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The paper considers a cosmographical approach to analyze cosmological models. Cosmography is a method to describe the
kinematics of the cosmological expansion based only on the cosmological principle. We consider a method of treating free
parameters of a cosmological model in terms of the directly observable cosmographic values related to the time-derivatives of the
Hubble parameter (deceleration, jerk, snap). The method is applied to analyze two cosmological models involving the time-
dependence of the cosmological constant in the form A(t) - A(H) when this approach is especially efficient. Both models interpret
the dark energy in the form of the cosmological constant A as energy of physical vacuum, which is currently the most supported
treatment. The first one means A being proportional to the Hubble parameter, and the second one involves a constant and a quadratic
term. As a result, the free parameters of both models are expressed in terms of the currently observed values of the Hubble parameter,
deceleration, and jerk. The obtained expressions for model parameters are exact, as the method does not involve any additional
assumptions. Furthermore, it leads to deal with algebraic equations instead of differential ones. After this procedure, solutions of the
evolution equations are obtained in the form of the time-dependence of the Hubble parameter. The obtained model parameters are
substituted to the solutions, which are analyzed for a typical range of cosmographic scalars taken from recent observations. Finally,
the proposed approach is used to eliminate free parameters from both models and to obtain constraints for the directly observable
cosmographic values that can be tested to correspond to present observations data. For the considered cases, such constraints are
received respectively for the jerk and the snap parameters with respect to the deceleration. The constraint for the linear model is
compared with current observational value ranges for the deceleration and the jerk parameters.
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KOCMOTPA®IA JHHAMIYHOI KOCMOJIOTTYHOI KOHCTAHTH
O. IBamiTeHko
Xaprxiecokuil nayionanvuutl ynieepcumem im. B. H. Kapasina, Xapxkis, Yxpaina
m. Ce0600u 4, m. Xapxis, Ykpaina, 61022

VY wiif po6GoTi po3rasgHYTO KOCMOrpagidHUi MigXiZ [0 aHamizy KocMomoriyHmx mozeneid. Kocmorpadis — me cmoci® omucy
KiHEMaTHKH KOCMOJIOTIYHOTO PO3ILMPEHHs, M0 0a3y€eThCs JIMIIE HAa KOCMOJIOTIYHOMY MpPUHLMII. MU PO3IIIsSAaEMO METOH, SIKMA
MOJISITA€ Y BUPAKCHHI BUIBHUX MapaMeTpiB KOCMOJIOTIYHOI MOZIENI B TepMiHaX KOCMOTpadiqHUX BEIMYHH, OB’ I3aHUX 3 MOX1THIMU
3a yacoM Bija mapamerpa Xabmia (q, j, S), 110 AOCTYIHI st 6e3nocepenix crocrepexenb. Crocid 3acTOCOBAHO Ul aHAIIIZY JABOX
KOCMOJIOTIUHHX MOJIEIIEH, 10 BKIFOYAIOTh 3aJIeKHICTh KOCMOJIOTIUHOT cTanoi Bix acy y popmi A(t) —» A(H), Koim Takuii miaxin e
ocobunBo edexTrBHUM. OOUIBI MOJEINi TPAKTYIOTh TEMHY €HEprilo y (opMi KOCMOJIOIi4HOi KOHCTAHTH A SIK eHeprito (i3n4HOro
BaKyyMy, 110 Hapasi siBJisie cO00I0 HaHOLIbII po3noBCIOpKeHui miaxin. [lepura Moaens Biodae B cebe NiHIMHY 3anexHicTh A Bif
napameTpa Xabia, a Jpyra MiCTUTh KOHCTAHTY Ta KBaApaTW4HMIl 3a H j0AaHOK. B pesynbrari BiIbHI mapameTpu 000X MoJenei
BHPAXCHO Yepe3 TIOTOYHI 3HAUeHHSI KOCMOTpadiYHNX BEIWYHH, SIKI MOKYTh OyTH OTpHUMaHi 31 crocTepexenb. OTpuMaHi BUpa3H IS
MOJIEJIBHUX TIapaMeTpiB € TOYHHMMHM, OCKLIBKM METOJ HEe BHMArae HisSKHX J0JaTKOBHX HaOmmwkeHb. OKpiM TOro, BiH JO3BOJISIE
MPALIOBATH 3 aNreOpaiuHIMU PiBHIHHAMH 3aMiCTh qudepeHiifauX. [1icast mporo pilieHHs eBOMIOUIHHUX PIBHSIHB 3HAWICHO y GopMi
3aJIeKHOCTI Bif yacy mapamerpa Xabma. OTpuMaHi mapaMeTpd MOJENCH MiJCTaBICHO IO PillleHb, SKI MPOAHATi30BaHO IS
XapaKTEepPHOTO Jiama3oHy KOcMOrpagiqHUX BEIHYHH, B3TOTO 3 HEMIOJABHIX CIOCTEPEkKEHb. Bpemri pemr, 3arponoHoBaHni MiIxiz
JI03BOJIsIE BUKJIIOUMTH BiJIbHI MapameTpu 3 000X MoJeseil Ta OTpUMaTH 3B’SI3KM Ul KOCMOrpad)iyHUX BEIMYHUH, 10 MOXKYTb OyTH
OTpUMaHi 3i criocTepexeHb. BoHM Hagami MOXXyTh OyTH IPOTECTOBAHI HA BiIIOBIJHICT Cy9aCHUM €KCIIEPHIMEHTAIBHUM JaHuM. J[i1s
PO3TIISIHYTHX BHITQJKIB TaKi CIiBBIHOIICHHSI OTPUMAaHO BiJMOBIIHO /TS apaMeTpiB j Ta s BifHOCHO mapaMerpy . OOMexeHHs st
JIHIHOT MOJIeNTi TOPIBHSIHO 3 MOTOYHHMMHU Jlialla30HaAMH 3HAYCHB JIJISI [IUX ITapaMeTPIB 31 CIOCTEPEIKEHb.

