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Theoretical study of im portant bulk properties of nuclei far from stability such us the nuclear skin and its co rrelation 
with the density dependence of the symmetry energy in uniform matter is reviewed. The formation of neutron skin and 
its evolution with an increase of the neutron number is in vestigated on the basis of a self-consistent deformed mean-
field Hartree-Fock method using density-dependent Skyrme force sand pairing correlations in BCS approach. We study 
isotopic chains of Ni, Kr, and Sn nuclei and consider all the experimentally observed isotopes from neutron-deficien to 
neutron-rich ones. Various definition of the neutron skin thickness based on the differences between neutron and proton 
radii as well as on comparison of the tail soft he neutron and proton density distributions have been tested. The effects 
of deformation on the neutron skins in even-even deformed nuclei are discussed on the example of  Kr isotopes. The 
symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr 
and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry 
energy as a fu nction of density within the Brueckner energy-density functional. The correlation between the thickness 
of t he neutron sk in and  t he characteristics related  with the density de pendence of t he nuclear symmetry energy is 
investigated for isotopic chains of these nuclei. The mass dependence of the nuclear symmetry energy and the neutron 
skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a 
smoother behavior in the case of spherical nuclei than for deformed ones. We also note that the neutron skin thickness 
obtained for 208Pb with SLy4 force is found to be in a good agreement with the recent data. In addition, we analyse the 
existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain. 
KEYWORDS: exotic nuclei, neutron skin thickness, symmetry energy, deformed Hartree-Fock+BCS method, energy-
density functional 

 
INTRODUCTION 

The detailed study of the properties of unstable nuclei has been at the fore front of nuclear physics research for the 
past few years. Th e ultimate goal of such studies is to d evelop models and interaction potentials by uncovering novel 
manifestations o f nuclear structure when moving away from the valley o f stability, among which nuclear haloes and  
skins, new regions of nuclear deformation, the disappearance of shell closures or the appearance of new magic numbers 
may be ci ted. The most straightforward way to assess the presence of such phenomena is to follow nuclear properties 
along extended isotopic chains analyzing contrasted behaviors between stable and unstable species. 

The determination of ch arge radii and extraction of nu clear matter radii are crucial fo r studying the evolution of 
neutron a nd p roton skins al ong i sotopic c hains. T o get information o n t he ne utron skin t hickness o ne needs da ta 
obtained with probes having different sensitivities to the prot on and neutron distributions. The methods for extracting 
the neut ron s kin t hickness mostly i nclude expe riments on ha dron s cattering [ 1,2], ant iprotonic at oms [3] , pari ty 
violating el ectron scat tering [4 ,5,6], a swel l as gi ant dipole resonance method [7] and spin-dipole resonance method 
[8,9]. 

On the theoretical side, calculations of nuclear charge and matter radii of exotic nuclei are usually performed in the 
framework of mean-field approaches, namely the Hart ree-Fock (HF) method or the Hart ree-Fock-Bogoliubov (HFB) 
method including pairing correlations (e.g., Ref. [10]). Recently, the self-consist ent relativistic mean-fiel (RMF) model 
has been widely applied to studies of both stable and unstable nuclei (e.g., Ref. [11]). Many calculations show that the 
RMF model can reproduce with a good precision a number of ground-state nuclear properties including the charge radii 
[12]. The charge rms radii were successfully described in Ref.[10], where the generator coordinate method (GCM) on 
top of Gogny HFB calculations was explored. 
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Theoretical identification of the skin structure in neutron-rich weakly bound nuclei, however, is still a matter of
discussion. In Ref. [13] a definition of the neutron skin and its appearance were presented in terms of spherical HF
calculations. The proposed criteria which deal with proton and neutron densities allowed one to predict neutron skins in
nuclei far from the β stability line. The Helm model [14, 15] has been applied in Ref. [16] to analyze neutron and proton
skins, as well as halos, of even-even Ni, Sn, and Pb isotopes in terms of form factors.

Recently, the interest in the symmetry energy has been stirred up by novel astrophysical observations and by the
availability of exotic beams in accelerators that provide additional information to the standard nuclear asymmetry studies
based on stable nuclei. Particularly important in the different areas, and similarly uncertain, is the density dependence of
the symmetry energy in uniform matter. The neutron skin thickness, generally defined as the difference between neutron
and proton rms radii in the atomic nucleus, is closely correlated with this dependence. Moreover, it has been shown
that the neutron skin thickness in heavy nuclei, like 208Pb, calculated in mean-field models with either nonrelativistic
or relativistic effective nuclear interactions, displays a linear correlation with the slope of the neutron equation of state
(EOS) obtained with the same interactions at a neutron density ρ ≈ 0.10 fm−3 [17, 18].

The ground states of atomic nuclei are characterized by different equilibrium configurations related to corresponding
geometrical shapes. The study of the latter, as well as the transition regions between them, has been a subject of a large
number of theoretical and experimental studies (for a review, see, for example, Ref. [19] and references therein). The
position of the neutron drip line is closely related to the neutron excess and the deformation in nuclei. In fact, the latter
increases the surface area, thus leading to a larger surface symmetry energy in a neutron-rich nucleus with a deformed
shape. Conversely, the precise determination of the surface symmetry energy is important to describe the deformability
of neutron-rich systems and also to validate theoretical extrapolations. Therefore, it is worth to explore how the nuclear
symmetry energy changes in the presence of deformation and correlates with the neutron skin thickness within a given
isotopic chain.

Nowadays, the experimental information about the symmetry energy is fairly limited. The need to have information
about this quantity in finite nuclei, even theoretically obtained, is a major issue because it allows one to constrain the
bulk and surface properties of the nuclear energy-density functionals quite effectively. The symmetry energy of finite
nuclei at saturation density is often extracted by fitting ground state masses with various versions of the liquid-drop mass
formula within liquid-drop models [20, 21, 22]. It has been also studied in the random phase approximation based on
the Hartree-Fock (HF) approach [23] or effective relativistic Lagrangians with density-dependent meson-nucleon vertex
functions [24], energy density functionals of Skyrme force [25, 26] as well as relativistic nucleon-nucleon interaction
[27, 28].

