited.
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In this case, the fluid layer inhomogeneous rotation can be represented locally as the rotation with the constant

angular velocity Qo and azimuthal shear [51], whose velocity profile is locally linear (70 Z—qQOXéy, where
q=—-dInQ/dInR is the dimensionless shear parameter, determined from the profile of the angular velocity of

rotation Q(R) = Q (R/R,)™?. The shear parameter ¢is bound up with the hydrodynamic Rossby number
R 0Q

o= 20 3R by the relation ¢ =—2Ro. Note, that the accretion disks with a shear parameter ¢ = 3/2

(Ro =—-3/4) correspond to the Keplerian disk, ¢ =2 (Ro =—1) corresponds to the disk with a constant angular

momentum or the Rayleigh rotation profile. The case of¢ =1 (Ro =—1/2) corresponds to the system with a flat

rotation curve, and that of ¢ =0 (Ro =0)- to the homogeneous (or solid- state) rotation with a constant angular
velocity.

The equations for the perturbations of the velocity © = (u,V,w) of the magnetic field b= (1,v,W) and the

temperature & in the local Cartesian coordinate system take the following form:

oii ou 1 e
——qQ,X — B,V)b +(bV)b )+ g B0 +W*ii
o AN 4ﬁpo(<o) (bV)b )+ g f0¢ + Wil
ob a” o5
a——qQ X =——(B,V)ii - (bV)U +@@V)b = (bV)ii =1V’b (82)
%f qQ Xg—9+(uV)T +uV)8= Vo
divii =0, divb =0
b* , bB,
here the pressure p includes the perturbed magnetic pressure p, = 2 Ar
T

Like in the previous sections, we will consider the dynamics of axisymmetric perturbations, when all the perturbed
quantities in equations (82) will depend only on two variables (X, Z). In this case it is convenient to represent the

vector fields i and b by scalar stream functions ¥ and @

d 0 .0 . 0d
yo OV Ly L 99 o 0p
0Z oX oZ oX
For convenience, in equations (82) we turn to the dimensionless variables, which we mark with an asterisk.
2

(X, Z)=h(x", =) t= " = 0" 6= hB,F, v =%v*, 5=B7, 0= 46’
1%

and performing some simple mathematical operations, we obtain a system of nonlinear equations for the
inhomogeneously rotating magnetoconvection [36]:

9_ sz/jvzgﬁ VTa w_ Pr Pm-‘inzgz) Ra 96 _ PrPm™'Q-J(¢,V’@)—Pr™"- J(v,Vy)

ot 0z 0z ox

J 2 Iy a0V -1 ~ -1

—-=V* v—~Ta(1+ Ro)——-PrPm  Q—= PrPm Q- -J(¢,v)—Pr - J(w,v)

ot 0z 0z

9 Pm1V2j¢ —-Pr! W__ Pr' J (v, 9)) (83)
ot 0z

9 pm “Vz) 24 RoTa 22 = P (U () - (1. F)

ot 0z 0z

d w2 Loy -1
—=Pr V' |§-Pr —=-Pr J(v,0
(81 r j r . r J(v,0)
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In equations (83) the asterisk is omitted. In the absence of the thermal phenomena, the system of equations (83) was
used to study the nonlinear saturation mechanism of the standard MRI [52]. The system of equations (83) is
complemented by the following boundary conditions:

w=vy=0. -0 =0, 9L-0, 9=0 npu z-=0,
dz z
W=V =0, d—izo, 5=0, d—fzo, =0 mpu z=1. (84)

Further, we apply the system of equations (83) and boundary conditions of (84) to study the weakly nonlinear
convection mode.

Equation of finite amplitude for the stationary convection
The weakly nonlinear theory of convective instability describes the evolution of perturbations of not too high, but
finite amplitude. The small amplitude of convective cells is superimposed on the main flow. If this amplitude is of the

0(81) order, then the interaction of cells with one another leads to the second harmonic and to nonlinearity of the
order O(£), and then to nonlinearity O(£”), etc. Here the nonlinear terms in equations (83) are considered as a
perturbed response for the linear convection problem. In this case the Rayleigh parameter Ra , which controlls the
convection is close to critical Ra,, i.e. to steady state of convection. The influence of the unstable modes is small, and

therefore our task is to obtain equations describing the interaction of these modes. The general scheme for formulation
of the weakly nonlinear theory is as follows. Since the small parameter of our problem is the relative deviation of the

