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ЗАСТОСУВАННЯ БІОЛОГІЧНИХ СИСТЕМ РАННЬОГО ПОПЕРЕДЖЕННЯ:  

ВПРОВАДЖЕННЯ ПЕРСПЕКТИВНОГО ПІДХОДУ ДО МОНІТОРИНГУ ЯКОСТІ ВОД 

 
Мета. Проведення аналізу набутого міжнародного досвіду з розробки та вдосконалення біологіч-

них системи раннього попередження. 
Методика. Оцінка спроможності вдосконалення існуючих біологічних систем раннього попере-

дження для проведення безперервного моніторингу якості різних категорій вод.  
Результати. Поведінкові реакції застосовувалися протягом десятиліть як інструменти для тесту-

вання водної токсичності, але їм приділялося набагато менше уваги, ніж дослідженням, що оцінюють ле-
тальність, розвиток або розмноження. Завдяки вдосконаленню візуальних і невізуальних інструментів оці-
нки та розширенню знань про важливість поведінки для здоров'я та фізичної форми організму інтерес до 
поведінкового аналізу зріс в останні роки. Однак, наскільки нам відомо, ніколи не проводилася кількісна 
оцінка доступних методів тестування токсичності організмів, тому неясно, чи є поведінкові дослідження 
цінним доповненням до моніторингу водного середовища. За результатами цього літературного огляду 
встановлено, що поведінкові дослідження є порівняно швидкими і чутливими, а тому заслуговують на 
подальшу увагу як інструменти для оцінки токсикологічних ефектів забруднювачів водного середовища. 
Ми вважаємо, що дослідження, спрямовані на розробку та оптимізацію методів поведінкового аналізу, 
можуть виявитися надзвичайно корисними для галузі токсикології, але майбутня робота має бути спрямо-
вана на визначення того, які конкретні моделі поведінки є найбільш чутливими до різних класів забруд-
нювачів, а також на розуміння значущості змін у дискретній поведінці для впливу на здоров'я та фізичну 
форму організму. 

Висновки. Біологічні системи раннього попередження (БСПО) здебільшого спираються на пове-
дінкові реакції, деякі також оцінюють інші параметри, такі як вплив на флуоресценцію хлорофілу водоро-
стей, на пікові рівні забруднення, з яких виводяться порогові значення. Зміни в поведінці є кращими за 
показники смертності та інші сублетальні реакції, оскільки вони усувають розрив між індивідуальною та 
популяційною релевантністю та є індикаторами значного впливу хімічного забруднення на популяцію пе-
ред більш серйозними наслідками (тобто зниженням чисельності популяції).  

КЛЮЧОВІ СЛОВА: забруднення вод, токсичні властивості води, тест-об’єкт, біологічний мо-
ніторинг, біотестування, біологічні системи раннього попередження 
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Вступ 

Занепокоєння щодо наявності та вияв-
лення токсичних агентів в екосистемах різко 
зросло в останні роки, зокрема у водному се-

редовищі. Забруднення води протягом трива-
лого часу оцінювалося лише за допомогою 
специфічних хімічних аналізів, але багаторіч- 
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ний досвід показав неадекватність такого під-

ходу. Використання біологічних методів для 

оцінки забруднення води є важливою альтер-

нативою, зокрема у випадках швидкого або 

дифузного забруднення, що є потенційними 

збудниками гострих отруєнь людини та небе-

зпечного впливу на довкілля. 

Для оцінки та моніторингу якості води 

може бути застосований ряд підходів, що ба-

зуються на великій різноманітності біоіндика-

торів, таких як безхребетні, риби та водорості 

[1]. Чинні екотоксикологічні вимоги Дирек-

тиви 79/831/ЄЕС для всіх нових промислових 

хімікатів полягають у тому, що випробування 

на гостру токсичність повинні проводитися з 

використанням риб та дафній [2]. Протягом 

багатьох років Daphnia magna Straus викорис-

товувалася як «стандартний» водний тестовий 

вид. Хронічні та гострі випробування з D. 

magna є одними з найчастіших досліджень у 

водній токсикології (ASTM, 1987, OECD, 

1992, EEC, 1992). Як модельний організм та-

кож часто використовується Poecilia 

reticulata, Danio rerio, оскільки їх легко утри-

мувати та розводити в лабораторії [3]. 