KJIFOUYOBI CJIOBA: kocmorpadisi, kocmorpadiuHi mapameTpu, KOCMOJIOTIYHa cTana

KOCMOT'PA®USA JUHAMUYECKON KOCMOJIOT MYECKOI MOCTOSIHHOM
A. UBamitenko
Xapvroeckuul nayuonanvnvii ynusepcumem umenu B. H. Kapasuna, Xapvkos, Yxpauna
nn. Ce0600wi 4, 2. Xapvros, Ykpauna, 61022
B pabore paccMoTpen kocMorpapuyecKuii moaxo/] K aHaIU3y KOCMoJornueckux mojeneid. Kocmorpadus — 31o crocod omucaHus
KHHEMAaTHUKH KOCMOJIOTHYECKOTO PACIIUPEHHs, OCHOBAHHBIH TOJIBKO Ha KOCMOJIOTHYECKOM MpHHIHIE. MBI paccCMaTpuBaeM METOJI,
3aKITIOYAIOIINICS B BBIPAXKCHUU CBOOOHBIX MAPAMETPOB KOCMOJIOTHYECKUX MOJICNICH B TEPMHUHAX HEMOCPEACTBECHHO HAOIOIACMbIX
KOCMOTpa()U4ecKuX BEJIMYMH, CBSA3AHHBIX C MPOM3BOAHBIMH IO BPEMEHH OT mapamerpa XaObma (mapameTpsl ¢, j, S). Meron
NPUMEHEH IS aHAIM3a JBYX KOCMOJIOTMYECKHUX MOJIENEH ¢ KOCMOJIOIHYECKON KOHCTAHTOM, 3aBUCSIEN OT Bpemenu B popme A(t) —

