ЕКОЛОГІЧНА БЕЗПЕКА ОТОЧУЮЧОГО СЕРЕДОВИЩА

УДК (574+502.7)

О. М. ГЕТМАНЕЦ*, канд. физ.-мат. наук, доц., В. Г. ГОРДИЕНКО**, д-р хим. наук, проф., А. А. ДРОЗДОВ*, ассист., Н. М. ПЕЛИХАТЫЙ****, д-р физ.-мат. наук, проф.

*Харьковская государственная зооветеринарная академия **Харьковский национальный медицинский университет ***Харьковский национальный университет имени В. Н. Каразина

РАДИАЦИОННЫЙ МОНИТОРИНГ МЕСТНОСТИ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ ПРИ ПОМОЩИ ВОЛОКОННО-ОПТИЧЕСКОГО ДОЗИМЕТРА

Предложена методика долговременного удаленного радиационного мониторинга местности при помощи волоконно-оптического дозиметра с дополнительным точечным датчиком радиации, которая позволяет быстро и надежно определять поле радиационного фона как внутри контролируемой зоны, так и вблизи ее границы, а также локализовать источники повышенной радиации.

Ключевые слова: волоконно-оптический дозиметр, мониторинг, реальное время.

Гетманець О. М., Гордієнко В. Г., Дроздов О. О., Пеліхатий М. М. РАДІАЦІЙНИЙ МОНІТОРИНГ МІСЦЕВОСТІ В РЕЖИМІ РЕАЛЬНОГО ЧАСУ ЗА ДОПОМОГОЮ ВОЛОКОННО-ОПТИЧНОГО ДОЗИМЕТРУ

Запропонована методика тривалого віддаленого радіаційного моніторингу місцевості за допомогою волоконно-оптичного дозиметру з додатковим точковим датчиком радіації, яка дозволяє швидко і надійно визначати поле радіаційного фону як усередині контрольованої зони, так і поблизу її межі, а також локалізувати джерела підвищеної радіації.

Ключові слова: волоконно-оптичний дозиметр, моніторинг, реальний час.

Getmanets O. M., Gordienko V. G., Drozdov A. A., Phelikhatiy N. M.

RADIATION MONITORING OF LOCALITY IN REAL-TIME MODE BY FIBRE-OPTICAL DOSIMETR The method of duration remote radiation monitoring of locality by fibre-optical dosimeter with the additional point sensor of radiation, which allows quickly and reliably to determine the field of radiation background into the controlled area and near-by its border and also to localize the sources of the promoted radiation has been proposed.

Key words: fibre-optical dosimeter, monitoring, real time.

В настоящее время широко обсуждаются возможности использования распределенных волоконно-оптических дозиметров для решения задач долговременного удаленного радиационного мониторинга местности вблизи ядерных установок, на загрязненных территориях и в местах хранения радиационных отходов [1]. Волоконно-оптический дозиметр включает в себя радиационночувствительные оптические световоды, специальным образом размещенные на местности, радиационно-стойкие волоконные световоды, доставляющие световой сигнал к удаленной регистрирующей аппаратуре, оптический рефлектометр и компьютер.

Под действием ионизирующего излучения в сетке стекла радиационно-чувствисветовода возникают центры тельного окраски, из-за чего ослабевает световой сигнал, распространяющийся по световоду, при этом величина ослабления однозначно связана с поглощенной дозой. Рефлектометр строит распределение величины затухания светового сигнала вдоль радиационночувствительного световода, которое при помощи компьютера легко пересчитывается в продольное распределение поглощенной дозы в стекле световода и, соответственно, в мощность экспозиционной дозы. Преиму-

[©] Гетманец О. М., Гордиенко М. Г., Дроздов А. А., Пелихатый Н. М., 2011

щества данного метода удаленного радиационного мониторинга состоят в относительно невысокой стоимости аппаратуры, надежности системы и ее информативности. При этом существующие стандартные дозиметры и датчики имеют принципиальные ограничения для решения задач долговременного удаленного мониторинга радиационного поля: они требуют электропитания и систем передачи электрического сигнала, что ставит под вопрос их надежность в аварийных условиях; они также являются точечными датчиками, и поэтому контроль обширной территории является труднореализуемым.

В то же время волоконно-оптический дозиметр определяет величину поглощенной дозы лишь вдоль длины световода – границы контролируемой зоны и ничего не говорит о поле радиационного фона внутри самой зоны и в ее окрестности. Поэтому целью настоящей работы является исследование возможностей применения волоконно-оптического дозиметра для радиационного мониторинга местности внутри контролируемой территории и вблизи ее границы. Как будет показано ниже, для решения поставленной задачи наряду с измерением непрерывного распределения мощности экспозиционной дозы вдоль световода волоконно-оптического дозиметра необходимо произвести хотя бы одно измерение мощности дозы в центре контролируемой зоны при помощи точечного датчика. На основании этих данных непрерывно строится нелинейная регрессионная модель, которая и описывает поле радиационного фона как внутри, так и вблизи границы контролируемой зоны.