Різні країни використовують тести на 

токсичність як частину своєї програми моніто-

рингу якості води [4]. Спостерігається зроста-

ючий інтерес як фахівців державних структур, 

так і промислових підприємств до викорис-

тання біотестів для визначення токсичності хі-

мічних сполук та промислових стічних вод. 

Цей інтерес відображається в розробці швид-

ших, простіших та менш дорогих тестів з кіль-

кома організмами, які здатні виявляти негати-

вну дію токсичних хімічних речовин. 

Протягом останніх десятиліть було 

впроваджено багато методів для обмеження 

надходження різних токсичних хімічних речо-

вин до води водних об’єктів задля досягнення 

унормованих показників якості води поверх-

невих водних об’єктів  і захисту навколиш-

нього природного середовища та здоров'я лю-

дини [5]. Мікрозабруднювачі, що визнача-

ються як сполуки, зустрічаються в низьких 

концентраціях у водних екосистемах (від нг/л 

до мкг/л) та здатні негативно впливати на во- 

дні організми, становлячи значну частину не-

безпечних забруднюючих речовин [6]. Через 

їхню стійкість та полярність, велика різнома-

нітність мікрозабруднювачів не може бути 

повністю усунена звичайними очисними спо-

рудами [7, 8]. Таким чином, такі сполуки мо-

жна виявити у поверхневих водах і вони мо-

жуть мати негативний вплив на біологічні си-

стеми при потраплянні в навколишнє середо-

вище [9]. 

Дотепер дослідження мікрозабрудню-

вачів на очисних спорудах базуються на обме-

жених у часі тестах з використанням різних 

проб води. Лабораторні дослідження склада-

ються з хімічного аналізу, частково доповне-

ного екотоксикологічними біоаналізами різ-

них апікальних кінцевих точок [10].  
Біологічні системи раннього попере-

дження (БСПО) на сьогодні переважно вико-
ристовуються для безперервного моніторингу 
якості питної та поверхневої води [11]. Вони 
складаються з організму-індикатора, який де-
монструє оборотну реакцію на стрес від забру-
днюючих речовин у воді, методу вимірю-
вання, який може кількісно реєструвати цю ре-
акцію та програмного забезпечення, яке розра-
ховує сигнал тривоги на основі згенерованих 
даних. На сьогодні доступний широкий 
спектр різних водних БСПО для різних засто-
сувань та з тестовими організмами різних тро-
фічних рівнів, такими як бактерії, водорості, 
безхребетні та хребетні [12-15]. Вони пропо-
нують екологічно релевантні, чутливі, швидкі 
та неруйнівні параметри для моніторингу 
зміни складу та якості води [16].  

Методика. Проведення аналізу міжна-
родного досвіду впровадження біологічних 
систем раннього попередження для прове-
дення безперервного моніторингу якості різ-
них категорій вод. 

Результати та обговорення 

За останні 30 років  розроблено та вико-

ристано багато водних організмів як індикато-

рів біологічного раннього попередження для 

моніторингу води водних об’єктів  та зворот-

них вод та було запропоновано багато застосу-

вань таких БСПО для безперервного автома-

тичного моніторингу протягом тривалих пері- 

одів. Риби були найпривабливішими організ-

мами, спочатку відібраними для БСПО, і вони 

продовжують залишатися популярним вибо-

ром [17, 18]. Інші організми включають рако-

подібних [19, 20], двостулкових молюсків [21, 

22]. Крім того, для моніторингу токсичності 

використовувалися  мікроорганізми,  які  час- 
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тіше асоціюються з біосенсорами. Прикла-

дами можуть служити бактерії, найпростіші 

[23] і водорості [24]. 