Rayleigh number Ra from the critical value Ra,. :

E :—C<<1’
Ra,

then all the perturbed values ¥ in the equations of the type LV =-N (V'|V') are represented as a series in the
perturbation theory:
VoeV+er®+ey®+ ..

where N(V'| V') are the nonlinear terms.
The equations for the perturbations in various orders of £ take the form:

e Loy —o,
82 :Z(O)V(Z) - _N(V(l) | V(l))

83 . Z(O)V(3) _ _Z(Z)V(O) _ N(V(l) | V(z)) _ N(V(Z) |V(l))

The condition for solving this chain of nonlinear equations is known as Fredholm’s alternative (see, for example, [53])

<V*,R.H.> =0 85)

Here V' is a non-trivial solution of the linear self-adjoint problem Lvt= 0, where Lisa self-adjoint operator,
which is determined from the following relation:

<V*,EV> = <ZTVT,V>, (86)

where <,> is the inner product, which here has the following definition:

| 27k,

(f.g)= [ f-gdxd,

z=0 x=0

R.H. are right sides of the perturbed equations with nonlinear terms. We apply these general principles of solving
nonlinear equations to our problem. For simplicity we will take into account the nonlinear terms in (83) only in the heat
balance equation. As will be shown below (see Appendix), this approximation is equivalent to the application of the
Galerkin approximation of the minimal order (118) to equations (83). We represent all the variables in equations (83) as
an asymptotic expansion:
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Ra=Ra,+&Ra, +&*Ra, +...
Y=Y, +EY, +EW, +...
V=6, +EV, +EV, +... (87)
P=EG+EG+ED +...
V=€V +EV, +ET, +...
0=¢£60,+£6,+£6,+...
We assume that the amplitudes of the perturbed quantities depend only on the slow time 7 = et. Substituting the

expansion of (87) into the system of equations (83), we solve it for different orders of £ . In the lowest order, we get the
equation:

LM, =0, (88)

where M, =| ¢, |, L is the matrix operator of the form:

i
L 91 i
—V* Jia 2L —pmpr inz 0 —Ra, 9
0z 0z ox
—JTa(1+ Ro)i —V? 0 —Pm™' Pr Qi 0
0z 0z
- ~Pr™ 9 0 —Pm™'V? 0 0
L= 0z
—1 a \/_ a —-1y72
0 —pr = RoNTa— —Pm~V 0
0z 0z
—Pr! i 0 0 0 —Pr'V?
X

The solutions of the system of equations (88) with the boundary conditions of (84) have, respectively, the form:

: : A7)k . A(T)7Pm .
v, = A(t)sink xsinnz, 6, = (Tz) “cosk.xsinmz, ¢ = wsmkcx COS Tz,
a a” Pr
. A(0)x’NTa(l+ Ro(1— Pm))Pm . :
v, =— (D)7 VTa( 7 Og m)) msmkcxsmzzz,
Pr(a” +7°Q)
A(t)zTa (1+Ro)a’ +°0PmRo .
v, = (T)”Z a ( O)Z fQ m Osmkcxcosm, a =k +7. (89)
a a +r°Q

The amplitude A(7) is still unknown. The critical value of the Rayleigh number Ra,_for the stationary

magnetoconvection in a non-uniformly rotating electrically conducting medium is found from the first equation of the
system (88) and has the form of formula (72) obtained in the linear theory:

Ra — (7> +k2) N (m* +k)HQ 7 (m*+k})’Ta w*TaRo((7” + k)’ + °QPm)
‘ k! k! k(7 + k2 +7°Q) (7 +kD)+7°Q)
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For the second order of £, we have the following equation:

LM,=N,, (90)
_‘//2 | _N21 |
V2 N,,
where M, =| @, |, N, =| Ny |3 Ny =Np=Ny=N, =0,
v, Ny,
L o, i _st i
st — _Pr—l|:al//1 ael _% an j|.
ox dz Jdx Oz
Using solutions of (89) and boundary conditions of (84), we find solutions to equations (90):
A(DK] . g
v,=0, 6,= —L)zcsmﬁﬂz), ¢ =0, v,=0,v,=0. 91
a

To analyze the intensity of the heat transfer, a horizontally-averaged heat flux is introduced at the boundary of the layer
of electrically conducting fluid (Nusselt number):