Предположим, что некоторую контролируемую территорию окружает волоконнооптический дозиметр, имеющий общую длину L. Световой сигнал от чувствительного волоконного световода доставляется до отдаленной регистрирующей аппаратуры, обрабатывается и пересчитывается в распределение мощности экспозиционной дозы z ионизирующего излучения вдоль текущей длины дозиметра *l*: z = z(l) $(0 \le l \le L)$. Пусть в центре контролируемой зоны находится точечный дозиметр (он может быть также волоконно-оптическим [2]), показания которого Z0 тоже доставляются к отдаленной регистрирующей аппаратуре. Для определенности координаты дозиметра примем за начало отсчета прямоугольной системы координат, т.е. x = 0, y = 0. Значение поля излучения в этой точке равно $z(0;0) = z_0$. Ось 0х будем считать направленной с запада на восток, а ось 0у – с юга на север. Поскольку волоконно-оптический дозиметр расположен на местности вполне определенным образом, то зависимости координат произвольной точки дозиметра от его текущей длины l считаются известными, т.е. x = x(l), y = y(l).

Основываясь на показаниях волоконнооптического и точеного дозиметров, будем строить модель нелинейной регрессии для мощности экспозиционной дозы ионизирующего излучения z внутри контролируемой зоны и вблизи ее границы: z = z(x; y). Для начала рассмотрим модель 2-го порядка по переменным x и y – координатам произвольной точки зоны (хотя, в принципе, на основании показаний дозиметров можно строить модель любого порядка):

$$z = ax^{2} + by^{2} + cxy + dx + ey + f.$$
 (1)

где a, b, c, d, e, f – параметры регрессии, оценки которых можно определить по фактическим показаниям детекторов методом наименьших квадратов. Заметим, что параметр $f = z(0;0) = z_0$. При этом в системе нормальных уравнений для оценок параметров a, b, c, d, e суммы по всем точкам световода волоконно-оптического дозиметра переходят в интегральные суммы, а их пределы – в соответствующие контурные интегралы вдоль длины световода. Запишем эту систему в матричном виде: $A \cdot x = b$, (2)

где матрица системы

$$A = \begin{pmatrix} \overline{x^4} & \overline{x^2y^2} & \overline{x^3y} & \overline{x^3} & \overline{x^2y} \\ \overline{x^2y^2} & \overline{y^4} & \overline{xy^3} & \overline{xy^2} & \overline{y^3} \\ \overline{x^3y} & \overline{xy^3} & \overline{x^2y^2} & \overline{x^2y} & \overline{xy^2} \\ \overline{x^3} & \overline{xy^2} & \overline{x^2y} & \overline{x^2} & \overline{xy} \\ \overline{x^2y} & \overline{y^3} & \overline{xy^2} & \overline{xy} & \overline{y^2} \end{pmatrix},$$

а вектор решений
$$x = \begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix}$$
, и вектор
$$\begin{pmatrix} \overline{zx^2} - z_0 \overline{x^2} \\ \overline{zy^2} - z_0 \overline{y^2} \\ \overline{zy^2} - z_0 \overline{y^2} \\ \overline{zxy} - z_0 \overline{xy} \\ \overline{zx} - z_0 \overline{x} \\ \overline{zy} - z_0 \overline{y} \end{pmatrix}.$$

Здесь введены обозначения:

$$\overline{x^4} = \frac{1}{L} \oint_L x^4 dl, \quad \overline{x^2 y^2} = \frac{1}{L} \oint_L x^2 y^2 dl,$$

$$\overline{x^3 y} = \frac{1}{L} \oint_L x^3 y dl, \quad \overline{xy^3} = \frac{1}{L} \oint_L xy^3 dl,$$

$$\overline{x^3 y} = \frac{1}{L} \oint_L x^3 y dl, \quad \overline{y^4} = \frac{1}{L} \oint_L y^4 dl,$$

$$\overline{x^3} = \frac{1}{L} \oint_L x^3 dl, \quad \overline{y^3} = \frac{1}{L} \oint_L y^3 dl,$$

$$\overline{x^2} = \frac{1}{L} \oint_L x^2 dl, \quad \overline{y^2} = \frac{1}{L} \oint_L y^2 dl,$$

$$\overline{x^2 y} = \frac{1}{L} \oint_L x^2 y dl, \quad \overline{xy^2} = \frac{1}{L} \oint_L xy^2 dl,$$

$$\overline{x} = \frac{1}{L} \oint_{L} xdl, \qquad \overline{y} = \frac{1}{L} \oint_{L} ydl$$
$$\overline{xy} = \frac{1}{L} \oint_{L} xydl, \qquad \overline{zx^{2}} = \frac{1}{L} \oint_{L} zx^{2}dl,$$
$$\overline{zy^{2}} = \frac{1}{L} \oint_{L} zy^{2}dl, \qquad \overline{zxy} = \frac{1}{L} \oint_{L} zxydl,$$
$$\overline{zx} = \frac{1}{L} \oint_{L} zxdl, \qquad \overline{zy} = \frac{1}{L} \oint_{L} zydl.$$