Водорості Chlorella vulgaris часто вико-

ристовується як модельний організм у дослі-

дженнях росту та пригнічення фотосинтезу, 

напівбезперервні вимірювання інгібування 

флуоресценції базуються на флуорометрії з 

імпульсно-амплітудною модуляцією (PAM-

флуорометрія) [25]. Процес вимірювання по-

чинається з визначення концентрації різних 

класів водоростей у стічних водах та їхньої 

активності, що вимірюється опосередковано 

за допомогою флуоресцентної активності во-

доростей. Потім визначають концентрацію C. 

vulgaris та активність класів водоростей для 

оцінки потенційного інгібування фотосинте-

тичної активності водоростей стічними во-

дами. Подальше вимірювання, яке включає 

лише питну воду, використовується як конт-

рольне значення. Цей процес повторюється 

кожні 30 хвилин зі свіжою суспензією водо-

ростей, стічними водами та контрольною во-

дою. Якщо інгібування флуоресценції пере-

вищує раніше визначений поріг, спрацьовує 

сигнал тривоги.  

Гаммарус пулекс (Gammarus pulex) за-

звичай зустрічається в помірних потоках і на-

лежить до класу всеїдних подрібнювачів, ві-

діграючи важливу роль у розкладанні грубої 

органічної речовини. Gammarus pulex  все ча-

стіше використовується в екотоксикологіч-

них експериментах та польових випробуван-

нях, включаючи оцінку харчової активності 

та поведінки.  

У роботі [26]  використовувався прист-

рій Remondis Aqua, який вимірював поведінку 

особин G. pulex за допомогою імпедансного 

методу. Організми поміщали у вісім циліндри-

чних тестових камер з кришками, що закручу-

ються в сітку. Оснащена чотирма електро-

дами, одна пара електродів генерує високоча-

стотну змінну напругу. Друга пара електродів 

вимірює зміни в електромагнітному полі, ви-

кликані рухами організму в сенсорній камері. 

Вимірюваним параметром є інтенсивність ви-

явлених рухів (амплітуда), яка безперервно за-

писується. Спеціальний алгоритм пристрою 

створює сигнали тривоги, виявляючи відмін-

ності між нормальною та девіантною поведін-

кою в середньому русі особин. Якщо поведі-

нка, а отже, і виміряне значення активності 

змінюється, короткострокове середнє значен- 

ня реакції було швидше, ніж довгострокове се-

реднє значення. Отже, різниця між обома се-

редніми значеннями збільшується. Якщо по-

ведінка була постійною, обидва середні зна-

чення були рівними, а різниця в ідеалі дорів-

нює нулю. Різниці всіх камер додається до 

суми сигналів тривоги. Сума сигналів тривоги 

збільшувється, якщо зміна поведінки виявля-

ється в кількох камерах одночасно. Для експе-

рименту було відібрано вісім дорослих самців 

G. pulex , ідентифікованих за розташуванням 

пар передкопул та розміром понад 8 мм. Після 

цього в кожну тестову камеру було поміщено 

одну дорослу особину G. pulex разом із трьома 

листовими дисками як джерелом їжі. Усі орга-

нізми замінювали щотижня. 

Дафнія велика (Daphnia magna) як осно-

вний консумент планктону, що живиться фі-

топланктоном та бактеріями, є важливим дже-

релом їжі для організмів вищих трофічних рі-

внів і відіграє важливу роль в галузі екотокси-

кології для оцінки гострої та хронічної токси-

чності, а також для оцінки поведінки [27]. Ві-

дстеження поведінки D. magna із застосуван-

ням токсиметра DaphTox II здійснюється за 

допомогою аналізу зображень. Камера фіксує 

зміни розташування особин у тестових каме-

рах, на основі яких програмне забезпечення 

створює окремі плавальні доріжки. Вони слу-

жать основою для розрахунку різних поведін-

кових параметрів, а саме: кількості активних 

організмів;  середньої дистанція плавання; 

опису вертикального руху; середньої швид-

кість плавання; індексу класу швидкості; фра-

ктальних розмірів,  що призводять до токсич-

ного індексу, що визначає сигнал тривоги [27]. 