In the present review (as well as in Refs. [29, 30, 31]), the properties of a wide range of medium and heavy exotic
nuclei are described using the self-consistent deformed mean-field Hartree-Fock method with density dependent Skyrme
interactions [32, 33] and pairing correlations. Pairing between like nucleons has been included by solving the BCS
equations at each iteration either with a fixed pairing gap parameter (determined from the odd-even experimental mass
differences) or with a fixed pairing strength parameter. In our calculations the following Skyrme force parametrizations
are used: SLy4 [34], SGII [35], Sk3 [36], and LNS [37]. These are among the most extensively used Skyrme forces and
are considered as standard references.

The main aim of this study is twofold. First, to clarify theoretically the emergence of the neutron and proton skins
in neutron-rich and neutron-deficient isotopes, respectively, by testing different definitions for the skin thickness in the
framework of the deformed Skyrme HF+BCS model. We choose isotopes of some medium and heavy nuclei such as Ni
(A=48–78), Kr (A=70–100), and Sn (A=100–136) because many of these sets, which lie in the nuclear chart between the
proton and neutron drip lines can be formed as radioactive ions to perform scattering experiments. Alternatively to one of
the criteria for the neutron skin proposed in Ref. [13] we consider another one which treats proton and neutron densities in
a similar way. The calculated charge rms radii are compared with the laser or muonic atoms spectroscopy measurements
of isotope shifts performed on Sn [38, 39, 40, 41], Ni [42, 43], and Kr [44] isotopes. Our theoretically calculated neutron
skin thicknesses are compared with the available experimental data extracted from methods mentioned above for even-
even Sn isotopes with masses from 112 to 124. We also study whether the emergence of a skin is influenced by the
nuclear shape, an issue that has not been sufficiently studied so far. The question of the skin formation in nuclei having a
non-spherical shape is discussed in detail on the example of Kr isotopes, assuming axial symmetry.

Second, in addition to various linear relations between several quantities in bulk matter and for a given nucleus that
have been observed and tested within different theoretical methods (e.g. nonrelativistic calculations with different Skyrme
parameter sets and relativistic models), we establish a correlation between the skin thickness and some nuclear matter
properties in finite nuclei, such as the symmetry energy s, the symmetry pressure p0 (proportional to the slope of the
bulk symmetry energy), and the asymmetric compressibility ∆K, clarifying to what extent this correlation is appropriate
for a given isotopic chain. The symmetry energy is studied on the basis of the Brueckner energy-density functional for
nuclear matter [45, 46] and using the coherent density fluctuation model (CDFM) (e.g., Refs. [47, 48, 49]). The CDFM
has been successfully applied to different tasks: to calculate nuclear properties of the ground and first monopole states,
in scaling analyses and others. In addition to some spherical medium and heavy Ni (A=74-84) and Sn (A=124-152)
isotopes (considered also in Refs. [29, 50]), we present results for a chain of Pb (A=202-214) isotopes being inspired by
the significant interest (in both experiment [51, 52, 53] and theory [54, 55, 56, 57]) to study, in particular, the neutron
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distribution of 208Pb and its rms radius. An investigation of the same possible relation is carried out for chains of deformed
neutron-rich even-even Kr (A=82-96) (including, as well, the case of some extreme neutron-rich nuclei up to 120Kr) and
Sm (A=140-156) isotopes. At the end we give some numerical arguments in proof of the existence of some peculiarities
in the properties of Ni and Sn isotopic chains that are not present in the Pb chain.

DEFORMED SKYRME HF+BCS FORMALISM

Assuming time reversal, the single-particle Hartree-Fock solutions for axially symmetric deformed nuclei are
characterized by the eigenvalue Ωi of the third component of the total angular momentum on the symmetry axis and
by the parity πi. The state i can be written as

Φi

(
R⃗,σ ,q

)
= χqi(q)

[
Φ+

i (r,z)e
iΛ−φ χ+(σ)+Φ−

i (r,z)e
iΛ+φ χ−(σ)

]
, (1)

where χqi(q), χ±(σ) are isospin and spin functions, Λ± = Ωi ±1/2 ≥ 0. r,z,φ are the cylindrical coordinates of R⃗.
The wave functions Φi are expanded into the eigenfunctions, ϕα , of an axially symmetric deformed harmonic-

oscillator potential in cylindrical coordinates. We use 12 major shells in this expansion,

Φi

(
R⃗,σ ,q

)
= χqi(q)∑

α
Ci

α ϕα

(
R⃗,σ

)
, (2)

with α = {nr,nz,Λ,Σ} and

ϕα

(
R⃗,σ

)
= ψΛ

nr
(r)ψnz(z)

eiΛφ
√

2π
χΣ(σ) , (3)

in terms of Hermite and Laguerre polynomials

ψnz(z) =

√
1√

π2nznz!
β 1/2

z e−ξ 2/2 Hnz(ξ ) , (4)

ψΛ
nr
(r) =

√
nr

(nr +Λ)!
β⊥

√
2ηΛ/2 e−η/2 LΛ

nr
(η) , (5)

with

βz = (mωz/h̄)1/2 , β⊥ = (mω⊥/h̄)1/2,

ξ = zβz , η = r2β 2
⊥ . (6)

The spin-independent proton and neutron densities are given by

ρ(R⃗) = ρ(r,z) = ∑
i

2v2
i ρi(r,z) , (7)

in terms of the occupation probabilities v2
i resulting from the BCS equations and the single-particle densities ρi. The

multipole decomposition of the density can be written as [32]