27k,

k. J~ (aﬁzjdx
- _27[ L\ 0z | Ko,
NM(T) =1+c T = =1 +4—2A (T) (92)
k (9T, a
¢ I — ldx
2r 5 \ oz
L dz=0

The heat flow intensity (of Nusselt number) will be analyzed after the expression for the amplitude A(7) is obtained.
For the third order of € we find:

LM, =N, , (93)
_‘//3_ _NSI—
" N d 26 A(7) k2 A(7)
where M, =| @, |,N;=| Ny; |; Ny, =——V21//1+Ra2—1= a’ —Ra,——; sink_xsin 7z,
_ ot ox ot a
Vs Ny,
L6, | Nss |
4 2
N, = oy ﬂ'«/zTa (1 +R0)cj +7§ OPmRo JA(7) sink xcos
0T a a +rnQ 0T
N, = 9% __ 7z'2Pm 94(@) sink_xcosmz
or a Pr 01
~ 2 _
N, = 9V, _ 2 NTa(1+ Ro(1-Pm))Pm 0A(7) sink xsin 7z,

or Pr(a’ +7°0) T
N, :_%_Prl[ava 96, 96, oy, oy, 06, 94, 8%}:

ot Ox dz Ox 0z Ox dz OJx Oz
-173
= —k—gwcos k. xsinmz+ Pr Zk" A’(T)cosk xsin 7z cos 27z.
a~ dt 4a
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The solvability condition (an alternative of Fredholm) for the equations of the third order 0(6‘3) is found from
equation (85):

1 Zﬂ/kE
[ [ [Pvl R, +RaPO-R,+QP*Pm™ PV - R+, - Ry, |dxdz=0, (94)
z=0 x=0

where indcations are introduced

~ 0’
P=(1+Ro)V* —QPmRoa7,R31 =N,,R,=N,,R,=N,,
J I’N
R,=-V'N,+ QPrgVZNM ++TaQPmPrRo 2233 :
The expressions for I,U;r , 6’;, @T, vr are determined from the solution of the linear self-adjoint problem L'M IT =0:
) . . . A0k, . . A(D)wPm .
v = A(T)sink xsinzz, 6! =—-———“coskxsinz, ¢ =-—-——sinkxcoszz,
a a” Pr
A()aNTa (1+Ro)a* +7°QPmRo .
v =— (T)ﬂ; a (+Ro)a +m OPmRo sink,x cos 7zz.

a a*+7°0

The matrix M| has the form M, = (] ,60],¢,v))" and L' is a self-adjoint matrix operator:

—v* Racﬁi Pm™' Pr Qﬁi v JrapZ
ox 0z 0z
Racﬁi —Ra_PV* 0 0
ox
L'=| pm'pr Qﬁai Vv’ 0 —QPrPmPV* 0 ()
Z
2
Ny 0 0 vioL v
0z 0z

When performing integration in (94), we obtain a nonlinear equation for the amplitude A(7), which refers to the
Ginzburg-Landau equation or the Bernoulli differential equation with constant coefficients:

A a—A—A2A+ A4,4=0 (96)
or

Here the constant coefficients A] ,5 have the form:

_ & KRa,_2°QPm_mTa((1+Ro)a" +°QPm(RoPm=1))  z*TaRoQPm’

A =—+—-—= - > (97
"'pr 4 a’ Pr (a* +71*0)* Pr a*(a* +m*0Q)Pr e
4= kfRa2 _ kfRac
&P’ 7 satpr

The equation of the form (96) was obtained in many papers, where the weakly nonlinear mode of stationary
convection was studied (see, for example, [14-20]). In contrast to these works, in our result (96) the non-uniform
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rotation (Ro # 0) of the electrically conducting fluid was taken into account. The analytical solution of equation (96)

with a known initial condition Ao = A(0) can be obtained using the Lagrange method (variations of the constant):

A() = A %)
A4 , A 274
D 1-a2 % |exp| -T2
(o ool 25

Assuming the initial amplitude to be equal to 4, =0.7 and Ra, = Ra,_, by using the solution of (98), we can

determine the variation in the heat transfer (of Nusselt number Nu ) with time 7 . The diagram of dependency Nu(7) is
presented in Fig. 10. The diagram clearly shows the establishment of the final value Nu(7) due to the relationship
between the number Nu(7) and the amplitude A(7) (see equation (92)). The excess of number Nu over the unit is
caused by the convection occurrence. Fig. 10 shows that in the course of time the heat transfer intensity proceeds most
smoothly for the case of the non-uniform rotation with a negative profile (Ro < 0). Fig. 11 presents the diagram of the
Nusselt number Nu versus the Rossby number Ro . Here we see (curves 1-4) that the heat transfer intensity increases
in the direction of positive Rossby numbers ( Ro > 0).