Поскольку зависимости z(l), x(l), y(l)известны, то вычисление контурных интегралов вдоль длины световода L не представляет трудностей. Например, если волоконно-оптический дозиметр представляет собой окружность радиуса R, то матрица системы принимает вид:

$$A = \begin{bmatrix} \frac{3 R^4 \pi}{4} & \frac{R^4 \pi}{4} & 0 & 0 & 0\\ \frac{R^4 \pi}{4} & \frac{3 R^4 \pi}{4} & 0 & 0 & 0\\ 0 & 0 & \frac{R^4 \pi}{4} & 0 & 0\\ 0 & 0 & 0 & R^2 \pi & 0\\ 0 & 0 & 0 & 0 & R^2 \pi \end{bmatrix}$$
(3)

При этом x = 0, y = 0, xy = yx = 0.

В качестве примера рассмотрим случай, когда некоторую контролированную зону окружает волоконно-оптический дозиметр, представляющий собой окружность радиуса R = 1 км, имеющий начало и конец в точке с координатами (1;0) (в километрах). В центре окружности расположен точечный дозиметр. Пусть в некоторый определенный момент времени распределение мощности экспозиционной дозы вдоль длины световода имеет вид, приведенный на рисунке 1, а показания точечного дозиметра в центре зоны составляют $z_0 = 10$ мкР/час.

Рис. 1 – Распределение мощности дозы вдоль длины световода

Тогда система нормальных уравнений для определения оценок параметров нелинейной регрессии (1) принимает вид:

$$\begin{bmatrix} \frac{3\pi}{4} & \frac{\pi}{4} & 0 & 0 & 0\\ \frac{\pi}{4} & \frac{3\pi}{4} & 0 & 0 & 0\\ 0 & 0 & \frac{\pi}{4} & 0 & 0\\ 0 & 0 & 0 & \pi & 0\\ 0 & 0 & 0 & 0 & \pi \end{bmatrix} \cdot \begin{pmatrix} a\\ b\\ c\\ d\\ e \end{pmatrix} = \begin{bmatrix} 0,30\\ 1,29\\ -0,57\\ -0,65\\ 1,42 \end{bmatrix}.$$
(4)

Решая данную систему, получаем следующее уравнение регрессии:

$$z = -0,06x^{2} + 0,57y^{2} - 0,73xy - 0,21x + 0,45y + 10$$
(5)

Здесь координаты x и y выражены в километрах.

На рисунке 2 представлено распределение радиационного фона, полученное на основании уравнения (5). Фон изменяется в зависимости от тона (белый – 8 мкР/час, черный – 16 мкР/час через 1 мкР/час).

Из этого рисунка видно, что источник ионизирующего излучения находится вне контролируемой зоны на северо-западе.

В качестве второго примера рассмотрим случай, корда распределение мощности дозы вдоль длины световода имеет тот же вид (рис. 1), а значение мощности дозы в центре зоны составило: $z_0 = 16 \text{ мкP/час.}$ При этом система нормальных уравнений для определения параметров регрессии (1) принимает следующий вид:

$$\frac{3\pi}{4} \quad \frac{\pi}{4} \quad 0 \quad 0 \quad 0 \\
\frac{\pi}{4} \quad \frac{3\pi}{4} \quad 0 \quad 0 \quad 0 \\
0 \quad 0 \quad \frac{\pi}{4} \quad 0 \quad 0 \\
0 \quad 0 \quad 0 \quad \pi \quad 0 \\
0 \quad 0 \quad 0 \quad 0 \quad \pi \quad 0 \\
0 \quad 0 \quad 0 \quad 0 \quad \pi \quad 0
\end{array}$$

$$\begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix} = \begin{pmatrix} -18,55 \\ -17,56 \\ -0,57 \\ -0,65 \\ 1,42 \end{pmatrix} (6)$$

На основании ее решения получим следующее уравнение регрессии:

 $z = -6,06x^2 - 5,43y^2 - 0,73xy - 0,21x + 0,45y + 16$ (7) Здесь координаты *x* и *y* выражены также

в километрах.