ρ(r,z) = ∑
λ

ρλ (R)Pλ (cosθ) = ρ0(R)+ρ2(R)P2(cosθ)+ . . . , (8)

with multipole components λ

ρλ (R) =
2λ +1

2

∫ +1

−1
Pλ (cosθ)ρ(Rcosθ ,Rsinθ)d(cosθ) , (9)

and normalization given by ∫
ρ(R⃗)dR⃗ = X ; 4π

∫
R2dRρ0(R) = X , (10)

with X = Z, N for protons and neutrons, respectively.
The mean square radii for protons and neutrons are defined as

< r2
p,n >=

∫
R2ρp,n(R⃗)dR⃗∫

ρp,n(R⃗)dR⃗
, (11)
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and correspondingly, the root-mean square (rms) radii for protons and neutrons are given by

rp,n =< r2
p,n >

1/2 . (12)

The mean square radius of the charge distribution in a nucleus can be expressed as

< r2
ch >=< r2

p >+< r2
ch >p +(N/Z)< r2

ch >n +r2
CM + r2

SO , (13)

where < r2
p > is the mean square radius of the point proton distribution in the nucleus (11), < r2

ch >p and < r2
ch >n are

the mean square charge radii of the charge distributions in a proton and a neutron, respectively. r2
CM is a small correction

due to the center of mass motion, which is evaluated assuming harmonic-oscillator wave functions. The last term r2
SO is

a tiny spin-orbit contribution to the charge density. Correspondingly, we define the charge rms radius

rc =< r2
ch >

1/2 . (14)

NEUTRON SKINS IN EXOTIC NUCLEI

To study the neutron skin thickness we will use first the difference between the neutron and proton rms radii to
characterize the different spatial extensions of neutron and proton densities. A more effective tool to analyze skins [16],
however, is the Helm model [14, 15]. This is a model that allows one to extract in a simple way from the form factor
the two main characteristics of the density, a diffraction radius and a surface thickness. In this model one describes the
density by convoluting a hard sphere (hs) density having diffraction radius Rd with a gaussian of variance σ ,

ρHelm(r;Rd ,σ) = ρhs(r;Rd)∗ρG(r;σ) , (15)

where
ρhs(r,Rd) =

3X
4πR3

d
Θ(Rd − r), (16)

and
ρG(r;σ) = (2πσ 2)−3/2e(−r2/2σ2). (17)

The corresponding Helm form factor is

FHelm(q) = Fhs(q;Rd)FG(q;σ) =
3

qRd
j1(qRd)e−σ2q2/2 . (18)

Now, the most prominent feature of the density distribution, namely its extension, can be related to the first zero in
the form factor, this is the diffraction radius

Rd = 4.49341/q1 , (19)

where q1 is the first zero of the form factor. The nuclear surface width σ can be related to the height of the second
maximum of the form factor located at qmax:

σ2 =
2

q2
max

ln
3 j1(qmaxRd)

RdqmaxF(qmax)
. (20)

Taking into account that the second moment of a convoluted distribution is given by the sum of the second moments
of the two single distributions, one gets the Helm rms radius

RHelm
rms =

√
3
5
(
R2

d +5σ2
)
. (21)

Taking out the factor
√

3/5, that relates the rms radii to the radii of the equivalent uniform hard spheres, we define

Rhs =
√

5/3 < r2 >1/2 (22)

and
RHelm =

√
5/3RHelm

rms =
√

R2
d +5σ2 . (23)

From these definitions we construct the following neutron-proton radius differences that will be used:

∆Rd = Rd(n)−Rd(p) , (24)
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FIGURE 1. Left panel: Charge rms radii rc of tin isotopes. The SLy4 result is compared with the results from RMF calculations
[11], HFB [10] and GCM [10]. Experimental data are from [38, 39, 40, 41]; Right panel: Theoretical (with different Skyrme forces)
and experimental isotope shifts δ ⟨r2

c ⟩ of tin isotopes relative to 120Sn.

∆Rhs = Rhs(n)−Rhs(p) =
√

5/3
[
< r2

n >
1/2 −< r2

p >
1/2

]
, (25)

∆RHelm = RHelm(n)−RHelm(p) . (26)

Beginning with Sn isotopes for which more data and calculations are available, we show on the right panel of Fig. 1
our results for the squared charge radii differences in Sn isotopes obtained from three different Skyrme forces, SLy4,
SGII and Sk3. We compare them to experiment, taking the radius of 120Sn as the reference [41]. On the left panel we
compare our SLy4 results for the charge radii with the other theoretical approaches mentioned above. The general purpose
of Fig. 1 is firstly to show that different Skyrme forces do not differ much in their predictions of the charge rms radii
and secondly, to show that our results with SLy4 are comparable to other theoretical predictions including approaches
that go beyond the mean-field approximation, as well as relativistic approaches. We conclude that our method reproduces
the experimental data with a similar accuracy to other microscopic calculations that, as explained above, may be more
sophisticated but may also be more time consuming. This agreement provides a good starting point to make predictions
for other quantities such as neutron-proton radii differences, where the experimental information is scarce and it is not as
accurate as in the case of charge radii.

In Fig. 2 we plot the differences between the rms of neutrons and protons ∆rnp = rn− rp. On the left panel we show
our results for Sn isotopes and compare them to RMF results and to experimental data. As we can see the experimental
data are located between the predictions of both theoretical approaches and in general, there is agreement with experiment
within the error bars. On the right panels we see the predictions for ∆rnp in the cases of Ni and Kr isotopes, where there
are no data. As it can be seen, the RMF results for the difference ∆rnp systematically overestimate the Skyrme HF results.
The reason for this is related to the difference in the nuclear symmetry energy and, consequently, to the different neutron
EOS which has been extensively studied in recent years [25, 26, 58, 59].