Зміни параметрів реєструються та оцінюються 

за допомогою токсичного індексу різними 

способами: «Детектор Хінклі» [28] використо-

вується для розпізнавання раптових змін у ме-

жах одного із вимірюваних параметрів, які 

були зазначені вище. Параметр «Граничні си-

гнали тривоги» перевіряє, чи досягнуто (верх-

ніх або нижніх) меж параметрів.  

Результати власних досліджень пока-

зали, що  існує широкий вибір доступних біо-

тестів, але для рутинного скринінгу зворотних 

(стічних) та поверхневих вод корисною буде 

батарея швидких невеликих біотестів на різ-

них трофічних рівнях. Найбільш класичними 

екотоксикологічними методами тестування 

стічних та поверхневих вод є стандартні тести 

на ракоподібних, зелених водоростях та ін., за 
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допомогою яких виявляють гостру та хроні-

чну токсичність. Результати дослідження по-

казали, що найбільш ефективною та «чутли-

вою» є методика біотестування з використан-

ням ракоподібних Ceriodaphnia affinis [13]. 

Досі було проведено низку експеримен-

тів щодо придатності БСПО для моніторингу 

стічних вод з метою виявлення потенційного 

забруднення [29, 30]. Німецькі фахівці оці-

нили сім різних безперервних та напівбезпере-

рвних БСПО для їх застосування у стічних во-

дах [31]. Напівбезперервні методи вимірю-

вання, в яких організми піддаються впливу те-

стованої води з інтервалами в кілька хвилин, 

показали хороші результати. До цієї групи 

входили тест на водоростях, токсикометр на 

дафніях та тест на люмінесцентних бактеріях 

Автори запропонували токсикометр на даф-

ніях як найкраще оцінений метод безперерв-

ного вимірювання. Динамічний тест на даф-

ніях та два тести на мідіях відповідали спеціа-

льним вимогам лише дуже обмежено. 

Роль безперервного моніторингу може 

бути не вирішальною для оцінки забруднення 

поверхневих водних об’єктів від побутових 

джерел забруднення, оскільки вони мають ві-

дносно постійне навантаження, а промислові 

стічні води можуть демонструвати пікові кон-

центрації сполук (до 1000 разів вищі за фоно-

вий рівень), які потрібно тестувати в реаль-

ному часі, оскільки динаміка виробництва різ-

них промислових компаній значно відрізня-

ється [32]. БСПО може запропонувати новий 

інтегрований підхід до безперервного моніто-

рингу якості стічних вод, який ініціює подаль-

ший хімічний аналіз, обмежуючи виконання 

коштовного інструментального аналізу випад-

ками тривоги. 