Рис. 2 – Поле радиационного фона

На рисунке 3 представлено распределение радиационного фона, предсказываемое уравнением (7). Фон изменяется в зависимости от тона (белый – 8 мкР/час, черный – 16 мкР/час через 1 мкР/час).

Рис. 3 – Поле радиационного фона

Из этого рисунка видно, что источник излучения находится внутри зоны.

Таким образом, два рассмотренных выше примера показывают, что продольное распределение поглощенной дозы в стекле световода не определяет однозначно поле ионизирующего излучения как внутри контролируемой зоны, так и за ее пределами. Для устранения неоднозначностей следует проводить дополнительное измерение мощности дозы внутри зоны.

Выводы. Предлагаемая методика долговременного удаленного радиационного мониторинга протяженной местности при помощи волоконно-оптического дозиметра с дополнительным точечным датчиком радиации позволяет быстро и надежно определять поле радиационного фона как внутри контролируемой зоны, так и вблизи ее границы, а также локализовать источники повышенной радиации. Ее преимуществами являются относительно невысокая стоимость, надежность, информативность, возможности интеграции с Интернетом и системами спутниковой связи. Повышение точности методики может быть достигнуто за счет использования нелинейных регрессионных моделей более высокого порядка по координатам.

ЛИТЕРАТУРА

1. Разработка волоконных световодов для применения при повышенном уровне радиации / Томащук А. Л., Голант К. М., Забежайлов М. О. // Волоконнооптические технологии, материалы и устройства. – М. – 2001. – № 4. – С. 52 – 65.

2. Волоконно-оптический монитор-дозиметр импульсного ионизирующего излучения / Родигин А. В., Эльяш С. Л., Пикарь В. А., Гончарова В. Ф. // ВАНТ. – Х. – 2010. – Вып. 2. – С. 8 – 9.

Надійшла до редколегії 14.12.2010

УДК 504.05

Л. С. ЖЕБЕТ*, асп., А. В. ХОЛОПЦЕВ**, д-р геогр. наук, доц.

*Севастопольський національний університет ядерної енергії та промисловості ** Севастопольський національний технічний університет

ПРИРОДНІ ТА ТЕХНОГЕННІ ЧИННИКИ ЧАСОВОЇ МІНЛИВОСТІ РАДІОЛОГІЧНИХ ХАРАКТЕРИСТИК ВОДНИХ ОБ'ЄКТІВ У ЗОНІ ВПЛИВУ ПІВДЕННОУКРАЇНСЬКОЇ АЕС

На прикладі змін середньомісячних значень активності Sr-90 у поверхневому шарі вод Ташликського водойма-охолоджувача Південноукраїнської АЕС, що спостерігались у період з січня 2006 по вересень 2010 рр., розглянуті особливості ідентифікації множинно-регресійних моделей подібних процесів, яким притаманна робастність до часових зсувів у майбутнє на 1-8 місяців. Для процесу, що вивчається, аргументами таких моделей є часові ряди змін середньомісячних обсягів води, яка щодобово підкачується до цієї водойми з річки Південний Буг, а також місячних сум атмосферних опадів, що спостерігались у м. Південноукраїнськ, котрі передують до нього. З використанням цих моделей розроблено прогноз активності Sr-90 у зазначеній водоймі на період с жовтня 2010 по червень 2011 рр.

Ключові слова: АЕС, екологічна безпека, активність Sr-90, моделювання, водосховище, кореляція

Жебет Л. С., Холопцев О. В. ПРИРДНЫЕ И ТЕХНОГЕННЫЕ ФАКТОРЫ ВРЕМЕННОЙ ИЗМЕНЧИВОСТИ РАДИОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ВОДНЫХ ОБЪЕКТОВ В ЗОНЕ ВЛИЯНИЯ ЮЖНО-УКРАИНСКОЙ АЭС

На примере изменений среднемесячных значений активности Sr-90 в поверхностном слое вод Ташлыкского водоема-охладителя Южно-Украинской АЭС, выявленных в период с января 2006 по сентябрь 2010 гг, рассмотрены особенности идентификации множественно-регрессионных моделей подобных процессов, обладающих робастностью к временным сдвигам в будущее на 1 - 8 месяцев. Для изучаемого процесса аргументами таких моделей являются опережающие его по времени ряды изменений среднемесячных значений объемов вод, ежедневно подкачиваемых в этот водоем из реки Южный Буг, а также месячных сумм атмосферных осадков, выпадающих в г. Южноукраинск. С использованием подобных моделей разработан прогноз изменений активности Sr-90 в упомянутом водоеме на период с ноября 2010 по июнь 2011 гг.

Ключевые слова: АЭС, экологическая безопасность, активность Sr-90, моделирование, водохранилище, корреляция

© Жебет Л. С., Холопцев О. В., 2011