Figure 3 shows the neutron (solid) and proton (dashed) densities ρ0(R) (8) in the 100,120,136Sn isotopes. From left to
right we see the evolution of these densities with the increase of the number of neutrons. In the case of 100Sn (N=Z=50) we
see that the two densities are practically the same except for Coulomb effects that make the protons to be more extended
and, therefore, this has to be compensated with a small depression in the interior. The effect of adding more and more
neutrons is to populate and extend the neutron densities. This makes also the proton distribution to follow the neutron
one, increasing its spatial extension. The cost of this radius enlargement in the case of protons is a depression in the
nuclear interior to preserve the normalization to the constant number of protons Z = 50. Then, it can be seen graphically
the emergence of a region at the surface where the protons have practically disappeared while the neutrons still survive.
We will quantify later this region in terms of the neutron skin thickness definitions.

The thickness of a neutron skin in nuclei may be defined in different ways. One of these possibilities is to define
it as the difference between the root mean square radius of neutrons and that of protons, as we have plotted in Fig. 2.
Similarly, it can be defined as the difference between the neutron and proton radii of the equivalent uniform spheres
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FIGURE 3. HF+BCS proton and neutron densities ρ0(R) of 100Sn, 120Sn, and 136Sn calculated with SLy4 force.

[Eq. (25)]. Alternatively, it can be defined as the difference between the neutron and proton diffraction radii (24) or Helm
radii (26).

On the other hand, the skin thickness can be also defined in terms of some criteria that the neutron and proton
densities must fulfill. In Ref. [13] the neutron skin thickness is defined as the difference between two radii, R1 and R2,
where R1 is the radius at which the ratio of the neutron density to the proton density is equal to some given value (4 in
[13]) and R2 is the radius at which the neutron density becomes smaller than some percentage of the density at the center
of the nucleus (1 % in [13]). When this difference, ∆R = R2 −R1, is larger than some established value (in [13] this value
is 1 fm, which is comparable to the range of the nuclear force), a neutron skin with skin thickness ∆R is said to occur.
We have also considered the case where the first criterion for the inner radius R1 of the neutron skin is changed. We use
instead of the above criterion for R1, the radius at which the proton density becomes smaller than 1% of the latter at the
center, which is similar to the criterion used to define the outer radius R2, but in this case for proton density instead of the
neutron density. When we use the conditions in Ref. [13], we call it criterion (a). When we use the alternative condition
for R1, we call it criterion (b).
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We show in Fig. 4 the results obtained for the neutron skin thickness in Ni isotopes according to the different
definitions discussed above. The left panel contains the results for definitions involving directly the difference between
neutron and proton radii [Eqs. (24)-(26)]. The skin thickness predicted by the difference of the diffraction radii is in
general smaller than the thickness predicted by the other two more involved options that are very similar in this range of
masses. The right panel contains the neutron skin thickness defined according to the criteria on the density distributions
(a) (solid line) and (b) (dashed line). They only differ in the way in which the starting radius of the skin R1 is chosen. One
can see that we obtain larger neutron skin thicknesses when using criterion (b) in the lighter isotopes, but this is reversed
for heavier isotopes and we get larger thickness when using criterion (a).

We also consider the most neutron-deficient region of Ni isotopes in a search for the formation of a proton skin.
Reversing the definitions of R1 and R2 and applying the criterion (b) with protons and neutrons interchanged, the obtained
results are shown in the inset of the right panel in Fig. 4. We find no proton skin when applying criterion (a). One can see
that a small skin starts developing in these isotopes but we cannot push it further because 48Ni is already at the proton
drip line. The results are then not conclusive enough to assess the existence of a proton skin in these isotopes.

When the nucleus is deformed, the thickness of the neutron skin might depend on the direction. It is an interesting
and natural question to ask whether the deformed densities give rise to a different skin size in the different directions. It
is also interesting to know whether the emergence of the skin may be influenced by the nuclear shape. We first study the
intrinsic density distributions ρ(R⃗) in various selected directions. For that purpose we show in Figs. 5 and 6 the densities
of 98Kr for oblate and prolate shapes, respectively. We can see the spatial distributions for neutrons (solid) and protons
(dotted) in three different directions: z-direction (r = 0), r-direction (z = 0), and r = z direction. We can observe that
the profiles of the densities as well as the spatial extensions change with the direction. Clearly, the densities are more
extended in the z-direction in the case of prolate shapes. The opposite is true in the case of oblate shapes. The case r = z
gives always intermediate densities. We have added in the three directions a couple of full dots, indicating the radii R1
and R2 that defines the skin thickness according to the above mentioned criterion (a).

It is also worth looking at the points in the (r,z) plane that define the ellipses where the criteria for R1 and R2 are
met. Figure 7 shows these points for protons (thin lines) and neutrons (thick lines) and for the two shapes, prolate (solid)
and oblate (dashed). We can see that the size of the skin changes little with the directions perpendicular to the surface,
but shows a tendency to increase on the shorter axis. It is interesting to note that the skin size of the spherical component
ρ0(R) is an intermediate value. The overall skin thickness is also similar in the oblate and prolate equilibrium shapes.
From this example we may conclude that the skin thickness does not depend much on the oblate or prolate character of
the deformation.
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SYMMETRY ENERGY AND SURFACE PROPERTIES OF NEUTRON-RICH EXOTIC
NUCLEI

The symmetry energy S(ρ) is related to the Taylor series expansion of the energy per particle for nuclear matter
(NM) in terms of the isospin asymmetry δ = (ρn −ρp)/ρ

E(ρ,δ ) = E(ρ,0)+S(ρ)δ 2 +O(δ 4)+ · · · , (27)

where ρ = ρn +ρp is the baryon density with ρn and ρp denoting the neutron and proton densities, respectively (see, e.g.
[58, 60]). Odd powers of δ are forbidden by the isospin symmetry and the terms proportional to δ 4 and higher orders are
found to be negligible.

