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The emission of the hard photon from the initial state is considered. The nucleon polarization and the differential cross sections for
some experimental conditions have been calculated. The case of the emission of the collinear (with respect to the direction of the
electron beam momentum) photon is considered separately. The differential cross section, the nucleon polarization, the correlation
coefficients for both polarized nucleons (provided the electron beam is unpolarized or longitudinally polarized), the transfer
polarization from the longitudinally polarized electron beam to the nucleon have been calculated. The photon energy distribution for

the reactione’e” — hh,y , where h and h, are some hadrons for the case of the collinear photon, emitted in the initial state, has
been calculated. As Ah, final state we considered some channels, namely: two spinless mesons (for example, 7°77, K"K ™), two
spin—one particles (for example, p*p~,dd ), and the channels 7a,(1260) and A(1232)N . The photon energy distributions are

calculated in terms of the form factors of the y* — A, transition (* is the virtual photon).
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The investigation of the electromagnetic form factors of the proton and neutron in both the space—like and time—
like regions of the momentum transfer squared is important for the understanding of the internal structure of these
particles and for the interpretation of many data on reactions with participation of the nucleons. The knowledge of the
nucleon form factors is also required for the interpretation of the nuclear structure and various measurements of the
reactions involving nuclei. So, the experimental determination of the elastic nucleon electromagnetic form factors in the
region of small and large momentum transfer squared is one of the major fields of research in hadron physics [1].

The measurement of the nucleon electromagnetic form factors in the space-like region of the momentum transfer
squared has a long history. The electric and magnetic form factors were determined both for the proton and neutron
using two different techniques: the Rosenbluth separation [2, 3] and polarization transfer method [4-7]. It turned out that
the measurements of the ratio of the proton electric and magnetic form factors using these two methods lead to the

appreciably different results, and this difference is increasing when Q® (the four— momentum transfer squared) grows.

The ratio G/ / G/, is monotonically decreasing with increasing Q° suggesting crossing zero at Q° ~ (8—-9) GeV'* [8].
These unexpected results revived an experimental and theoretical investigations of this problem (see reviews [1, 9]).
One possible mechanism suggested for the explanation of this discrepancy is the two—photon—exchange contribution to
the elastic electron—nucleon scattering [10, 11]. Other considerations lead to the conclusion that the contribution from
the two—photon term is too small at the Q® values of interest [12] and/or lead to a definite non—linearity in the

Rosenbluth plot which has not been seen in the data so far [13]. A model independent study of the two—photon—
exchange mechanism in the elastic electron—nucleon scattering and its consequences on the experimental observables
has been carried on in Refs. [14-16], and in the crossed channels: proton—antiproton annihilation into the lepton pair
[17] and annihilation of the electron—positron pair into the nucleon—antinucleon [18].

The data on nucleon form factors in the time—like region are not numerous. So, the separation the electric and
magnetic form factors in this region has not yet been done. One of the reasons is the limitation in the intensity of
antiproton beams and of the luminosity of electron-positron colliders.

Nevertheless, a few unexpected results have been observed in the measurements of the nucleon form factors in the
time—like region (note that the accuracy of the data set is not sufficiently good to do definite statements). Despite of the
relation| G, |=| G,, |, which must be valid at the threshold of the e'e” — NN reaction, the neutron electric form factor

is negligible near the threshold as may be suggested from the measurement of the differential cross section. The general
behavior of the neutron time—like form factors is rather unexpected. The proton magnetic form factor is smaller than the
neutron one at ¢° <6Gel’ (where experiments were done). The review of the present status in this field of
investigations is given in [1]. Note also that in the time-like region the proton magnetic form factor is considerably
bigger than the corresponding space—like quantity.

Recent experimental data on the nucleon form factors (both in the space— and time-like regions) together with new
theoretical developments [19] (where the analytic continuation of the QCD formulas from the space-like region of
momentum transfer to the time—like one was discussed) show the necessity of a global description of the nucleon form
factors in the full region of the ¢* variable. Some papers were already appeared [20, 21, 22].

The experimental data on the time—like form factors may turn out to be very sensitive to the details of existing
models. For example, the analysis, performed in [23], taking into account the combined space—like and time-like data
on the proton and neutron form factors leads to a good fit to the space—like form factors but cannot describe neutron
time—like data.

So, the experimental investigation of the nucleon form factors in the time—like region may give additional valuable
information about the internal nucleon structure and can test the existing models.

In the timelike region, the nucleon form factors can be measured using the reactions e*e” — NN or pp — e’e .
In this region only a small set of data exists. The neutron form factors were measured by the FENICE
collaboration [24], using the ADONE e'e” collider in Frascati. The reaction e'e” —nn was studied up to
q° ~ 6 GeV’* starting with reaction threshold. The proton form factors were measured in a broader region of ¢* values.

The region of the large ¢° was achieved with the help of pp — e'e” reaction: Fermilab experiment E835 measured the
cross section of this reaction up to ¢* =18.22 GeV'* [25].

Some experiments are planning to study this region of ¢°. A new experiment at an asymmetric collider is
proposed at SLAC with the ambitious goal to measure the nucleon form factors from threshold up to 3 GeV with the
same accuracy currently available in the space-like region [26].

The chance of measuring these form factors with higher precision will be given by a suitable upgrade of DADNE
energy [27]. The number of good detectable events per day is about, or exceeding, the total amount of events collected
by FENICE in all its data takings.

FINUDA planned to offer a unique possibility - a measurement of the nucleon polarization [27]. This kind of
measurement would be of great interest, as it would be a handle to infer something about the relative phases of G,, and
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G, form factors.

As it is known, the e'e” —> NN reaction is the cross channel for the reaction of the elastic electron—nucleon
scattering. The form factors describing the annihilation channel are assumed to be the analytical continuation of the
space—like ones. So, one may expect that the problems existed in the scattering channel will also manifest itself in the
annihilation channel. It concerns, in particular, the problem of the two—photon—exchange contribution.

Theoretically, the reaction e*e” — NN was studied in a number of papers. The dependence of polarization states

of created one—half spin baryons in the e'e” — BB reaction on the polarization of colliding ee” - beams was
investigated in [28]. The formulae obtained in this paper exhaust all polarization effects of baryons with spin 1/2 in the
e*e” — BB reaction. Numerical estimates of polarization effects were presented only for the nucleons. The polarization
effects appear to be very sensitive to the choice of the nucleon form factors parametrization and are rather large in
absolute value. The pronounced energy dependence measured in the cross section of the reactions e‘e” — pp
investigated in [29] in the near-threshold region. The authors considered the role of the antinucleon-nucleon interaction
in the initial- or final state using NN potential derived within chiral effective field theory.

The existence of the T—odd single—spin asymmetry normal to the reaction scattering plane requires a non—zero
phase difference between the electric and magnetic form factors. The measurement of the polarization of one of the
outgoing nucleons allows to determine the phase of the ratio G, / G,, . In [30] it was shown that measurements of the

proton polarization in ee” — pp reaction strongly discriminate between the analytic forms of models suggested to fit

the proton data in the space—like region.
As it is known, the problem of taking into account the radiative corrections in the elastic electron—nucleon
scattering is important for the reliable extraction of the nucleon form factors. The same is valid for the crossed channel.

The importance of the e +e* — N+ N+ reaction is not only due to the fact that it is a part of the radiative

corrections to the e” +e” — N+ N reaction but rather because it allows to measure the nucleon form factors by the
radiative return method [31].