Nu

3.0

25

2.0
Ro=2
———————— Ro=0
18 — — — — Ro=-3/4
................... Ro=-1
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 T

Fig. 10. The dependence of the Nusselt number N on time 7 for different values of Rossby numbers R0 with constant
parameters: O, =80, T, = 10°, R,=9500, Pm=1, Pr=10.
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Fig. 11. Dependence of the Nusselt number Nt on the Rossby numbers R0 with constant parameters: Q1 =80, Tl = 105 ,
Rl =9500, Pm=1, Pr=10;1,2,3,4 curves correspond to times 7 = 0.1,0.3,0.5,1.
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CONCLUSION
Applying the Lyenard-Shepard algorithm, we obtained the stability criteria for the inhomogeneously rotating
plasma in the axially uniform magnetic field with a vertical temperature gradient under the condition of weak
stratification. This problem was also investigated for thin rotating layers of the magnetized fluid with different
temperatures on the layer surfaces (the Rayleigh-Benard convection).
A linear and weakly nonlinear theory of stationary convection in the non-uniformly rotating electrically
conducting fluid in the axial magnetic field was developed. In the linear approximation, or in the first order in the small

parameter of supercriticality of the Rayleigh number &€ = \/ (Ra—Ra, )/Rac , we obtained an expression for the
critical Rayleigh number Ra_ , which in the limit of the uniform rotation Ro =0 coincides with the known results of

Chandrasekhar [1]. In the absence of the temperature gradient (Ra =0) we obtaine the known criterion for MRI

occurrence [29]. The case of the negative profile of the inhomogeneous rotation Ro < 0 leads to some decrease in the
instability threshold, and thus has a destabilizing effect on the instability development. And on the contrary, the positive
rotation profiles Ro > 0 increase the critical value of the Rayleigh number, thus making a stabilizing effect on the
convection development. In the third order of £, we obtained the nonlinear Ginzburg-Landau equation, describing the

evolution of the perturbation amplitude A(7) . The analysis of this equation solution has shown, that the flow intensity

increases with the medium rotation at the positive Rossby numbers Ro > 0 . In addition, it is shown that the weakly
nonlinear convection, based on the equations of the six-mode (6.D) Lorentz model from [36], is transformed into the

identical Ginzburg-Landau equation.

In conclusion, we note, that the helicity properties of the stationary fields (vortex and magnetic) create
preconditions for the development of the theory of convective dynamo in the rotating conducting medium with the
external magnetic field and shear flow.

APPENDIX

DERIVATION OF GINZBURG-LANDAU EQUATION FROM 6D-LAURENTZ EQUATIONS
In [36] the nonlinear system of equations (83) was solved by the Galerkin method utilizing the minimal order

expansion in X and z - directions for the values ¥, @, v, ¥ and 6
w(x,z,t) = A(t)sin(kx)sin(zz),
v = E(t)sin(kx)cos(mz),
#(x,z,t) = B(t)sin(kx)cos(mz), (99)
v = F(t)sin(kx)sin(rzz),
O(x, y,t) = C(t)cos(kx)sin(mz) + D(t)sin(27z),

where k = 27th/L is the dimensionless wave number, L is the typical layer length in the horizontal direction, and A4 ,

B, C,D, E, F arethe amplitudes of the perturbations. As a result of expansion of (99) substitution into equations
(83), with the properties of the functions orthogonality taken into account, we obtain the Lorentz equations for the six-
dimensional (6D) phase space [36]:

X=-X+RY-TV-HU

V=-V+HW+~Ta(1+ Ro)X

U=-Pm'U+Pr'Xx

W =—Pm™W — Pr’'V + RoNTaU (100)
Y=Pr'(-Y +X - X2)

Z=Pr'(—yZ + XY)

where a dot above denotes the time differentiation 7 = a’¢. For convenience, the following indications are introduced
into (100):
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k*Ra 7\ Ta > OPr 47’
R= 6 2 T= 6 T i o VT3
a a a Pm a

and amplitudes A, B, C, D, E, F were rescaled in the form:

. KE(®) _kB(D) 7k
X(t)= \/7 7 U( N I (t) = 71_\/517(1),
7C(t)

Y(7) = ,Z(T) = -nD(0).