Нещодавно повідомлялося про викори-

стання близько 36 000 хімічних речовин у різ-

них галузях промисловості розвинутих країн, 

сотні з яких вважаються сполуками, що викли-

кають забруднення води [33, 34]. У монітори-

нгу якості води інструменти хімічного аналізу 

не можуть визначити концентрації всіх спо-

лук, що існують у водній системі, через часові, 

економічні та технічні обмеження. Крім того, 

неможливо передбачити комбінований токси-

чний вплив відомих та невідомих сполук, які 

постійно впливають на водні організми. Ці об-

меження в моніторингу якості води призвели 

до розробки систем біологічного моніторингу 

для оцінки загального впливу токсичних хімі- 

чних речовин, включаючи синергетичний та 

антагоністичний вплив сумішей. Звичайні си-

стеми біомоніторингу дають менш відтворю-

вані дані та не є повністю автоматизованими 

для спрацьовування тривоги. Нещодавно для 

моніторингу якості води були розроблені сис-

теми цифрової обробки зображень, що склада-

ються з відеокамер, пристроїв захоплення ка-

дрів, комп'ютерів та спеціального програм-

ного забезпечення [35-38]. Цифрова обробка 

відеозаписів, шляхом аналізу змін у моделях 

плавання, надає різноманітні дані про поведі-

нку тестових видів. Моніторинг локомоторної 

поведінки відіграє важливу роль в оцінці нава-

нтаження токсичних сполук на екосистему, 

причому рухливість є важливим компонентом 

функціонування організмів, що може надати 

важливу інформацію щодо їхньої фізіології та 

поведінки [35]. Таким чином, зміни в русі ор-

ганізмів можуть бути використані як відповід-

ний індикатор в оцінці екотоксикологічного 

ризику. Daphnia magna чутливо реагують на 

стресові ситуації, які можуть бути викликані 

змінами природних умов навколишнього се-

редовища, таких як температура, pH, доступ-

ність кисню та хімічне забруднення, що спри-

чиняє або збільшення, або зменшення плава-

льної активності. Загалом, дафнії спочатку ре-

агують підвищеною плавальною активністю 

(тобто гіперактивністю) на вплив токсичних 

речовин, яка потім сповільнюється (тобто упо-

вільнюється активність). Відповідно, наяв-

ність токсичних сполук можна перевірити, ви-

мірявши зміни плавальної активності дафній. 

Однак виникає проблема визначення «критич-

ного порогу зміненої активності». Вкрай важ-

ливо визначити чутливість для виявлення не-

звичайного стану води, оскільки прагнення до 

чутливості може призвести до втрати надійно-

сті спрацьовування тривоги. У попередніх до-

слідженнях, пов'язаних з БСПО, більшість до-

слідників використовували середню швид-

кість плавання тестових організмів як показ-

ник зміни активності. Однак, цей підхід може 

бути неадекватним, оскільки на швидкість 

плавання може впливати розмір тіла організму 

[39]. Для постійно плаваючих зоопланктонів, 

таких як дафнії, плавальна активність має ве-

лике значення як для енергетичного метаболі-

зму, так і для успіху втечі від хижака. Локомо-

ція залежить від м'язової активності і тому є 

енергетично витратною. З іншого боку, вона 

дозволяє організмам знаходити та переміща- 
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тися до регіонів з високою концентрацією їжі 

[40] та уникати хижаків. Таким чином, аналіз 

плавальної активності може надати інформа-

цію не лише про фізіологічні порушення (на-

приклад, неврологічні пошкодження), але й 

про зміни в моделях розподілу енергії. 

Класично швидкість плавання вивча-

ється шляхом порівняння швидкостей пла-

вання стресованих тварин з контрольною гру-

пою. Швидкість плавання дафній збільшу-

ється з розміром тіла. Таким чином, будь-який 

фактор, що впливає на розмір тіла, також 

впливає на швидкість плавання. Стрес зазви-

чай впливає на темпи росту, а отже, і на розмір 

тіла. Тому відмінності в швидкості плавання 

між різними варіантами експерименту, при-

наймні частково, відображатимуть відмінно-

сті в розмірі тіла, а не реальні відмінності в 

швидкості плавання. 

У порівнянних контрольних умовах ро-

змір тіла є основним фактором, що визначає 

швидкість плавання Daphnia magna. Усі тва-

рини однакового розміру плавають з однако-

вою швидкістю, незалежно від віку, в якому 

вони досягають цього розміру. Крім того, 

зв'язок між розміром тіла та швидкістю пла-

вання не залежить від кількості їжі. Тварини, 

вирощені в умовах низького рівня їжі або за-

знали раптового зменшення кількості їжі, ре-

агують лише зниженням росту (і розмно-

ження), а не зниженням швидкості плавання, 

пов'язаної з певним розміром. Дафнії, що від-

чувають харчовий стрес, залишаються мен-

шими, і, отже, плавають повільніше, ніж їхні 

постійно або добре годувані родичі, але їхня 

швидкість плавання не відрізняється від шви-

дкості плавання добре годуваних тварин ана-

логічного розміру [39]. 

Таким чином, різниця в швидкостях 

плавання між варіантами вимірювання част-

ково відображатиме різницю в розмірі тіла, а 

не в активності особини [39] Це обмеження 

вимагає розробки іншого підходу, який вка-

зує, де знаходиться певне значення відносно 

решти значень у наборі даних або популяції, є 

параметром, який здатний належним чином 

описати збільшення або зменшення активно-

сті плавання. 