Purpose of our research is to apply the method of radiative return for the scanning of the cross section and
polarization observables in the process of electron-positron annigilation into nucleon-antinucleon and other hadronic
channels to measure corresponding hadronic form facors in the time-like region.

In this paper we investigate the polarization phenomena in the reaction

e (k) +e" (k) = N(p)+N(p,)+7y(k), )

where four-momenta of the corresponding particles are given in the brackets. We consider here the emission of the
additional hard photon by the initial electron or positron since the emission of the photon by the final state particles is
model dependent and suppressed with respect to the initial state radiation due to the large nucleon mass as compared
with electron one and perhaps by the nucleon form factors.

Here we derive the expressions for the differential cross section and various polarization observables taking into
account the nucleon form factors.

We consider a particular case of the high—energy photon emission at small angles (the radiative return). The
differential cross section and various polarization observables (the nucleon polarization, the correlation coefficients for
the nucleon—antinucleon pair and polarization transfer from the longitudinally polarized electron to the nucleon), when
the angular distribution of the nucleon and energy of the emitted photon are measured, have been calculated for the case
of the photon emitted at small angles relative to the electron beam momentum.

The standard analysis of the experimental data requires the account for all possible systematic uncertainties. One
of the important source of such uncertainties are the electromagnetic radiative effects caused by physical processes
which take place in higher orders of the perturbation theory with respect to the electromagnetic interaction. In present
paper we calculate the model-independent QED radiative corrections to the observables (both polarized and
unpolarized). Our approach is based on the covariant parametrization of the nucleon or antinucleon spin four-vectors in
terms of the four—momenta of the particles in process (1) [32, 33].

The photon energy distribution for the reactione’e” — hh,y , where A and h, are some hadrons for the case of
the collinear photon, emitted in the initial state, has been calculated. As A4, final state we considered some channels,
namely: two spinless mesons (for example,z*7 ,K*K"), two spin-one particles (for example, p*p ,dd ), the
7a,(1260) and A(1232)N channels. The photon energy distributions are calculated in terms of the form factors of the
y" — hh, transition (" is the virtual photon).

The paper is organized as follows. In Section “POLARIZATION PHENOMENA INe*+e¢ — N+N” the

polarization phenomena for the Born approximation, i.e., for the reaction e +e” — N+ N are given. In Section
“HARD-PHOTON EMISSION” the emission of the hard photon by the initial state is considered. The nucleon
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polarization and the differential cross sections for some experimental conditions have been calculated. In Section
“RADIATIVE RETURN. SMALL ANGLES” the emission of the collinear photon is considered in details. The
differential cross section and various polarization observables have been calculated. In Section “PHOTON ENERGY

DISTRIBUTION” we have calculated the photon energy distribution for the reactione'e” — hh,y , where A and #,
are some hadrons for the case of the collinear photon, emitted in the initial state. As Ak, final state we consider some

channels. In Section “RADIATIVE RETURN. LARGE ANGLES” the emission of the collinear photon at large angles
is considered. The main results are summarized in Section “CONCLUSIONS”.

POLARIZATION PHENOMENA IN ¢ +¢” — N+ N

Let us consider first the production of NN -pair without emission of additional photons:
ef(kl)+e+(k2)—)N(p])+]v(p2), (2)

where four—-momenta of the corresponding particles are given in the brackets. The matrix element of this reaction can be
written as follows

M=idrZjJ, 3)
q

2

where a=¢’ /47 =1/137, q=k +k, =p,+p, is the virtual photon four-momentum. The leptonic and hadronic
currents can be written as

Ju= v(k, )7;,”(]{1 ), 4)

_ ) 1 R
J, =u(p)lE(q )y, YV 2(97)0,,9, V(p,),

where o, =(y,7, —7,7,)/2, M is the nucleon mass and F(q’) and F,(q’) are the Dirac and Pauli nucleon
electromagnetic form factors, respectively, which are the complex functions of the variable ¢°. The complexity of the
form factors arises due to the final-state strong interaction of the produced NN — pair. In the following, we use the
standard magnetic G,,(¢”) and charge G,(g”) nucleon form factors which are related to the form factors £ (g”) and
F,(¢q%) as follows

2

q
G,=F+F,G.=F +7tF,,r=——. 5
M 1 2 E 1 2 le ()

Then, the differential cross section of the ¢” +¢* — N+ N reaction, for the case of the polarized electron beam and
unpolarized positron beam, can be written as follows in the reaction centre of mass system (CMS)
do o
—=—pL H ., 6
dQ  84° Lot ©)

where £ is the nucleon velocity in CMS, B =+/1-4M?>/q’, and the leptonic and hadronic tensors are defined as

Luv = jﬂ]j’Hyv = Ju']:
The leptonic tensor for the case of longitudinally polarized electron beam has the form (other components of the
electron polarization lead to the observables suppressed by a factor m /M , where m is the electron mass)

L, ==q’g,, +2(k ky, +k,k,)+2id, < uvak, >, 7

where <uvab>=¢, ab, and 7, is the degree of the electron longitudinal polarization (we use the following
definition for the antisymmetric tensor €,,;, =1).

Taking into account the polarization states of the produced nucleon and antinucleon, the hadronic tensor can be
written as a sum of four contributions as follows:
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1 1 1 _
Hy =0+ H, )+ 21D+ H,, (2), ®)

where the tensor H ,, (0) describes the production of unpolarized nucleon and antinucleon, the tensor #,, (1)(EW 1)
describes the production of polarized nucleon (antinucleon) and the tensor H,, (2) corresponds to the production of

polarized particles, nucleon and antinucleon.
Let us consider the production of unpolarized NN — pair as a result of annihilation of unpolarized e'e” — pair. In
this case the general structure of the hadronic tensor can be written as

- 1 A
H/,zv(o):ng,uv—FWHZplﬂp]va (9)

where ¢, =g, -q,9,/ ¢* and Pv=Pu—49 P4,/ g*. One can get the following expressions for these structure

functions for the case of the hadronic current given by Eq. (4)

8M?

[71G\,(@*)F =1Gy(g*) ] (10)
1-7

H,(¢")=-24" G, (¢") [, H,(q") =

Then, the contraction of the leptonic and hadronic tensors, in the case of unpolarized initial beams and produced
nucleon and antinucleon, can be written as

SO) =L, H,,0)=-20°H,(¢")+ Ho(g" ) -Dg* ~ )

where u = (k, — p,)* and ¢ = (k, — p,)*.
The differential cross section of the e” +e* — N+ N reaction, for the case of unpolarized particles, has the form

in CMS
daun _ azﬂ

dQ  4q°

D, an

D =(1+c0s°0)| G, (¢*) | +~sin*0| G, (¢*)
T

where @ is the angle between the electron and detected nucleon momenta in the e +e~ —> N + N reaction CMS.
This expression coincides with the result for the differential cross section obtained in Ref. [28]. At the threshold of the
reaction, ¢> =4M?, we have G,, =G, =G (this relation follows from the definition (5)) and the formula (11) reduced

to (near the threshold)

d th 2
%zz—%’hﬂh =IGF. (12)
q

Integrating the expression (11) over the angular variables, we obtain the total cross section for the reaction
e"+e > N+N

dr o’ B 2M?
0.,(q")=——5-1G, () +=—5-1G,(¢")I'] (13)
3 ¢ q
Now, let us consider the single polarization observables. To do this, it is necessary to calculate the hadronic tensor for
the case when produced nucleon is polarized. We can write this tensor as a sum of two terms: one is symmetrical and
another one is antisymmetrical (over & and V indices)

H, =S, +id,,,
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2 1 .~ -
v ZH:]W[GEGM(]?I#GV +p1vd#), (14)

. 1 g .
A, =2MReG,G}, < uvgs, > +H%” G, | —ReG,G., 1< uvp,q >,

where a, =¢,,,P,,P,;5, and s, is the nucleon polarization four-vector and s, - p, =0, si=-1.