A(H), xoraa 3TOT moaxoa ocodeHHO dpdekTuBer. O0e MOIEIU MHTEPIPETHPYIOT TEMHYIO SHEPTUI0 B (hOpME KOCMOIOTHYCCKON
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MIOCTOSIHHOM A Kak dHepruro (U3MYEeCKOro BaKyyMa, YTO B HACTOSIIEE BPEMsI SIBISICTCS CaMbIM PAacHpOCTPaHEHHBIM MOAXOJOM.
[lepBass Momenb paccMmaTpuBaeT JUHEHHYIO 3aBUCHUMOCTh A OT mapamerpa Xa0O6ma H, a BTOpas BKIIOYAeT KOHCTAHTY U
KBazpatuyHoe 1o H crmaraemoe. B pesynprate cBoGOAHBIC ITapaMeTPhl 00SHX MOJENeH BEIPaXKEHbI B TEPMUHAX TEKYIINX 3HAUCHUIT
KocMOrpa)MyecKuxX HepeMeHHbIX. [10ayueHHbIC BBIPKCHHUS I MOJCIBHBIX APaMETPOB SBIISIOTCS TOYHBIMH, TAK KaK METOJ HE
TpeOyeT HUKaKHX JOIOJIHUTEIbHBIX puommkennii. Kpome Toro, on no3BosseT padoTaTh ¢ aare0pandeckuMu ypaBHEHHSIMH BMECTO
b depentmanbHbIx. TTociie 3TOro penieHns YBOIIOMOHHBIX YPaBHEHHI HalieHbl B ()OpME 3aBHCHMOCTH OT BPEMEHH MapameTpa
Xab66uma. [Tomy4yeHHbIe mapaMeTphbl MOJIeJIel OACTABICHbBI B PEIICHUs], KOTOPbIEe TPOAHaIM3UPOBAHbI Ul XapaKTepPHBIX JUalla30HOB
3Ha4YeHMII KOCMOrpaM4YecKuX MapaMerpoB, B3SATHIX M3 HENaBHMX HaOmoaeHuid. HakoHel, MpeioeHHbIH IT0JX0/ MO3BOJISCT
UCKJIIOYUTh CBOOOIHBIC ITAPAMETPhI M3 00EUX MOJIEICH 1 MOTYYHTh CBSA3HM Ha HAO/II01aeMble 3HAUCHHS KOCMOTPa)MueCKUX BEJIMUYMH,
KOTOpBIE MOTYT OBITh HPOTECTHPOBAHBI HA COOTBETCTBHE C COBPEMCHHBIMH HAOIIONATEIBHBIMU TaHHBIMHU. J[I1 pacCMOTpEHHBIX
CIIy4aeB TaKHE CBS3M IOJY4YEHbl COOTBETCTBEHHO I MapaMeTpoB j M S IO OTHOIIGHHIO K mapameTpy (. CooTHomieHue s
JTMHCHHON MOJIEN CPAaBHUBACTCS C TEKYIINM HAOJI0[aeMBIM JMAIla30HOM 3HAUCHUH ATUX BEINYUH.

KJIOYEBBIE CJIOBA: kocmorpadus, kocMorpaduueckue napamMmeTpbl, KOCMOJIOIHYecKast [I0OCTOSHHAsT

The Standard Cosmological Model (SCM) [1] describing a homogeneous and isotropic spatially flat accelerating
expanding universe is in a good agreement with a huge number of the observational data [2]. The accelerated expansion
in this model is generated by a substance with the negative pressure, named the cosmological constant (CC). SCM
succeeded to resolve the main problems of the previous cosmological model (the Big Bang model) [3].

However, the great success of the SCM for which it even got a name Cosmic Concordance should not be
misleading. The Cosmological model whereby our world consists 95% of entities of unknown nature (the dark
energy ~70%, and the dark matter ~25%) can be only an intermediate stage on the way to understanding the structure
of the Universe.

The lack of the information on the nature of main components of the Universe energy budget significantly
increases the number of possible ways to describe the cosmological evolution. The transfer from the cosmological
constant to dynamical forms of the dark energy is one of the most popular ways to generalize the SCM. The simplest
example of this type models is given by models with decaying vacuum. These models assume the energy exchange in
the dark sector.

The relation between the components will lead to the modification of evolution of the Universe. Particularly, the
dark energy density (in the form of cosmological «constant») will not remain constant. Such a modification vastly
expands the possibilities of the model and allows resolving a number of conceptual problems of the SCM, in particular
the problem of cosmic coincidence [4]. Unfortunately, as it often happens when introducing a new model, a serious
universal problem occurs in determining parameters of the model.

This problem can be resolved by reconstruction of parameters of cosmological models based on using their
kinematic characteristics [5, 6]. The traditional kinematics of the Universe works in accordance with the cosmological
principle stating that on scales exceeding hundreds of mega parsecs the Universe is homogeneous and isotropic. A
method to describe the evolution of the Universe named cosmography is based only on the cosmological principle and
presents actually a kinematics of the cosmological expansion. The efficiency of the cosmography is that it allows
expressing parameters of any model satisfying the cosmological principle, in terms of a limited number of
cosmographic parameters (first few Taylor series expansion coefficients of the scale factor).

In the present work, we use cosmography to find parameters of two models of the dynamical cosmological
constant.