Незважаючи на численні досягнення в 

БСПО, деякі проблеми все ще існують, які мо-

жна було б покращити з точки зору простої та 

надійної практичної експлуатації. Основною 

проблемою БСПО є епізодичні хибні тривоги. 

Джерела хибних тривог можна розділити на 

три групи: тривоги, що виникають через не-

справність приладу, погані або непередбачу-

вані фізіологічні умови тварин, що використо-

вуються в тесті, та невідповідне налаштування 

алгоритму тривоги. Тим часом користувачі 

БСПО постійно просять виробників зробити 

обладнання простішим та дешевшим для ефе-

ктивного та економічного управління якістю 

води. Серед комерційних систем біомонітори-

нгу, що використовують дафнії як тестові ор-

ганізми, два прилади широко використову-

ються у всьому світі: динамічний тест на даф-

нії, виготовлений Elektron Ltd. (Німеччина), 

який відсутній на ринку, але все ще викорис-

товується при  моніторингу якості води, та то-

ксикометр для дафній, виготовлений bbe 

Moldaenke (Німеччина). Обидва ці прилади 

мають лише 2 одночасно спостережувані ка-

нали. Камери, що містять середовища та D. 

magna (5–20 тестових організмів), контролю-

ються [41]. На жаль, окремі дафнії неможливо 

розпізнати; тому прилад видає лише середні 

значення всіх тестованих організмів. Якщо кі-

лькісно визначена активність високоактивова-

ного організму, викликана впливом токсикан-

тів, компенсується активністю повільно рухо-

мих організмів, важко виявити будь-яку різ-

ницю в середньому значенні активності між 

нормальним та аномальним станом тестова-

ного організму. Це може призвести до затри-

мки спрацьовування тривоги. Моніторинг по-

ведінки окремого суб'єкта може дати більш 

чутливу реакцію на забруднювачі, а також 

більш детальну інформацію про поведінку ор-

ганізму. З цієї причини була розроблена бага-

токанальна система біологічного моніторингу, 

що використовує нову систему Grid Counter, 

призначену для кількісної оцінки активності 

рухомих організмів. 

Різні методи мають різні переваги та не-

доліки. Наприклад, під час використання ана-

літичних методів інформація про параметри 

поведінки може бути стиснута (наприклад, 

фрактальна розмірність); проте локальну та 

глобальну інформацію неможливо одночасно 

отримати з набору даних про поведінку. Тому 

важливо використовувати відповідні аналіти-

чні методи, що надають значущу інформацію 

під час інтерпретації даних про поведінку. 
Оцінка даних про поведінку організмів, 

що постійно контролюються, є дуже складною 
(тобто особини демонструють нелінійність та 
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змінну поведінку). Тому такі дані вимагають 
використання відповідних аналітичних мето-
дів, включаючи статистичні та обчислювальні 
підходи, для полегшення інтерпретації, а 
отже, використання для ефективного управ-
ління. Для аналізу таких даних про поведінку 
застосовувалися різні статистичні методи, го-
ловним чином дисперсійний аналіз, t- тест, 

аналіз головних компонентів та кластерний 
аналіз. Однак нещодавно з'явилися різні інфо-
рмаційні технології та обчислювальні методи 
як революційні інструменти для інтерпретації 
поведінки організмів. Ці технології забезпечу-
ють об'єктивний спосіб пояснення та кількіс-
ної оцінки закономірностей різних параметрів 
поведінки. 