Let us define the coordinate frame in CMS of the e +e” — N+ N reaction. The z axis is directed along the
momentum of the nucleon (p), y axis is orthogonal to the reaction plane and directed along the vector k x p, where k
is the electron momentum, and the x axis forms a left-handed coordinate system. Therefore, the components of the
unit vectors are: fa =(0,0,1) and l? = (—sind,0,cos0) with [3 l? = cos0.

The polarization 4-vector s,, of a nucleon in the system where it has momentum p is connected with the polarization

vector y, in its rest frame by a Lorentz boost

1_5)?11_5
>S10
M(E + M)

_ |
Si=7,+ =P (15)

Let us note that four-vector s,, can be written down as

_ g} P
S, = Zslﬂ;(”, i=xy,z.

(i)

Each four-vector s,

satisfies the following conditions

0 0 02 _
57 p, =0,8"" =-1.

Note that the polarization 4—vectors of the particles can be parameterized in terms of the four-momenta of these

particles in the reaction under study (it is very convenient when calculating the radiative corrections to this reaction).
Let us write the chosen axes in a covariant form in terms of the four-momenta. So, in the reaction CMS we choose the

longitudinal direction ] (z axis) along the nucleon momentum and the transverse one 7 in the plane ( ]3,]?) (x axis)

and perpendicular to I ( y axis), then

|
P = ;(qum —-2M’q,).d} = M’¢*(¢* —4M?),
1

’ 1
P/E) :d_[(qz —4p,-k)p, +2p -k _Mz)q/z +(4M* _qz)klﬂ]’

2

dz2 = (qz —4M2)(4p1 “kp, -k, _quz),

o1 :
By =< uahipy >d5 = (Ap kpy k= M), (16)
3

It can be verified that the set of the four—vectors Rf"””) has the properties
PP == P p, =0,a,f=1tn (17

and that in the reaction CMS we have

1 - t z n n
B = ( BB P = (0.0). " = (0.7, (18)
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(nl'nz)nl—nz 7=

J=Giy =Gy

12X 1)

|“m
|a~;

g =

7ﬁ2:

It is easy to show that the following relations are valid

n=

S
Enl]

() _ (& p() _ (x) pn) _ (»)
P;z _Sl,u ’P,u _Sl,u ’P,u _Sl,u . (19)
Note that, unlike the elastic electron—nucleon scattering in the Born approximation, the hadronic tensor H ,, (1) in the

time-like region contains the symmetric part even in the Born approximation due to the complexity of the nucleon form
factors. So, this term leads to the non—zero polarization of the outgoing nucleon (the initial state is unpolarized) in the

¢ +e¢" — N+ N reaction and it can be written as

p_ sin26

v \/;D

ImG,,G... (20)

This expression gives the well known result for the polarization P, obtained in Ref. [28]. One can see also that:

- The polarization of the outgoing nucleon, in this case, is determined by the polarization component which is
perpendicular to the reaction plane.
- The polarization, being T—odd quantity, does not vanish even in the one—photon—exchange approximation due to the
complexity of the nucleon form factors in the time—like region (to say more exactly, due to the non—zero difference of
the phases of these form factors). This is principal difference with the elastic electron—nucleon scattering.
- In the Born approximation this polarization becomes equal to zero at the scattering angle & =90° (as well as at 8 =0°
and180°).

In the threshold region we can conclude that in the Born approximation this polarization must be zero due to the
relation G, = G,, which is valid at the threshold.

If one of the colliding beam is longitudinally polarized then nucleon acquires x— and z—components of the

polarization, which lie in the e +e~ — N+ N reaction plane. These components can be written as (we assume 100%
polarization of the electron beam)

2sin6 . 2 )
P =———ReG,,G,.,P =—cosO |G . 21
x \/;D M™~E z D ‘ Ml ( )

These polarization components are T—even observables and they are non—zero in the Born approximation even for the
elastic electron—nucleon scattering. Note that in the Born approximation we obtain the result of Ref. [28]. The

polarization component P, equals to zero at the scattering angle € =90° in the Born approximation. Transversally
polarized electron beam leads to the nucleon polarization which is smaller by factor (m /M) than for the case of the

longitudinal polarization of the electron beam.
Let us consider the case when the produced antinucleon and nucleon are both polarized. The corresponding
hadronic tensor can be written as

Hﬂv(2) = SHV(SI,S2)+Z'A#V(S1,S2),

~ . = - . L ImG.G;
Ayv(Spsz):[Q'S1(§2up]v_S2vp1,u)_q'sz(Slyp]v_Slvp]#)]ﬁa

Sy (8158) = A, 8 0+ A PPy + A G180+ 50820 + Ag - 5,(P 5o+ P,82) =48, (Py S0+ PR8I (22)

B q-s, )
S, =8, ——5 4, i= 1,2,

where s, , is the antinucleon polarization 4-vector ( p, -s, =0 ). Antisymmetric part of the tensor H , (2) arises due to

the fact that nucleon form factors in the time— like region are complex quantities.
The structure functions A4, have the following form
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1
Ag :E(qzsl '8, —29-5,9-5,)| Gy, |2)

RN q-s,9-S
: 2[ 71G, ' =G, 1+ =52 |G

A11_2 _ MZ(T—l)Z E M‘Z’

s

2
A =—%|GM |2,A15 :ﬁRe(TGM -G,)G,,. 23)

Using previous formulae one can obtain the following expressions for the components of the polarization correlation
tensor P, (i,k =x,y,z) of the nucleon and antinucleon, created by the one—photon—exchange mechanism in the

e +e  — N+ N process:

.2
=016, 416, P18, =0
’ D

G, [ ~71G, ]

P :L[z’(l+cos29) |G, [ —sin’0| G, '],
T D

sin@

NES))

P. =P =-2 cos@(ReG,,G}), (24)

where the first index of the tensor P, refers to the component of the nucleon polarization vector, whereas the second

index refers to the component of the antinucleon polarization vector.
The antinucleon polarization four-vector, s, ,, is described by the formula (15) where it is necessary to do the

following substitution: p ——p and y,— 7, (7, is the polarization vector of the antinucleon in its rest frame). The

5@

antinucleon polarization 4-vectors p,’,i =/,z,n (in terms of the particles four-momenta) can be written down as

a1
Pi,”_— (q P2y = 2M7q,). Py = - < pakypy >, (25)
3

Py = [(6]2 —4p, k)P, +2py k= M)q, +(4M* - ")k, 1
2

It is easy to show that the following relations are valid
] z X n
P, =55, Py =53, P\ =53, (26)

And for the completeness we give here the non—zero coefficients for the case of the longitudinally polarized electron
beam

sin6
P,=P =0,P, =P, =——Im(G, G,). (27)

zy yz \/; D

The following relation exists for these coefficients
Pm‘ +P}y +Pzz :1

One can see that:
- The components of the tensor describing the polarization correlations P, P, P_, P

w? zz? xz?

and P_ are the T-even

observables, whereas the components P,_, and P, are the T-odd ones.

vz

- In the Born approximation the expressions for the T—odd polarization correlations coincide with the corresponding
components of the polarization correlation tensor of baryon B and antibaryon B created by the one—photon—exchange
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mechanism in the e* +e~ — B+ B process [28]. The expressions for the T—even polarization correlations calculated in
this paper have some misprints.