MODELS

At the present time, the interpretation of the dark energy in the form of the cosmological constant A as energy of
physical vacuum is the most supported among other alternatives. It automatically leads to the equation of state of this
substance pp = —pp  (p, is the pressure, and p, is the energy density), ensuring the accelerating expansion of the
Universe. The hypothesis allowing resolving a number of current cosmological problems involves moving to a time-
dependent CC, A —» A(t). In virtue of the energy conservation law, the vacuum decay should be accompanied by
changing the dark matter energy density p,,,. Dynamics of the two-component system can be described by the system of
equations comprising the first Friedmann equation and the conservation equation (we use a system of units where the
reduced Planck mass Mp; = (8nG)™Y? =c = 1)

Pm t+ pa = 3H?,

: . @)

pm +3Hpm = —ps,
where H is the Hubble parameter, and we took into account that for the cold dark matter the pressure p,, = 0. In the
right part of the conservation equation there is a new term p, playing the role of the source generated by the decaying
CC. From the system (1) one can obtain the equation for the Hubble parameter

2H + 3H% —p, = 0. )
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At the phenomenological level to solve the equation (2) a model of the CC decay is needed. Below, we will consider a
simple, but fully analyzable model [7], where

pA =oH ) (3)

We will show that cosmography allows us to easily express a single parameter of the model o in terms of the
cosmographic parameter, namely the deceleration.

The two-parametric model suggested in the work [8] also treats the CC as the decaying vacuum energy. More
specifically, the ideology of this model goes back to the hypothesis about existence of an unstable false vacuum [9-11].

If Eéf @45€) and Eétrue) are energies of the false and the true vacuums, the hypothesis involves a universal behavior of the
substance initially having been in the false vacuum

L t @
E(gfase) =E(§ Tu€)+t_2i... for‘t>> T, @)

where T is the typical time of the tunneling from the false vacuum to the true one. In terms of the time-depending CC
the relation (4) can be rewritten as [8]

pA(t) = A(t) = Abare + ;iz’ (5)

that emerges from the covariant theory of a scalar field and presents a leading term at the late time of evolution.

METHOD

Characteristics used to describe the evolution of the universe can be either kinematic or dynamical. The first ones
presenting different combinations of time-derivatives of the scale factor are model-independent. While the second-ones
to be found require, besides dynamical equations of GTR, models of the equations of state of the considered
components. Like in the classical mechanics, cosmokinematics describes the observed evolution of the Universe
without respect to its causes. The kinematics of cosmological expansion of a homogeneous and isotropic universe has
been called cosmography [12].

In the early 60s, Alan Sandage [13] defined as the primary goal of the cosmologists a search for two parameters,
namely, the Hubble parameter and the deceleration parameter. However, an expansion with a constant acceleration is
not the only possible realization of the kinematics of a nonstationary universe. As the universe evolves, the relative
content of the components that fill it is changing, and as consequence, the dynamics of expansion changes, hence the
changes in acceleration. Thus, for a more complete description of the kinematics of cosmological expansion, it is useful
to consider an extended set of parameters (Hubble H, deceleration d, jerk j, and snap s) by including a higher-order
temporal derivatives of the scale factor [14]

lda
H(t) = TR
1d%aflday™
10 =27z i ar)
1d3a[1 da]_3.
adt3ladt] ~’
1d*a [1 da]_4

sO=Tm i

(6)
j) =

The inclusion of higher derivatives of the scale factor, on the one hand, reflects the continuous progress of
observational cosmology, and, on the other hand, is dictated by the need to describe the increasingly complex effects
used for obtaining precise information.

In 2008, Dunajski and Gibbons [15] proposed an original approach for testing cosmological models satisfying the
cosmological principle. The implementation of this method involves the following sequence of steps:

1. The first Friedmann equation is transformed to the ODE for the scale factor. This transformation is achieved

by using the conservation equation for each component included in the model.

2. The resulting equation is differentiated (with respect to cosmological time) as many times as the number of

free parameters of the model.
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3. The time derivatives of the scale factor are expressed through the cosmographic parameters.

4. By solving the obtained system of linear algebraic equations, all the free parameters of the model are

expressed through the cosmographic parameters.