Near the saturation density ρ0 the energy of isospin-symmetric matter, E(ρ,0), and the symmetry energy, S(ρ), can
be expanded as

E(ρ,0) = E0 +
K

18ρ2
0
(ρ −ρ0)

2 + · · · , (28)
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and

S(ρ) =
1
2

∂ 2E(ρ,δ )
∂δ 2

∣∣∣∣
δ=0

= a4 +
p0

ρ2
0
(ρ −ρ0)+

∆K
18ρ2

0
(ρ −ρ0)

2+ · · · . (29)

The parameter a4 is the symmetry energy at equilibrium (ρ = ρ0). The pressure pNM
0

pNM
0 = ρ2

0
∂S
∂ρ

∣∣∣∣
ρ=ρ0

(30)

and the curvature ∆KNM

∆KNM = 9ρ2
0

∂ 2S
∂ρ2

∣∣∣∣
ρ=ρ0

(31)

of the nuclear symmetry energy at ρ0 govern its density dependence and thus provide important information on the
properties of the nuclear symmetry energy at both high and low densities. The widely used "slope" parameter LNM is
related to the pressure pNM

0 [Eq. (30)] by

LNM =
3pNM

0
ρ0

. (32)

The CDFM was suggested and developed in Refs. [47, 48, 49]. The model is related to the delta-function limit
of the generator coordinate method [48, 49, 61]. In the model the one-body density matrix (OBDM) ρ(r,r′) is written
as a coherent superposition of the OBDM’s for spherical "pieces" of nuclear matter ρx(r,r′) (so-called "fluctons") with
density ρx(r) = ρ0(x)Θ(x−|r|) with ρ0(x) = 3A/(4πx3):

ρ(r,r′) =
∫ ∞

0
dx|F (x)|2ρx(r,r′) (33)

with

ρx(r,r′) = 3ρ0(x)
j1(kF(x)|r− r′|)
(kF(x)|r− r′|)

Θ
(

x− |r+ r′|
2

)
. (34)

The generator coordinate x is the radius of a sphere containing Fermi gas of all A nucleons uniformly distributed in it. In
Eq. (34) j1 is the first-order spherical Bessel function and

kF(x) =
(

3π2

2
ρ0(x)

)1/3

≡ α
x

(35)

with

α =

(
9πA

8

)1/3

≃ 1.52A1/3 (36)
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is the Fermi momentum of such a formation.
In the CDFM the Wigner distribution function which corresponds to the OBDM from Eq. (33) is:

W (r,k) =
∫ ∞

0
dx|F (x)|2Wx(r,k), (37)

where
Wx(r,k) =

4
(2π)3 Θ(x−|r|)Θ(kF(x)−|k|). (38)

Correspondingly to W (r,k) from Eq. (37), the density ρ(r) in the CDFM is expressed by means of the same weight
function |F (x)|2:

ρ(r) =
∫

dkW (r,k) =
∫ ∞

0
dx|F (x)|2 3A

4πx3 Θ(x−|r|) (39)

normalized to the mass number: ∫
ρ(r)dr = A. (40)

If one takes the delta-function approximation to the Hill-Wheeler integral equation in the generator coordinate
method one gets a differential equation for the weight function F (x) [48, 49, 61]. Instead of solving this differential
equation we adopt a convenient approach to the weight function |F (x)|2 proposed in Refs. [47, 48, 49]. In the case of
monotonically decreasing local densities (i.e. for dρ(r)/dr ≤ 0), the latter can be obtained by means of a known density
distribution ρ(r) for a given nucleus:

|F (x)|2 =− 1
ρ0(x)

dρ(r)
dr

∣∣∣∣
r=x

. (41)

The normalization of the weight function is: ∫ ∞

0
dx|F (x)|2 = 1. (42)

Considering the pieces of nuclear matter with density ρ0(x) one can use for the matrix element V (x) of the nuclear
Hamiltonian the corresponding nuclear matter energy from the method of Brueckner et al. [45, 46]. In this energy-density
method the expression for V (x) reads

V (x) = AV0(x)+VC −VCO, (43)

where

V0(x) = 37.53[(1+δ )5/3 +(1−δ )5/3]ρ2/3
0 (x)+b1ρ0(x)+b2ρ4/3

0 (x)+b3ρ5/3
0 (x)

+ δ 2[b4ρ0(x)+b5ρ4/3
0 (x)+b6ρ5/3

0 (x)] (44)

with b1 = −741.28, b2 = 1179.89, b3 = −467.54, b4 = 148.26, b5 = 372.84, and b6 = −769.57. V0(x) in Eq. (43)
corresponds to the energy per nucleon in nuclear matter (in MeV) with the account for the neutron-proton asymmetry. VC
is the Coulomb energy of protons in a "flucton" and VCO is the Coulomb exchange energy. Thus, in the Brueckner EOS
[Eq. (44)], the potential symmetry energy turns out to be proportional to δ 2. Only in the kinetic energy the dependence
on δ is more complicated. Substituting V0(x) in Eq. (29) and taking the second derivative, the symmetry energy SNM(x)
of the nuclear matter with density ρ0(x) (the coefficient a4 in Eq. (29)) can be obtained:

SNM(x) = 41.7ρ2/3
0 (x)+b4ρ0(x)+b5ρ4/3

0 (x)+b6ρ5/3
0 (x). (45)

The corresponding analytical expressions for the pressure pNM
0 (x) and asymmetric compressibility ∆KNM(x) of such a

system in the Brueckner theory have the form:

pNM
0 (x) = 27.8ρ5/3

0 (x)+b4ρ2
0 (x)+

4
3

b5ρ7/3
0 (x)+

5
3

b6ρ8/3
0 (x) (46)

and
∆KNM(x) =−83.4ρ2/3

0 (x)+4b5ρ4/3
0 (x)+10b6ρ5/3

0 (x). (47)

Under some approximation in the CDFM the symmetry energy, the slope and the curvature for finite nuclei are
obtained as infinite superpositions of the corresponding quantities of nuclear matter (with a given density ρ0(x)) weighted
by means of the function |F (x)|2:

s =
∫ ∞

0
dx|F (x)|2SNM(x), (48)

p0 =
∫ ∞

0
dx|F (x)|2 pNM

0 (x), (49)
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FIGURE 8. HF+BCS neutron skin thicknesses ∆R for Ni isotopes as a function of the symmetry energy s (a), pressure p0 (b), and
asymmetric compressibility ∆K (c) calculated with SLy4, SGII, Sk3, and LNS forces.