HARD-PHOTON EMISSION
Let us consider the emission of the hard photon, i.e., consider the reaction (1). In this case the matrix element
corresponding to the emission of photon by electron and positron, can be written as

M7 =idraNdra sz;.]ﬂ, (28)
q
where the leptonic current with emission of additional photon has the form
L = 1 A~ 7 TR
Jn=-v(k, )[t_y” (f,—k+m)A+ t_A(k —Je tm)y, Julk,), (29)
1 2

where t, =2k -k, t,=2k-k,, A, is the photon polarization four-vector and the square of the matrix element can be

written as follows

Hv T uv? T uv

1 *
| M7 \2:647z3a3q—4U H,.L, =jj", (30)

where the hadronic tensor has the same form as in the Born approximation but the structure functions defining this
tensor depend on the shifted momentum transfer ¢ =k, + &, — k.

Let us represent the leptonic tensor L, as a sum of the spin-independent and spin—dependent part (we consider

only the case of the longitudinally polarized electron beam)
L, =0r,0)+L,(s,), (31)

uv

where the spin—independent part of this tensor can be written as
L};/zv 0)= Aogw + Al/ay/;lv + Az /gzylzzv + As (lgmlgzv + EIVEZy)’ (32)

where f,, =k, —(q-k / q9*)q 4» (i=1,2) and the structure functions 4, are

L. ’ 16m> 84
A, =202mq> —t,) (5 +—) —8k ky T 4 =2 2
hoh 4 Lot
16m*> 8¢* 16m*
T (33)
1 1t, tt,

The spin—independent part of the leptonic tensor L, (0) coincides with the one obtained in Ref. [34] and if we neglect
the m” /tt, term in the structure functions 4, then the result coincides with the expression obtained in Ref. [35].

Let us consider the spin—dependent part of the leptonic tensor 7

uv

(s,) . As it was noted above, we consider only
the longitudinal polarization of the electron beam. The spin four—vector describing this polarization is s,, = 4.k, /m,

in calculations of polarization effects in the Born approximation (this gives sufficient accuracy when we neglect the
electron mass in the Born approximation). But it is necessary to use more correct expression for the spin four—vector.
We use the following form

Sou

- %[(s 2wk, - 2mky, | N* = ms(s — 4m’), (34)

where s=(k +k,) is the square of the total energy of the beams. One can see that this expression satisfies the
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necessary conditions: s, -k, =0 and s’ =—1. In the reaction (1) CMS this polarization four-vector can be written as
s,, =(E/m)(sy,S), where s,=p/E,s=p/p and p(E) is the electron momentum (energy). So, we see that this
vector describes the longitudinal polarization of the electron.

Then the spin—dependent part of the leptonic tensor Z,,(s,) can be written as

L,(s,)= 2L (1 4 )’I/Z{B < uvkq>+B, < uvk,q >}, (3%5)

where the structure functions B, are

B =250-5am A D+ Lyesmt d 4 Ly,

2 1 1 2 1 2 1 2

2
B, =2 [ ] 82qk (Hl) (36)
tl tZ tl tl t2

Let us consider the case of unpolarized initial beams and when final state is unpolarized or the final nucleon has
polarization. Then the contraction of the spin—independent leptonic tensor and hadronic tensor which corresponds to the
polarized nucleon can be written as

S =L, (0H,, =L, (O[H,,(0)+H,, ()] =5 (0)+ 5" (D), 67

where S7(0)(S” (1)) corresponds to the unpolarized particles (polarized nucleon).
We can write for the unpolarized part

S7(0)=L,,(0)H,,(0) = LZ,V(O)[Hlé,,ﬁ%ﬁwﬁlv] HO +5 50, (3%)

M2

where the bar over the structure functions H,,i =1,2 means that they depend on the shifted variable ¢g* which is equal

to g° =s—t,—t,. In the reaction (1) CMS it is ¢° = 4E(E — ), where @ is the hard photon energy. The kinematic
coefficients @, , can be written as

2
0) =—8+it(s2+q4+4m2s)—8m2(q2+2m2){%+lJ : (39)

172 1 2

szzqz[/?fl Zz +_[Zl +Zz S(Z]"'Zz)]}""‘m q
Y 1,

2 2 2 2
+4m2 ﬁ_ﬁ q—%_u +2M2 2ﬂ+t_1+t_2_2m2q2 l+l R
t, 3 t L, t, ot
where y,, =2p, -k ,.

The contraction of the unpolarized lepton tensor and the hadron tensor corresponding to the polarized nucleon has the
form

' =L, 0H,, 1= %(l —7)"'ImG,,(4")G;(47)0s. (40)

where the function Q, can be written as
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2 2 _ 2 2 _ 2 2 2 _ 2 2 _ 2
0, =4y, q—<2;41+r1—s>+2m2( L9 4 Ny | Ly, 41, —s)+om? | AL 29\ 4y
tl ZL2 Z‘1 t2 t2 tl Z‘2 tl ZL2 Z‘1

W =<kpp,s>y, =<k,pp,s>.
Let us choose in the reaction CMS the following coordinate system: z axis is directed along the nucleon momentum

D, » the momentum of the initial electron beam ki forms the xz plane (the angle between these two momenta is 4), y
axis is directed along the vector ki % ;1 The momentum of the emitted photon k is defined by the polar and azimuthal

angles, 9, and ¢, , respectively. The angles defining the kinematics of the reaction (1) in its CMS are given in Fig.1.

Fig. 1. The angles defining the kinematics of the reaction (1) in its CMS.

Then the cross section of the process (1) can be written as

1 & Pk d*p d*p
r H, S EE Lo s sk~ —p, k), (42)

do? =— %
327 s¢t " o EE,

where E,(E,) and o are the energies of the nucleon (antinucleon) and photon, respectively; p, is the antinucleon

momentum.
On the basis of this expression we can obtain the different distributions depending on the experimental conditions.
If we measure the nucleon scattering angle and variables of the emitted photon, we can obtain the following distribution

do” L@ 5 E, .
1040 do 327 s~ P! [W—a)+a)|l_i—‘|cosl97] ‘g @)
g 1

The dependence of this expression on the azimuthal angle ¢, is due to the denominators # and?, . The integration over
this variable can be done easily. In this case the quantity ¢” isg” = W (W —2w) . Using the energy and momentum

conservation: W = w+E, + E, and k + p,+ D, =0, we can obtain the following relation between the nucleon energy E,

and the photon polar angle 3,
WW =2w)-2W -o)E, =20| p,|cosd,. (44)
If we retain the energies of the final hadrons we can obtain another distribution, namely

do’ 1 &
dQdEdE,d¢, 327° sq*

S, (45)

In this case ¢ = W[2(E, + E,)—W]. The integration over the photon azimuthal angle ¢, can be done easily. Instead of
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antinucleon energy E, we can introduce the accolinearity angle y (the angle between the momenta of the nucleon and
antinucleon) which is measured in some experiments. From the energy and momentum conservation we have

21 p, | p,|cosy =W?*+2M* —2W(E, + E,)+2E,E,. (46)

If the additional photon is absent then y =180° and the deviation of this angle from the value 180° means that there is
an additional photon. Experimenters choose the events in some interval of this angle. Using the above expression we
can change dE, bydcosy . We have

dE,

AT [2M*(E,-W)+E,(W* =2WE, +2M?*)]. 47)
1 2

decosy =—

The energy of the antinucleon E, can be expressed in terms of the nucleon energy E, and the accolinearity angle y by
the following way