V2

Following the method of [54], we represent all the perturbed values in equations (100) as an expansion into a
series in the small supercriticality parameter of € :

X=X, +&X,+X,+..., X=[X,V,UW,Y,Z]" (101)
R=R,+€&R, +...

The amplitudes of the perturbed quantities depend only on the slow time 7 = £%f . For the first order of &, after
substituting expansion (101) into (100), we obtain a linear system of equations:

LX,=0,X, =[X,,V,,U,W,,Y,Z]", (102)
where L matrix has the form:
-1 =T -H 0 R, 0
JTa(1+Ro) -1 0 H 0 0
Pr' 0 —Pm™ 0 0 0
L= 0 —Pr' RoNTa -Pm™ 0 0
~Pr! 0 0 0 P 0
0 0 0 0 0 —yPr

The solutions of equations (102) have, respectively the form:

\JTa((1+ Ro) Pr+ HRoPm® ) m _~NTaPm(1+Ro(1-Pm))
Pr+ HPm Ao K Pr+ HPm

Tr

X,,X,,0| (103)

X, =] X,
For the second order of €, we have the following equation:
_ Tr _ Tr
Xz o [9{21,9322,9?23,9’{24,9{25,9’(26] =Xz B [X2=IGJU2:VV;:)2922] > (104)
where the nonlinear terms have, respectively, the form:
— — — _ _ -1 _ p.-l
R, =0,%,=0,%,=0,%R,, =0,R,, =—Pr' X,Z, K, =Pr' X,¥.
The solutions of equations (104) have the form:

Tr

JTa((1+ Ro) Pr+ HRoPm®) v Pm JTaPm(1+ Ro(1- Pm))

1
X, =|X,, —X,,— X, X,,—X; (105)
Pr+ HPm Pr Pr+ HPm V4
Next we turn to the equations of the third order of £ :
X, = [ERM,9{32,%33,%34,%35,9{36]T",X3 =[X,,73,U;5, W3>Y3>Z3]Tra (106)

where the nonlinear terms have, respectively, the form:
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0X v, oU. W,
R, =——+RY, R, :_a_f_lamn a~1 Ry, a_f-l’
9{35 = —Prfl()(lz2 +X221),5R36 = —%+Prl(XlY2 +X,Y).

The condition of solvability (Fredholm alternative) of the nonlinear equations (106) in the third order of €, according
to the definition in (91), has the following form:
5
T
ZAijl B
J=

(107)

where

A, =TIPr" (ai—R Y,
o7

j,HZ\/Ta (1+RO+HRO

Pm?*
pPr )
0Z

o, al+P—1(XY +X,1),

A,, =TIR, 5 MR, Pr (X, Z, + X,Z,),Ay; = —

A
T

I
T

I A=
ot
The elements of the matrix XlT =[)(;r ,YlT,ZlT,U;r ,VlT ]Tr are the solutions of the linear self-adjoint problem

L'X]

— THRoPm*\Ta Pr™ aal{ .
T

A, =—HITI ~TPr' —L—THPmPr™

= 0, where the self-adjoint matrix L' is determined as:

[ TP —RIIPT 0 HTIPr™ TP ]
—-RJIIPr"  RJIIPr" 0 0 0
e 0 0 —yPr 0 0
HTIPr™! 0 0 —-Pm'TIH 0
TTIPr™' 0 0 0 ~(1+ HPmPr )T Pr™'

From equation (107) we get a non-linear equation for amplitude A(7), here the equation completely coincides

with the Ginzburg-Landau equation (96):
04

A a——AzA +A4,4° =0 (108)
Here the type of coefficients 1611’2’3 completely coincides with expressions (97). When deriving equation (108), we
. N o - 9d _19
utilised the relationship of the rescaled derivative over the slow time: 7 : ? = _28_
T a T

Thus, applying the asymptotic expansion of the perturbation theory to the (6) Lorentz equations (100), we

obtained the Ginzburg-Landau equation, which is identical to equation (96) obtained in the weakly non-linear theory for
the finite amplitude.
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