∆K =
∫ ∞

0
dx|F (x)|2∆KNM(x). (50)

The symmetry energy, the pressure and the asymmetric compressibility are calculated within the CDFM according
to Eqs. (48)-(50) by using the weight functions (41) calculated from the self-consistent HF+BCS densities [33] with
different Skyrme force parametrizations.

The main emphasis of our study is to inspect the correlation of the neutron skin thickness ∆R = ∆rnp = rn − rp of
nuclei in a given isotopic chain with the s, p0 and ∆K parameters extracted from the density dependence of the symmetry
energy around the saturation density. We show first in Fig. 8 the results for Ni isotopes. It is seen from Fig. 8(a) that there
exists an approximate linear correlation between ∆R and s for the even-even Ni isotopes with A=74-84. We observe a
smooth growth of the symmetry energy till the double-magic nucleus 78Ni (N=50) and then a linear decrease of s while
the neutron skin thickness of the isotopes increases. This behavior is valid for all Skyrme parametrizations used in the
calculations, in particular, the average slope of ∆R for various forces is almost the same. The LNS force yields larger
values of s comparing to the other three Skyrme interactions. In this case the small deviation can be attributed to the fact
that the LNS force has not been fitted to finite nuclei and therefore, one cannot expect a good quantitative description at
the same level as purely phenomenological Skyrme forces. As a consequence, the neutron skin thickness calculated with
LNS force has a larger size with respect to the other three forces whose results for ∆R are comparable with each other.

The analysis of the correlation between the neutron skin thickness and some macroscopic nuclear matter properties
in finite nuclei is continued by showing the results for a chain of Sn isotopes. This is done in Fig. 9, where the results
obtained with SLy4, SGII, Sk3, and LNS Skyrme forces are presented for isotopes with A=124-152. Similarly to the case
of Ni isotopes with transition at specific shell closure, we observe a smooth growth of the symmetry energy till the double-
magic nucleus 132Sn (N=82) and then an almost linear decrease of s while the neutron skin thickness of the isotopes
increases. In Ref. [29] we have studied a formation of a neutron skin in tin isotopes with smaller A where very poor
experimental information is available. For instance, a large uncertainty is shown to exist experimentally in the neutron
skin thickness of 124Sn, i.e., its value varies from 0.1 to 0.3 fm depending on the experimental method. Our theoretical
prediction ∆R=0.17 fm for this nucleus is found to be within the above experimental band. A similar approximate linear
correlation between ∆R and p0 for Sn isotopes is also shown in Fig. 9(b). The asymmetric compressibility ∆K given in
Fig. 9(c) is less correlated than p0 with ∆R within the Sn isotopic chains.

An illustration of a possible correlation of the neutron-skin thickness ∆R with the s and p0 parameters extracted
from the density dependence of the symmetry energy around the saturation density for the Kr isotopic chain is given in
Fig. 10. It can be seen from Fig. 10 that there exists an approximate linear correlation between ∆R and s for the even-even
Kr isotopes with A=82-96. Similarly to the behavior of ∆R vs s dependence for the cases of Ni and Sn isotopes shown
in Figs. 8 and 9, respectively, we observe a smooth growth of the symmetry energy up to the semi-magic nucleus 86Kr
(N=50) and then a linear decrease of s while the neutron-skin thickness of the isotopes increases. This linear tendency
expressed for Kr isotopes with A > 86 is similar for the cases of both oblate and prolate deformed shapes. We note that
all Skyrme parametrizations used in the calculations reveal similar behavior; in particular, the average slope of ∆R for
various forces is almost the same. In addition, one can see from Fig. 10 a stronger deviation between the results for oblate
and prolate shape of Kr isotopes in the case of SGII parametrization when displaying the correlation between ∆R and s.
This is valid also for the correlation between ∆R and p0, where more distinguishable results for both types of deformation
are present. The neutron skin thickness ∆R for Kr isotopes correlates with p0 almost linearly, as in the symmetry-energy
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FIGURE 9. Same as in Fig. 8, but for Sn isotopes.

case, with an inflexion point transition at the semi-magic 86Kr nucleus. In addition, one can see also from Fig. 10 that
the calculated values for p0 are smaller in the case of LNS and SLy4 forces than for the other two Skyrme parameter
sets. In general, we would like to note that the behavior of deformed Kr isotopes shown in Fig. 10 is comparable with the
one found for the spherical Ni and Sn isotopes having a magic proton number. The small differences just indicate that
stability patterns are less regular within isotopic chains with a non-magic proton number.

As a general discussion of the results shown in Figures 8, 9, and 10 we would like to note that the growth of the
symmetry energy with the increase of the mass number for a given isotopic chain up to the double-magic nuclei followed
by its decrease is related to the fact that, in particular, for a stiff symmetry energy, it is favorable to push the excess
neutrons to the surface where the symmetry energy is small. In other words, the strong correlation of the neutron-skin
thickness of heavy nuclei with the density dependence of the symmetry energy is a result of the dynamical competition
between the surface tension and the difference between the symmetry energy at the center and surface of the nucleus.