E (W —E)W?-2WE, +2M*)* | p, | cos;(\/Wz(W—ZEl)z —4AM* | p, [ sin’y
’ AW ~E)'~| p, [ cos’x] '

(43)

The polar angle of the emitted photon 3, can be also expressed in terms of the energies of the final hadrons. We have

— E)(E, +2E, W)~
cosg, = W ENE 2, W)~ Ey (49)
2| p|(W~E ~E,)

Let us parameterize the nucleon spin four-vector s,, in terms of the four-momenta of the particles participating in the
reaction under study. When measuring the polarization of the produced particle the z -axis is usually chosen along the
momentum of this particle. So, in the reaction CMS we choose the longitudinal direction [ (z axis) along the nucleon
momentum and the transverse one 7 in the plane (p,%,) and perpendicular to/ , and denote these polarization four-

() ;_
vectors as P,"”,i=1t,n

1
P/EI) :d_[(;[l +2:)P, _ZMz(kl +k2)/,],d12 = Mz[(Z] +7(2)2 —4M’s),
I

n 1
P/E) :d_{(ll +Zz)(lzk1ﬂ _Zlkz,u)_"s[(}(l _Zz)pl,u _ZMZ(kl —kz)#]},

t

dlz = S(lez _MZS)[(Z1 +Zz)2 _4M25]:

" 1 K
Rf ) = —d—< Hkk,p, >,df :Z(;(I;(Z —Mzs). (50)

It can be verified that the set of the four—vectors P;[”’”) has the properties

P;“)Pﬂ(ﬂ) :—5aﬂ,P!f“) P, =0,0,=1tn (628
and that in the reaction CMS we have
1, . ~ - u ~
P;f]) :ﬁ(‘ Dy |5E1n1)7 P;Et) :(091)5 Pﬂ( )= (0,”), (52)
L _ Py ko i (cAi X
ny— 75 sN2— 75 ot — N =

|]_51| |];1| \[1—(}71'772)2 1_(}71'ﬁ2)2
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Note that in the Born case (there is no additional photon) these nucleon polarization 4-vectors coincides with the ones
given by the Eq. (16).
The variables y,, in Eq. (41) have the following expressions for particular choice of the nucleon polarization four—
vectors P, i=1,t,n

2

M . <kk >
yé:_yllzz d <kk,p,p, >, yi:%plpz[

1 t

2MPs =y (i +2,)) i=12,

yln :é{s[s;{] _2M2(S_tl)]+/1/1[/1/2(s_t1)_/1/1(s_t2)}9 (53)

n

u 1
Y = _g{s[slz _ZMZ(S_tz)]"'Zz[;(] (s=1,) = 2, (s =)}
The function O, depends on the nucleon polarization four—vectors Pf’,i =1[,t,n and it determines the spin—dependent
part of the cross section. The function @, has the following expressions for a particular choice of the nucleon

polarization four-vectors P{""" (in the reaction CMS)

oY = dMswsinIsind sing,[(E — w) [tl —ti+ aw| p,| cosS%J -

1 2 172

- 1 1 1 1
-2m? |P1 | Coslg[t—z+t—2J—2m2(E1 —E+a))[_2—t—2j],
2

1 2 tl

1 1
(" = 4swsind sing, {(E - o)[(p, —E]cosLQ)t—+(P1 +E1505l9)t__ (4)
1 2
E 2 m’ m
—87% (E-w)(Ecos"$+E _E2)+2t_2(pl +E,cos9)(p,cos§+ E_E2)+2t_z(pl — E\cos9)(E — E, — pcosI)},
12 1 :

E 1 1 1 1 1 L (1 1 (1 1
") =4 — [L0+L+[—+—]+L(———] 2i+2L+(—2+—2J+2L_[—2——2]],
p, sind 4t 4t L, A ot

where for the coefficients L, we have
L, =—4E, p,(E — w)cos9, L, =2sq’ p,cos9[E* +E,(2E, —-3E)— p.sin’ 9],
L, =2q° p,cosY[E,(SE -2E,)— E(E + E,) + p/sin* 9],
L =q’[2EE(w—-E)+E(E, —E,))+2M’E, + p} 2E, + 2E — ®)cos’ 9],
L.=—4m’Ep cos92E(E-E,)E+E,-E,)—M’w-Q2E - 0)psin’ 9],
L_=—-4m’E(E-E,)[2EE (E+E, —E,)-M*(2E + ©)— (4E — ) p; sin* 3].

Let us integrate the expressions Q" ,i =1,¢,n, over the angular variable ¢, . We have the following integrals

. dg . dg¢ . de
Il’zzjsm@t—y, JLZ:J.sm@tTy, Ilzzjs1n¢y tty’ (55)

1,2 1,2 172
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where
L, =4, +B,cosp,, 4, =20(EF kcosIcos3)), B, , = £2wk,sin3sin3,.

After integration we have

I = —B%ln(Al. +Bicosg,), J, = ! i=12,

1
' B, A +Bcosp,’

i

1 n |A +Bcos¢|

I
2EwB, |A +Bcosg, |

12~

(56)

If we integrate over the whole possible region of the angle @, , i.e., over (0,27) , we have that all these integrals are

equal to zero. So, in this case only perpendicular (to the reaction plane) polarization of the nucleon gives nonzero
contribution (as well as in the Born approximation). We have the following integrals

1/2
d d o
j ¢ - .[ 4 =A1,Ajr = wk, [[kﬁcoséﬁcos&’y] +%sin23} ,

1 - 2 + 1 1

J2 -

t

d¢, =  [ds, x (1 1
4A3 Ig 4N jtt T[_JF_J' 7

1

So, we have after integration over the angle ¢,

0" = IQ;")d¢ 4 |:2L +L £L+LJ+L(L—LJ+ Ly (L+Lj+
p, sing A A _

1
1_(4 4 1_(4 4
+— —+—=D+=L_ | ———— 1| 58
2L+(A3 A3J) 2L(A3 A (58)

+

RADIATIVE RETURN. SMALL ANGLES
Since the main contribution, proportional to the large logarithm, comes from the integration of the integrand in the
case of collinear kinematics of photon emission, we consider this case. For definiteness let us consider the case when
the emitted photon moves close to the initial electron direction:

léll?zgsso<<1,30>>%.

The differential cross section can be written as

7 3
do ! @ —n[2- x+xcos.9 —— L7 (59)
dQdxdQ, 327z (1-x)"s »
where x is the energy fraction carried away by the emitted photon, x=w/FE andy, =p,/E, Y, =E, /E (here p,(E))

is the momentum (energy) of the nucleon in the reaction CMS).
Integrating the leptonic tensor over the photon angular variables we obtain the following result for the case of
unpolarized initial beams

167r

L =.[ L, (0)dQ, = o P NOE* g, +(1-x)k k] (60)

where the factor F(L,x) has the form [36]
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_ 2 _ 2 2
FLoxy =g, -p 0= ey S, = . (61)
2 X X ‘ m 4
After the integration over the photon variables the differential cross section can be written as
7 2 Y
do’ _ A F(L,x)[2-x+xcos 3] 5", (62)
dQdx s (1-x) »
where we introduce
S = —[Ezg/w +(= ),k JH -
Then the differential cross section for the case of the unpolarized particles can be written as
do’ 2 Y,
Tw &N p(r,x)[2-x+xcos8 L] D(x), (63)
dQdx 2s (1-x) »
where the factor D(x) is
2
D)= {40 4 x 1) -y @) sin’ I (64)
4l1-xx+y -1