Висновки 

З розвитком комп'ютерного облад-
нання та програмного забезпечення, а також 
інформаційно-комунікаційних технологій, 
поступово розробляються системи моніто-
рингу в режимі реального часу для вияв-
лення змін фізико-хімічних факторів у ці-
льових екосистемах. Датчики є центральним 
елементом будь-якої такої системи моніто-
рингу. Наразі більшість країн світу викорис-
товують системи моніторингу в режимі реа-
льного часу, чутливі до фізико-хімічних фа-
кторів, для виявлення порушень у водних 
екосистемах, включаючи поверхневі води, 
ґрунтові води, стічні води та питну воду. Од-
нак системи фізико-хімічного моніторингу 
не можуть виявити всі концентрації різних 
хімічних сполук, які мають різний вплив на 
водні організми та екосистеми. Хоча для ви-
явлення хімічних концентрацій використо-
вуються такі методи, як газова хроматогра-
фія та високоефективна рідинна хроматогра-
фія, що забезпечують точні вимірювання, 
пов'язана з цим вартість аналізу є занадто ви-
сокою, і, крім того, для роботи з таким обла-
днанням потрібні професійні техніки. Та-
кож, фізико-хімічні датчики вимагають ви-
соких витрат на обслуговування та відобра-
жають лише локальні та короткострокові ко-
ливання у водних екосистемах. Більше того, 
ці датчики не можуть бути використані для 

вимірювання синергетичних та антагоністи-
чних токсичних ефектів, пов'язаних із хіміч-
ними сумішами, і не надають інформації про 
екологічні умови, в яких живуть організми. 
Виходячи з вищенаведеного, були розроб-
лені системи біологічного раннього попере-
дження (БСПО), які базуються на різних ре-
акціях організмів на порушення. Система 
БСПО використовується для безперервного 
контролю якості води, що дозволяє безпосе-
редньо та безперервно виявляти широкий 
спектр забруднюючих речовин або токсич-
них умов на основі фізіології та поведінки 
організмів. Організми відчувають широкий 
спектр забруднюючих речовин, причому рі-
зні таксони організмів реагують по-різному 
на різні забруднювачі. Таким чином, необхі-
дно розуміти потенційні застосування таких 
систем, а також те, як БСПО наразі викорис-
товується стосовно різних груп організмів. 

Власний досвід з розробки експресних 
систем моніторингу якості вод дозволяє 
стверджувати, що можливо розробити 
БСПО, не лише точну та ефективну, але й 
простішу та дешевшу шляхом зменшення 
надмірних обчислень та мінімізації вимог до 
апаратного забезпечення, а також довести 
переваги розробленої системи за допомогою 
впровадження сучасного програмного забез-
печення. 
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APPLICATION OF BIOLOGICAL EARLY WARNING SYSTEMS: 

IMPLEMENTING A PROSPECTIVE APPROACH TO WATER QUALITY MONITORING 
 

Purpose. To review international experience in the development and improvement of biological early 

warning systems. 

Methodology. To assess the potential for improving existing biological early warning systems for con-

tinuous monitoring of water quality in different water categories. 

Results. Behavioral responses have been used for decades as tools for testing aquatic toxicity, but have 

received much less attention than studies assessing lethality, development, or reproduction. With the improvement 

of visual and non-visual assessment tools and the increasing knowledge of the importance of behavior for health 

and fitness, interest in behavioral analysis has increased in recent years. However, to our knowledge, no quantita-

tive evaluation of available methods for testing toxicity in organisms has ever been conducted, and it is unclear 

whether behavioral studies are a valuable addition to aquatic monitoring. This literature review suggests that be-

havioral assays are relatively rapid and sensitive and therefore deserve further attention as tools for assessing the 

toxicological effects of aquatic pollutants. We believe that research aimed at developing and optimizing behavioral 

assays could prove extremely useful to the field of toxicology, but future work should be directed at determining 

which specific behavioral patterns are most sensitive to different classes of pollutants, and at understanding the 

significance of changes in discrete behaviors for health and fitness impacts. 

Conclusions. Biological Early Warning Systems (BEWS) rely largely on behavioral responses, with 

some also assessing other parameters, such as effects on algal chlorophyll fluorescence, at peak pollution levels, 

from which threshold values are derived. Behavioral changes are superior to mortality rates and other sublethal 

responses because they bridge the gap between individual and population relevance and are indicators of signifi-

cant impacts of chemical contamination on a population before more serious consequences (i.e., population de-

clines) occur. 

KEY WORDS: water pollution, toxic properties of water, test object, biological monitoring, biotesting, 

biological early warning systems 
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