The theoretical neutron skin thickness ∆R of Pb nuclei (A=202–214) against the parameters of interest, s, p0, and
∆K, is illustrated in Fig. 11. All predicted correlations manifest an almost linear dependence and no pronounced kink at
208Pb is observed. Similarly to all isotopes presented in this study, the LNS force produces larger symmetry energies s
than the other three forces also for Pb nuclei with values exceeding 30 MeV. Another peculiarity of the results obtained
with LNS is the almost constant ∆K observed in Fig. 11a.

Further attention deserves the value of the neutron skin thickness in 208Pb, whose determination has motivated recent
experiments. The model-independent measurement of parity-violating asymmetry (which is sensitive to the neutron
distribution) in the elastic scattering of polarized electrons from 208Pb at JLAB within the PREX Collaboration [51, 52]
has provided the first electroweak observation of ∆R=0.33+0.16

−0.18 fm in 208Pb. Obviously, future precise measurements
are needed to reduce the quoted uncertainties of ∆R. The distorted wave electron scattering calculations for 208Pb [55]
extracted a result for the neutron skin thickness which agrees with that reported in the experimental paper [52]. The
value of ∆R for 208Pb (0.1452 fm) deduced from the present HF+BCS calculations with SLy4 force agrees with the
recent experimentally extracted skin thickness (0.156+0.025

−0.021 fm) using its correlation with the dipole polarizability [53].
However, this experimental value was derived by means of covariance analysis based on one Skyrme functional (SV-min).
In this respect, a systematic study with a variety of EDFs as well as experimental tests in other nuclei would be important
because the correlation between polarizability, neutron skin thickness, and symmetry energy is model-dependent (see,
for example, Fig. 1 of Ref. [57]). In addition, our theoretically obtained value of ∆R for 208Pb agrees well with the value
0.18±0.027 fm from Ref. [62]. It is lower than the one obtained in Refs. [25] and [28] with the same Skyrme force, but
is in agreement with the values calculated with self-consistent densities of several nuclear mean-field models (see Table
I in Ref. [63]). The p0 and ∆K values for 208Pb are in a good agreement with those from Ref. [25].

Following the analysis within the CDFM approach [30], we give (e.g., in Ref. [31]) more detailed study of the
weight function |F (x)|2 (that is related to the density and thus, to the structural peculiarities) to understand the kinks
observed in the relationships between ∆R and s, as well as ∆R and p0. The latter were shown to exist [30] in double-magic
nuclei in the cases of Ni (at 78Ni) and Sn (at 132Sn) isotopic chains. As one can see in Fig. 10 of the present work, they
exist also in the considered cases of Kr (at 86Kr) isotopes. In contrast, such a kink does not exist in the case of Pb isotopic
chain (at 208Pb, particularly). Here we would like only to analyze the quantity

∆s± =
sA±2 − sA

sA
(51)
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FIGURE 10. HF+BCS neutron skin thicknesses ∆R for Kr isotopes as a function of the symmetry energy s and the pressure p0
calculated with SLy4, SGII, Sk3, and LNS forces and for oblate and prolate shapes. The results for oblate and prolate shape for
A = 82,84 isotopes are indistinguishable.

that is a direct measure of the relative deviation of the symmetry energy with respect to the double-magic nuclei taking
them as reference nuclei in each of the chains, where the kinks are expected. The values of ∆s+ and ∆s− are listed in
Table 1, where the two numbers for each isotopic chain correspond to the range of integration ∆x that contains the peak
of |F (x)|2 [31]. One can see first from this Table that the absolute values of ∆s+ and ∆s− for Pb isotopes are comparable
with each other, which is not the case for the two other isotopic chains. Second, and very important is that the ∆s+ value
turns out to be negative and ∆s− value to be positive for Pb isotopes at the range of integration ∆x, and this is the main
difference regarding to the corresponding values (both are negative) in the Ni and Sn chains.

These differences can be attributed to the profiles of the density distributions, particularly in the surface region.
Their monopole components ρ0(R) (coming from the density multipole expansion) are given in Fig. 12, where curves
for five Ni, Sn, Pb isotopes around double-magic 78Ni, 132Sn, and 208Pb nuclei are presented in panels (a), (b), and (c),
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FIGURE 11. HF+BCS neutron skin thicknesses ∆R for Pb isotopes as a function of the symmetry energy s (a), pressure p0 (b), and
asymmetric compressibility ∆K (c) calculated with SLy4, SGII, Sk3, and LNS force.

TABLE 1. Relative deviation values of the symmetry en-
ergy ∆s+ and ∆s− [Eq. (51)] for the range of integration ∆x
in Eq. (48) and for Ni, Sn, and Pb isotopes.

Ni Sn Pb

∆s+ -0.0137 -0.0070 -0.0035
∆s− -0.0072 -0.0049 0.0038

respectively. One can see from Fig. 12 the same trend in the tails of the three isotopic chains, which are ordered according
to the mass number A, being higher for heavier isotopes to produce larger radii. On the other hand the behavior in the top
part of the surface region, shown in the inset of the panels, is different. In the case of Ni and Sn isotopes in panels (a) and
(b), one observes that the double-magic nuclei have the largest density with all the neighboring isotopes lying below. In
the case of Pb isotopes in panel (c), the density increases from heavier to lighter isotopes with the double-magic nucleus in
between. In Pb isotopes, this ordering is opposite in the tail. As a result of this, the slope of the density in Pb isotopes, and
therefore |F (x)|2, decreases with the number of neutrons continuously and no kink is present in the symmetry energy.
On the other hand, in the case of Ni and Sn isotopes, the slope of the density is larger for the double-magic isotopes
generating a kink in the symmetry energy.

SUMMARY

In the present work we review results of our studies on some important properties of neutron-rich exotic nuclei
mainly related with the nuclear surface and characterized by a skin emergence and quantities coming from the density
dependence of the nuclear symmetry energy.