V1| Gy (@) =1 Ge(q") ) =81 -)1=)" | G, (¢*) [},

where y=M /E and ¢° =(1-x)s,7=q" /4M*. The nucleon electromagnetic form factors G,, and G, are taken at
the value ¢*. Thus, the emission of the photon decreases the argument of the form factors. If we remove the emission
factor F(L,x)dx and put x=0 we obtain the standard expression for the differential cross section in the Born
approximation since D(0) = D. Setting the form factors equal to one, G, =G,, =1, we obtain the differential cross
section for the case of the point particles in the final state, for example, e'e” — u*u~ or 7'z . To do this, it is

necessary to replace D(x) by D" (x) where
D (x) = i%m(l D[ - )1+ ) + (- )] 32 2 - ) sint - 5y}, (65)
— X

The nucleon energy E,, the scattering angle ¢ and x variable are connected by the following relation
xy,co88=2(1-x)-(2-x)Y,.
Using this relation we can determine the nucleon energy as a function of two variables: x and cos9. We have
Y, =[(2-x)* —x’cos> 3] {2(1 - x)(2 — x) £ xcos I 4(1 - x)* = y* (2 - x)* — x’cos>9)]"*}. (66)
When calculating the radiative corrections to the polarization observables it is convenient to parameterize the nucleon

polarization 4—vector in terms of the four—-momenta of the particles participating in the reaction under study. Any four-
vector U/(f) which parameterize the polarization state of the particle can be read as

US) :U/,()i)(kpkzaplapz)' (67)

Let us imagine for a moment that chosen parametrization on the right side of Eq. (67) is stabilized relative substitution
k, — xk,
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U/(zi)(k]’k2>pl’p2):Ug)(Xk]’k2$pl’p2)' (63)

Further we call such parametrization a stable one (relative to the substitutionk, — xk; ) and denote such set of
polarization four-vectors as S\,i =1,t,n .
In what follows we use the following set of the stable polarization four-vectors

1 R 1 K
SLI) = W(ZMzkly X P ), S,(, ) = ”_1 < pk,k p, >, ”12 = Z(}ﬁlz -M?s), (69)

1

1 S
S/(It) :n_[ZlkZ/J _Splu _(Zz _2M2 _)kly]’ n22 = S(leZ _MZS)'

2 1

If the polarization four-vectors U L” are unstable ones under above substitution they can be always expressed in terms of

the stable polarization four-vectors by means of some linear combination
UL[)(k]skzapppz) = Aij(k]skza p19p2)ULj)(klskzsp]ap2)- (70)

In case of the radiative return at small angles we have only one plane (reaction plane) and, therefore, normal
polarization four-vector Sf,") do not mix with the polarization four-vectors P/fl ' In this case we have some rotation in

the reaction plane and it can be written down as

S\ =cosy P +siny P\" S\ = cosy P, - siny P,", (71)
where
E,cos0— M:
cosy :M’ Sln‘// :_L”le (72)
E, — p,cos@ E, — p,cos@

Since in the time-like region the nucleon form factors are complex functions, the (1) tensor has a symmetric part

(in 4,v indices) and, therefore, the contraction of the Lifv””) and H,, (1) tensors is not zero. This leads to the nucleon

polarization in the case when the rest of the particles are unpolarized. The polarization vector in this case is normal to
the reaction plane and can be written as

DO, =23 = (1 =V x+ yicos)ImG (41 (4. 73)
] x+y’ -

Putting x =0 we obtain the result of the Born approximation. For the point final particles we have natural result that
the polarization is equal to zero.

Let us consider the case when the electron beam is longitudinally polarized. Integrating the leptonic tensor
L,,(s,) over the photon angular variables we obtain the following result [36]

877

g =1, (s a0, =i o P (L) < pvkk >, (74)
xo

pol

where the factor F'7” (L, x) , describing the photon emission by the longitudinally polarized electron beam, has the form

Fr(L,x) = —[(L, ~1) LSy N R () L] (75)

2r X X

The contraction of the tensors Lifv”"” and H, (0) is equal to zero and, therefore, the asymmetry determined by the

longitudinal polarization of the electron beam is absent. A non—zero asymmetry may arise due to the two—photon
exchange contribution, for example. The contraction of the LZ‘V’””” and antisymmetrical part (in g, v indices) of the

H,, (1) tensors is non zero. This leads to the nucleon polarization and in this case the polarization vector lies in the
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reaction plane. The components of the nucleon polarization vector for the case of the stable set of the polarization four-
vectors can be written down as (we assume 100% polarization of the electron beam)

F! (L,x) N

F(L,x)D(x)P,. =2sin9 >
’ Y, —ycos3 x+y” —

{A=00=1 +y,c0s9) | Gy (@) - (76)

[y + (1= x)(v,cosI=1)IReG, (q7)G), (47},

1 F"(L,x) 1

F(L,x)D(x)P. =—
(L X)DL, 2Y, —ycosd x+y* -1

{d-x)A-Y + ylcong)[y2 +(1-x)(y,cos9— 77)

NG, (@) +y* [A=x)(Y, = ycos )2 =, + yicos$) — y*1ReG,(¢°)G,, (4°)}-

If we remove the unpolarized and polarized emission factors F(L,x)dx and F”"(L,x)dx and put x =0 we obtain the

standard expressions for the components of the nucleon polarization vector in the Born approximation. For the case of
the point final particles we have

F(L,x)D(x)P"" = —y(2— x)sindF " (L, x), (78)
F(L,x)D(x)P"" =[xy, +(2—x)Y,cos$]F " (L, x).

Let us consider the case when the produced antinucleon and nucleon are both polarized. Then the components of
the polarization correlation tensor P,,(i,k = x,y,z), of the nucleon and antinucleon (determined as a coefficient in front

of &,&,, where £ l(f ,) 1s the nucleon (antinucleon) polarization vector in its rest frame) can be written as

D(x)P, =———[(1-%)|G, (¢*) F " |G.(a*) ], (79)

l-x-y
D(x)P, = (2-2x+x%)sin* 9| G, @] +z(1+dx2sin219)%(r |G,, @I -] GE(qz) -
r—

—dsin* 9{x[4(1 - x) + (2 — x)(xy — 2Y) - 2y,c0s9] | G,, (¢°) [ —%[—4(1 —xP +2(-x)(y+Y)+
-

+x (Y, = (| G, (¢*) [ —ReG,(¢*)Gyy (47)) +2"—2%[y(y—m ~2(1-%)]1G,(¢*) -Gy, (¢*) [,
y (-1

D(x)P, = iz {2lecoszl9 =2y, (y, +xcosF) + x(2 - x)[y(y, —Y,cos§)cos 8+ (y, + xcos$)(y, —
y
z 1
~Ycos9)}| G, (") +7:{yl (7, +xcosP) + yY[1+d(y, +xcos9) 1}(z| G, (¢") [ = G,(¢") )~
—%ﬁ{x@ =)y, =Y. (y, + xcos$)]cosd— y,(y, + xcosI)(2 - x)* + x’ yY,cos” 9}

[21Gy (4*) [ —ReGE<q2)G;<q2>+2—lzi\ G,(4) -G, (¢*) 1+
yor-1

+£(y] + xcos3)(y,co89+ x){[2Y,cos 3+ x(2 — x)(y, — Y;cos ]| G,, @) -
y
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X z