The procedure under consideration can be made more universal and effective if the system of Friedmann equations
for the Hubble parameter H and its time derivative H is considered as a starting one [6]. By differentiating the equation
the required number of times (determined by the number of free parameters of the model), we obtain a system of
equations including higher derivatives of the Hubble parameter H. These derivatives are directly related to the
cosmographic parameters by the relations

H=-H*(1+q); (7)
H=H3(+3q+2); (®)
H=H*(s—4j—3q(q+4) —6). )

So, the initial differential equation is turned to the algebraic one. The free model parameters are eliminated, so the
evolution equation takes a universal form and may be compared with other models as well as tested to correspond to the
observations data. In addition, the used kinematic characteristics are free from the uncertainties arising when physical
quantities such as, for example, energy densities are measured.

RESULTS
We applied the described method to treat the two considered cosmological models. For the first proposed model
(3) the evolution equation (2) reads

2H +3H? —oH = 0. (10)

Using relation (7) we express the free parameter of the model ¢ in a simple way through the Hubble parameter and the
deceleration parameter:

o=H(1-2q). (11)

The second considered model (5) leads to the new parameterization of the vacuum dark energy [8] that together with the
second Friedmann equation and the continuity condition results in time-dependence of the Hubble parameter H~1/t. It
gives the following phenomenological quadratic parameterization of the cosmological constant density

A(H) = Ay + 38H?, (12)

where there are two free parameters A, and 3. Hereby, the evolution equation (2) takes the form

. A
H==-38H?, (13)
2
where § is a constant defined as § = 3/2(1 — B). We repeat our procedure and differentiate the evolution equation
using expressions (7) and (8) for the time derivatives of the Hubble parameter. Finally, we solve a simple system of
algebraic equations and obtain free parameters of the proposed model in terms of the cosmographic ones

2+3q+] 1—j
=1 p=—"; (14)
21+¢9) 3(1+¢q)
j—q-2q°
Ay =Hé—M— 15
0 e (15)

Thus, having treated all the parameters of our models through the directly measurable cosmographical values, we
can substitute the experimentally measured current values of the Hubble, the deceleration and the jerk parameters H,
qo, Jo corresponding to the current time t.
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After that, the further solution of the evolution equations can be done with considering these dependences. The
solution of the evolution equation (10) for the first model is given by the following time-dependence of the Hubble
parameter

Hyo
H(t) = =Dk (16)
3H0 + (0' - 3H0)e 2

where H(t,) = H, is taken as an initial condition.
For the second model, it is also possible to solve the evolution equation (13) and to find the time-dependence of

the Hubble parameter
’AO ’SAO /28
= —_— — —_— 1
H(t) 5 Tanh > (t — tog) + ArcTanh A, Hy ||, (17)

In (16), and (17), model parameters o, §, and A, are correspondingly treated through Hy, q,, and j, (11), (14-15).

The current values of H,, qg, and j, obtained from the fitting of observations data can be found, for example, in
[16-18]. The recent analysis by Heneka [16] involves the comparison of the measurements for two cases: JLA
compilation of SN la and the Pantheon sample. These measurements give different results for the deceleration
parameter and the jerk: gy = —0.70 £ 0.18 and j, = 0.52(+0.58 — 0.60) for the first case and respectively q, =
—0.86 £ 0.07 and j, = 1.13 +£ 0.26 for the second one. Having these parameters, we now can build the time-
dependences of the Hubble parameter and compare the results for two different models. For some typical range of
values, the time-dependences of the Hubble parameter are depicted in Fig. 1.

2

=z

% — A(t)=Ay—6H?
%

. S R Q— A(t)=cH

0.6 0.8 1.0 12 14

tHp
Fig. 1. Time-dependences (16) (dashed line) and (17) (solid line) of the Hubble parameter corresponding to two different models (3)
and (12). A typical range of current values of the deceleration parameter is indicated by the gray area. Here, the current parameter
value @, varies from -0.9 to -0.6 with the central value -0.75. The Hubble constant H, is set to be 67 (kTm) /Mpc, and the current

value for jerk j, is set to be 1.

As can be seen from the plot, the Hubble parameter decreases in time. The two considered models predict a similar
behavior for this dependence. However, one can notice the difference for early times and late times, which is quite
simple to explain. Indeed, for the case of j, = 1 we have f§ = 0 (14) that means A = A, for the model (5). So, the
model reduces to a constant term in the evolution equation (2), that affects the behavior of the derivative. While the
other model (3) has there a linear positive addend oH that is greater for larger H (and thus for the early times), so the
derivative H is greater for early times and smaller for later times. In general, when j, # 1, the character of the
dependence for the model (12) may be different due to the appearing quadratic term.