For a first time the various definitions which have been previously proposed to determine the neutron skin thickness,
involving both matter radii and tails of nuclear densities, have been compared within a deformed Skyrme HF+BCS model.
Three Skyrme parametrizations have been involved in the calculations: SGII, Sk3 and SLy4. Most of the results shown
in the paper are obtained with SLy4 force, but the other Skyrme interactions produce similar results. We found that all
definitions of the neutron skin predict to a different extent the existence of a skin in nuclei far from the stability line.
Particularly, a pronounced neutron skin can be attributed to heavier isotopes of the three chains considered, namely with
A > 132 for Sn, A > 74 for Ni, and A > 96 for Kr isotopes. We also found that for a given isotopic chain the increase of
the skin with the neutron number in the neutron-rich nuclei exhibits a rather constant slope, which is different depending
on the definition of nuclear skin. More significant neutron skin is obtained when analyzing its formation by means of
definition from Ref. [13] (called criterion (a)) or using an alternative one (called criterion (b)). In this case we get an
absolute size of the skin larger than 0.4 fm and almost reaching 1 fm for the heaviest isotopes (in the case of criterion
(a)). At the same time, the neutron skin determined by the difference between neutron and proton radii using diffraction
parameters defined in the Helm model shows a more smooth gradual increase with the neutron excess and it is in size of
around 0.3–0.4 fm.
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FIGURE 12. HF+BCS total densities in the surface region for five Ni (A=74–82) isotopes (a), five Sn (A=128–136) isotopes (b), and
five Pb (A=204–212) isotopes (c) around double-magic 78Ni, 132Sn, and 208Pb nuclei, respectively, calculated with SLy4 force.

We also show on the example of the neutron-deficient Ni isotopes the possibility to find a proton skin in a similar
way to the neutron skin. Although the analysis, which was performed in our paper for this case, uses an alternative
criterion to that applied in [13], it indicates a situation close to proton skin formation in Ni isotopes very close to the
proton drip line. However, the search for the existence of proton skin could be explored in the most proton-rich nuclei
approaching the proton drip lines of lighter nuclei, where Z > N.

In the present work the effects of deformation on the skin formation are studied in Kr isotopes which are well
deformed nuclei. Taking as an example 98Kr and 100Kr isotopes, we found that the profiles of the proton and neutron
densities, as well as the spatial extensions change with the direction in both oblate and prolate shapes. At the same time,
the neutron skin thickness remains almost equal along the different directions perpendicular to the surface. We found out
a very weak dependence of the neutron skin formation on the character of deformation.

A theoretical approach to the nuclear many-body problem combining the deformed HF+BCS method with Skyrme-
type density-dependent effective interactions and the CDFM has been used to study nuclear properties of finite nuclei.
For this purpose, we examined three chains of spherical neutron-rich Ni, Sn, and Pb isotopes and two chains of deformed
neutron-rich Kr and Sm isotopes, most of them being far from the stability line and representing an interest for future
measurements with radioactive exotic beams. In addition to the three Skyrme parametrizations already discussed and
used one more LNS Skyrme force has been involved in the calculations.

For a first time, we have demonstrated the capability of CDFM to be applied as an alternative way to make a
transition from the properties of nuclear matter to the properties of finite nuclei investigating the nuclear symmetry
energy s, the neutron pressure p0 and the asymmetric compressibility ∆K in finite nuclei. This has been carried out on
the base of the Brueckner energy-density functional for infinite nuclear matter. One of the advantages of the CDFM is the
possibility to obtain transparent relations for the intrinsic EOS quantities analytically by means of a convenient approach
to the weight function.

We have found that there exists an approximate linear correlation between the neutron skin thickness of even-even
nuclei from the Ni (A=74-84), Sn (A=124-152), and Pb (A=202-214) isotopic chains and their nuclear symmetry energies.
Comparing with the spherical case, we note that the linear correlation observed in the Kr (A=82-96) and Sm (A=140-156)
isotopes is not smooth enough due to their different equilibrium shapes, as well as to the transition regions between
them. As known, the latter are difficult to be interpreted as they exhibit a complicated interplay of competing degrees
of freedom. For all classes of the considered nuclei except for the Pb isotopes an inflection point transition at specific
shell closure, in particular at double-magic 78Ni and 132Sn nuclei and semi-magic 86Kr and 144Sm ones, appears for these
correlations. The increase of the symmetry energy with the increase of A for a given isotopic chain until the double-magic
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nuclei followed by its decrease confirms the physical interpretation given in Ref. [64], where this fact is shown to be a
result from the moving of the extra neutrons to the surface thus increasing the surface tension but reducing the symmetry
energy. In general, the neutron-rich skin of a heavy nucleus emerges from a dynamic competition between the surface
tension and the difference between the symmetry energy at the saturation density and at a lower surface density [64].

We have analyzed in detail the existence of kinks on the example of the Ni and Sn isotopic chains and the lack
of such a kink for the Pb isotopic chain. From the studies in Refs. [30, 31] and the present analysis the kinks displayed
by the Ni and Sn can be understood as consequences of particular differences in the structure of these nuclei and the
resulting densities and weight functions.

Concluding, we would like to note that the used microscopic theoretical methods are capable to predict the nuclear
skin in exotic nuclei, as well as important quantities in finite nuclei and their relation to surface properties of these
nuclei. The capability of the present methods can be further demonstrated by taking into consideration Skyrme-type and
relativistic nuclear energy-density functionals. More definite conclusions on the emergence of nuclear skin can be drawn
on the basis of studies of proton and neutron form factors and the related densities. Theoretical predictions for these
quantities were given, e.g., in our work [50] that serve as a ground for upcoming experiments using colliding electrons
with exotic nuclei in storage rings (see, e.g., Ref. [65]).
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