2y* (r-1)°

[(2=x)y, +xYcos9]| Gy (q*) =Gy, (") [ -

e 1_ ple- Xy, + 5 Ycos9-2(1-x)p, (Y, - y,cos (7 | G, (¢*) | ~ReG,(4*)Gyy (47))} —
2

_Fﬁ(l = x)(1=Y, + y,cos9cosIyy, +Y,(y, +xcosI(r | G, (¢°) ' =ReG,(q°)G,, (q)),

D(x)P_ = —sin9{(2—2x+x")cos$| G,, (¢*) |’ +l(y1 + xcosF)[—x(2 —x)+ yd(y,cos3+ x)(2 -
y

204 3)]| Gy (¢1) F +——— (3, +xc0sD[yzd (7| Goy () —| Gy (g™ )=
Yy (-1

“2(1-x)(1+ y,cos8-Y,)(z| G, (¢°) | ~ReG,(q")G ()]} -~ 1
y(z=1)

sin{(y, + xcos$)[2—x —

—xyd(y,cos 9+ x)] - xycos 9} [2% 1G,(¢) G, (@) | +71G, (¢*) [} —ReG,(¢*)G;, (V)]

b
yo(z=1)

D(x)P, = LSO )Y cos9+ xd[2(1- x)p, (v — sin* IY ) + y(2 — x) (3, — ».Y, —
y

2y 12 2 ‘9 2y 12 2y 12
~xY,cos9)1} | Gy, (¢") | —izd%[y](2+y>+x(xcosl9—yl>](r|GM(q IEIACRIRE

zd  sin8
M
2y° (z-1)°

[1,(2 =) +xYcosI12(1-x) + y(¥, = M| G, (¢*) = G (") " =

_dising
yr-1

{=2ycosI(Y, — y)(¥, + y,cos9) + 2y, (1—x)(2Y, + 2y + y,cos9) + x* yy, +

+Y,cosI8(1—x)—Y, —4y,cos9+(2-x")y] +Ld[(2 —4x+x7)y, = 2y,(Y, + y,cos9) —
X

—x*Y,cosI|}(z| G, (¢°) ' —ReG,(¢*)G,, (¢)),
where we introduce the notations

z=y" +(1-x)(¥, - y,cos9)(Y, — y,cos9-2), d :; Y, =£.

’ 2
y+1) E
For completeness we give also the nonzero coefficients in the case of longitudinally polarized electron beam

1 sin*9 _ . .
F(L,x)D(x)P,, = > ﬁF’" (L, x)ImG,,(¢°)G1(q°),

1 sin*9 . .
F(L,x)D(x)P, = ) xy,d -1 F(L,0)[2(1-x) + (¥, = ]ImG,, (¢*)G;(¢"), (80)
F(L,x)D(x)P,, = L2503 oy (L,0)[(2=x)y, +xY,cos81ImG,, (¢°)G;(¢"),

2yr-1
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F(L,x)D(x)P, = %#F”"l (L,x){d(y, + xcosI)[(2 - x)y +2(1 - x)] - xcos G} ImG,, (¢ )G (q°).

PHOTON ENERGY DISTRIBUTION
Let us calculate the differential cross section of the reaction (1) for the experimental conditions when only the
energy of the collinear photon is measured. To do this, it is necessary to calculate the quantity do” / dx , i.e., we have to
integrate the differential cross section (62) over the nucleon angular variables. The invariant integration of the hadronic
tensor is the simplest method to do this.
Let us define the following quantity

d'p, d'p,
F, =]

Yk +k,—p, —p, k). 81
uv (272')32E1 (27[)32E2 ( 1 2 pl p2 ) ( )

Using the requirements of the Lorentz invariance and ¢,H,, =¢q,H, =0 (it is a consequence of the hadron current

conservation) the most general expression for the £, tensor can be written as

F;rv = A(qz )gyv' (82)

Only unpolarized part of the hadronic tensor # ,,(0) gives nonzero contribution to the Eq. (81) since we integrate over

the variables of the nucleon—antinucleon pair. To calculate the A4(g”) function it is necessary to multiply by g L, tensor

the left and right sides of Eq. (81) and this leads to the following result
d’p, _d’p,

(27)’2E, 27)’2E,

1
A = gf H, (0, 59k +ky — p, - p, ~ k). (83)

The contraction of the hadron H, (0) and g, tensors can be written in terms of the structure functions

H/(q%),i=12
H,,(0)g,, =3H,(q°)+M*(1-1)H,(q"). (84)
This contraction can be written also in terms of the nucleon electromagnetic form factors

H,,(00g,, =-8M’[|G.(¢") [ +27] G\, (¢") ] (85)

The easiest way to do the integration over the variables of the nucleon—antinucleon final state is to use the center—of—
mass system of this pair. As a result we have

2 M? 4M*

A(q )Z—gm 1‘7“ Gp(¢) [ 221Gy (g [') (86)

Representing the square of the matrix element as contraction of the lepton and hadron tensors we can write the
expression for the differential cross section as (we integrate over the angular variables of the collinear photon)

do’
dx

1

4 3 yun

=4r'xa’ —F, L. 87)
q

Since the F,, tensor is symmetric (over the g, v indices) only unpolarized part of the lepton tensor gives nonzero

contribution. As a result we have for the differential cross section do’ /dx (where x is the beam energy fraction
carried away by the emitted collinear (to the direction of the electron momentum) photon in the e'e” — NNy reaction)

do’ S8ra’ aM*?
— = Mz,/l— —F(L0)[ Gy (¢*) [ 271Gy, (¢*) ] (88)
dx 3 ¢q q
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The limit of the point-like final particles (for example, the e'e” — y* 1"y reaction) is given by

dO-V ) 2 2 2
point — 4_7Z'a_ 1 _ 4Af (1 + 2 A42
q

= )F (L, x). (89)

Let us write the energy spectrum of the collinear photon in the terms of the structure functions, which define the spin—
independent part of the hadron tensor, for the case of two final particles with different masses. We have

2
do’! rna

== [(¢* + M} = M)’ —4M ¢’ 1H,(q")}. (90)
dx 3¢

M} - M; M;
1+ 2y _A—LF (L, x){-3H,(¢*)+
\/( qz ) qz ( ){ ](q) 4M2q2

1

And the spin—independent part of the hadron tensor is written in this case as

- 1 L
H/,“/(O):H1(q2)g/w+WH2(q2)p1yp1w (91)

1

where M, is the mass of the particle with four-momentum p, . Using this equation we can calculate the contributions

of some various channels to the energy spectrum.
Spin—zero particles.

Consider the production of two spinless particles (for example,e’e” — 7" 7y, K"K 7 ). The electromagnetic current of

the hadrons in this case is determined by one complex form factor and the explicit expression of this current can be
written as

J, =F(@*)p,—p,), 4, 92)

where p,,(p,,) and ¢(4,) are the four-momentum and wave function of the first (second) spinless particle. The

structure functions in this case are
H(¢*)=0,H,(¢*)=M* | F(¢*) ], (93)

where M is the spinless particle mass.
Spin—one particles.

Consider the production of two spin—one particles (for example,e’e” — p*p y,ddy). The electromagnetic

current for a spin—one particle is completely described by three complex form factors. Assuming the P - and C -
invariance of the hadron electromagnetic interaction, this current can be written as

2

* * 1 * * * * * * * *
J,=(p, = p,), -G, (¢))U; -U; +WG3(q2)(U1 qU; -q—%Ul U;1-G, (¢ ) U;s -q=U U7 -q), (94

where U, ,(U,,) is the polarization four—vector describing the first (second) spin—one particle.