DISCUSSION
Finally, it is possible not only to treat the model parameters, but also to rewrite Friedmann equations themselves in
terms of directly observable cosmographic values. Dunajski and Gibbons [15] showed that for the three-parametric
model in the case of the pressure-free matter and the cosmological constant, the evolution equation treated through
cosmographic parameters yields
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k = a?H%(j — 1), (18)

where k (the spatial curvature) is regarded as a parameter. In particular if k = 0, this relation reduces to a third order
ODE

j=1. (19)

This constant jerk condition is consistent with almost all recent cosmological observations. Therefore, treating in this
manner the Friedmann equations, we can obtain some simple restrictions on the cosmographic parameters. It allows
testing the model for accordance with the current parameters relations received from observations.

We can perform the same procedure for the two considered models. For the first proposed model (3) the
evolution equation (10) can be rewritten as

H
2ﬁ+3H—0=0. (20)

We differentiate it with respect to the cosmological time. Then, using expressions (7) and (8) for the time-derivatives of
the Hubble parameter, we get by analogy to (19) a restriction on the jerk, involving already two cosmographic values:

+1
j=a?+ = 1)

This relation is equivalent to the Friedmann equation and enables us to test the correspondence of the proposed
approach to the real values received from observations. The obtained constraint (21) compared with the ranges of
current values from the mentioned observations are shown on the Fig.2. As can be seen, despite the simplicity and the
absence of a strict physical background in this model, the result is in some accordance with the current cosmological
observations.
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Fig. 2. Relation (21) for the jerk and the deceleration (black line) and areas of currently observable parameters values. Area [1]
corresponds to the data from JLA compilation of SN Ia {gq = —0.70 £ 0.18, and j, = 0.52(+0.58 — 0.60)}. Area [2] is related to
the Pantheon sample {q, = —0.86 + 0.07 and j, = 1.13 + 0.26}. See [16] for details.

For the second proposed model (12) this procedure requires differentiating the evolution equation (13) two times
to eliminate both free parameters. Using (7-9) for three time-derivatives of the Hubble parameter, we obtain the relation
for the snap parameter s that comes from the third derivative

J2+i@®+49+ 1D +q2q+ 1)

1+gq 22)

For the typical values q, = —0.75, and j, = 1 the estimation gives s, = 0.25. A possible range of values of the snap
parameter for different q,, and j, are depicted in Fig. 3.
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Fig. 3. The color diagram depicting the current value of the snap parameter (22) for some typical range of values for the deceleration
parameter and the jerk.

CONCLUSIONS

Numerous cosmological models include multiple parameters of different nature that often are in complicated
relations with the observed ones. It is possible to establish relations between parameters on a deeper level, thereby
reducing their number to the unique parameter set. An important methodological principle, the so-called the Occam’s
razor, states: there is no need to multiply essences without necessity. This is more than an aesthetic question. Having
reduced the number of cosmological parameters and developed a unified method of their determination, we will
facilitate testing of the models and limit the role of the observational cosmology to the determination of a small number
of the cosmographic parameters.

In the current paper, we have considered the algorithm of treating the free parameters of cosmological models in
terms of the directly observable cosmographic values. We have shown that this method is especially efficient in the
cases where the dynamical variables of the model directly depend on the Hubble parameter (the models with the time-
dependent cosmological constant in the form A(t) » A(H)). Here, the cosmographic analysis in terms of the Hubble
parameter derivatives H, H, H ... is more usable than the original approach of Dunajski and Gibbons [15].

The expressed model parameters can be then substituted in the solution of the evolution equation. Such a solution
is easy to compare with other results and to test in the correspondence to the modern observation data.

Moreover, the method enables us to eliminate at all free parameters from the model and to obtain the Friedmann
equation in form of some constraints on directly observable cosmological scalars. It allows considering the overlapping
of the regions of cosmographic parameters for different models carrying different physical sense to analyze the
reasonability of one or another approach. The obtained relations are exact and does not require any additional neglect.
They lead us to work with simple algebraic equations instead of to solve the ODEs. The validity of resulting constraints
can be verified by observations, thus providing the experimental test for any considered model.
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