U
The form factors G.(¢”) are related to the standard electromagnetic form factors: G,. (charge monopole), G,
(magnetic dipole) and G,, (charge quadrupole) by

G, =-G,,G, =G, +G, +2G,,G, =—§T(G2 —G3)+(l—§‘[)G1. (95)

The standard electromagnetic form factors have the following normalizations
G(0)=1,G, (0) = 1, G, (0) =-M"Q,

where u(Q) is the magnetic (quadrupole) moment of a spin—one particle. The structure functions in this case are
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H\(q*)=8M’t(1-7)|G), [, H,(¢") =12M*( G [ —%T\GM i +512 |G, 1), (96)

where M is the spin—one particle mass. The form factors of the p —meson, deuteron in the time—like region of the

momentum transfer were discussed in Refs. [37, 38].
Channel za, .

Let us consider the production of 7 —meson and a,(1260) , where a,(1260) is the axial-vector meson with the following
quantum numbers 7°(J"“)=1"(1'"). This channel gives a substantial contribution to the e'e” — 4z process. In the
energy region 1<W <2.5 GeV (W is the total energy of the colliding beams) the process of four pion production is
one of the dominant processes of the reaction e"e” — hadrons.

The electromagnetic current of the y* — za, transition is described by two complex form factors. Assuming the
P -and C - invariance of the hadron electromagnetic interaction this current can be written as [39]

J,=F(@*)Nq°U,—q-U'q,)+F(q°)q-p,U,—q-U'p,,), 97)

where U, is the polarization four-vector describing the spin-one @, —meson, p,, is the pion four-momentum and

F(q") are the electromagnetic form factors describing the " — 7a, transition. The structure functions corresponding
to this current are

1
H(q*)=-14F, +5<q2 -M}+M)F, P H, (") =¢'[¢" | K+ F, [ =M | F, ['], (98)

where M,(M,) is the a,—meson (pion) mass.

Channel AN .

Let us consider the production of antinucleon and A(1232)—isobar with the 7(J")=3/2(3/2"). One can expect that
this channel gives a substantial contribution to the e*e” — NNz process. The electromagnetic current of the y* — AN
transition is described by three complex form factors and it can be written as [40]

J, = p)rs{F (a4’ Y, + (M, +M,)q, ]+ 99)

+F,(¢*)q,ly, + (2= P), 1+ E(@DUM, +M,)g,, +4,7,1v(p,),

MI_MZ

where M (M,) and p,(p,) are the mass and four-momentum of the A —isobar (antinucleon). F(¢°)(i =1,2,3) are the
electromagnetic form factors describing the »° — AN transition. The structure functions corresponding to this current
are

1 1 1 .
H(q") = —E(MIMZ + r)[W MM, -7r)|F | +(M,+M,)’ |F, [ —V(MIMZ —7r)(M, +M,)ReFF;], (100)

1 1
H(Z—EMZMZ—Z F|* —2ReFF; —lM MM, =M, (M2 —-M?
26])—3( 1 My N F | e 3] 3( 2)[( 1 2)( 2 1)+

.1 44 1 G+ M —M?
+M,g*ReFE; ——M*(M M, +)[——— | E, " ——— | (M, + M))F, + 1 2 F P,
29" ] 373 (MM, )[(Ml_Mz)z‘ 2 M12|( 1 DE M, —M, 1]

where F=q2F1 +F, +F, 1”=(f]2_M12_M22)/2‘

RADIATIVE RETURN. LARGE ANGLES
Let us consider the experimental conditions when the nucleon—antinucleon pair is not detected. We assume that
the apparatus detect events in the whole phase space of the nucleon—antinucleon pair. So, it is necessary to integrate the
differential cross section (42) over the variables of this pair. This procedure is already done in the Section “PHOTON
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ENERGY DISTRIBUTION™. Using these results we have for the energy and angular distribution of the photon

=4z an%A(qz)g” ' (0), (101)

Vo uv

where the function A(g”) has the following form for the general case of two particles with unequal masses

2 1 2 _
A(g?) = IZW—J( + M2 —M?2) —4M?q (102)
B3H,(q") - 4M2 ——(q* + M} -M;) -4aM}q*1H,(q*)},

where M, and M, are the masses of the final particles. The structure functions H,(¢*) describe the hadronic tensor
H,, (0) for the case of two-particle final state. The expressions of the structure functions in terms of the
electromagnetic form factors of the transition y* — hh, can be found in the Section “PHOTON ENERGY
DISTRIBUTION” for some particular final states. After calculation of the convolution of the L}, (0) and g, tensors

we have for the distribution (neglecting terms proportional to the electron mass)

do’
ddey

=32z'xa’ %A(qz){l —%[q4 +2¢%q -k +2(q-k)*1}. (103)
q

172

Let us choose the z axis along the electron momentum, and the photon momentum in the xz plane. Then integrating
over the whole range of the photon azimuthal angle we obtain

2 2-2x+x’
—2 2r) xa —A l-—————F5] 104
xdc (@=y q* @l X 1-pic g (1o

where B2 =1-4m’ /s, c= cos§, , 3, is the angle between the electron and photon momenta.
Integrating this expression over the photon polar angle within the rangem/E<§ <8 <9,, where

(r—8,)> m/ E , we obtain the following expression for the differential cross section

do’ s s 15 3 _£_1+q4/s (1+¢)(d-c,)
7 =227) a sq4A(q (e =) S) 1_q2/s (1 ire)

(105)

where ¢; = cos$ . Let us rewrite this formula in another form introducing the total cross section of the e'e” — ik,

reaction. We have

do’ 2o q _1+q4/s (1+cl)(l )

13 g RN )1 ="0) =T el T S (106)
where we define
2_G(ee—>hh) 11 3 7 22
R(q )——G(M ST ae — (@ MM - (107)
(BH (gt [(g + M? ~ MY —4M2¢P1H, (g)).
Mlq

If we integrate the expression (104) over the photon polar angle within the following range
m/E<< 3" <9, <x—9"™ we obtain the following result for the differential cross section of the e’e” — hh,y
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reaction
do’ 4o 5
= R
i35 (g7
where ¢, =cos®"™ . If we puthh, = NN , then R(q°) =(B/2)[2] G\ (q*) [ +(1/7)| Gy (¢°) '] and the expression for
do’ | dg* for the case i h, = NN coincides with the one obtained in Ref. [30].

4,02
1+q2/s In
l1-g°/s l-c,

I+c,

—-(1- ﬁ)cm 1 (108)
S

CONCLUSIONS

The emission of the hard photon by the electron or positron is considered in the ¢ +e" — N+ N+y. The
nucleon polarization and the differential cross sections for some experimental conditions have been calculated.

The case of the emission of the collinear (with respect to the direction of the electron beam momentum) photon is
considered separately. The differential cross section, the nucleon polarization, the correlation coefficients for both
polarized nucleon and antinucleon (provided the electron beam is unpolarized or longitudinally polarized), the transfer
polarization from the longitudinally polarized electron beam to the nucleon have been calculated.

We have calculated the photon energy distribution for the reaction ee” — Blgzy , where B, (Ez) is some baryon
(antibaryon) for the case of the collinear (with respect to the direction of the electron beam momentum) photon, emitted
in the initial state. As BIEZ final state we considered some channels, namely: two spinless mesons (for example,

7'7”,K*K™), two spin-one particles (for example, pp~,dd ), the za,(1260) and A(1232)N channels. The photon

energy distributions have been calculated in terms of the electromagnetic form factors of the y* — B, §2 transition.
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