УДК 004.052.42

МЕТОД КОМПИЛЯЦИОННО-СЕМАНТИЧЕСКОЙ ВЕРИФИКАЦИИ ВРЕМЯПАРАМЕТРИЗОВАННЫХ МУЛЬТИПАРАЛЛЕЛЬНЫХ ПРОГРАММ

Елена Толстолужская, Дмитрий Толстолужский, Ольга Мороз

Харьковский национальный университет имени В. Н. Каразина, площадь Свободы, 4, г. Харьков, 61022, Украина. tps@karazin.ua

Рецензент: Георгий Кучук, д.т.н., проф., Национальный технический университет «Харьковский политехнический институт», ул. Кирпичева, 21, г. Харьков, 61000, Украина. kuchuk56@mail.ru

Поступила в ноябре 2016

Аннотация. Приводится определение времяпараметризованных мультипараллельных программ, которые (в отличие от общепринятой трактовки параллельных программ) содержат спецификации моментов начала выполнения операций/функций, а также подмножества таких операций/функций. Обосновывается необходимость разработки новых методов верификации времяпараметризованных параллельных программ. Раскрываются этапы решения задачи компиляционно-семантической верификации времяпараметризованных мультипараллельных программ в интересах создания систем автоматического синтеза высокоэффективных параллельных программ для вычислительных систем различных классов. Приводится иллюстрирующий пример основных этапов метода.

Ключевые слова: времяпараметризованные мультипараллельные программы, верификация параллельных программ, компиляционно-семантическая верификация, семантико-числовые спецификации.

1 Анализ проблематики и постановка задачи

Анализ литературы показывает, что одним из перспективных направлений развития технологий параллельного программирования являются исследования в области автоматического программирования времяпараметризованных мультипараллельных программ [1–3].

Времяпараметризованная мультипараллельная программа определяется (в отличие от принятой в настоящее время трактовки статических параллельных программ) как конструкция, которая содержит в явном виде спецификации следующих категорий информации:

- множество объектов данных, над которыми должны выполняться действия (задаваемые составом операций/функций алгоритмического языка высокого уровня);
- множество действий (операций/функций), которые должны быть выполнены над данными для решения задачи;
- множество статических связей, задающих отношения упорядоченности операций/функций по данным и по управлению;
- упорядоченность операций/функций в динамике параллельного вычислительного процесса, задаваемую множеством моментов времени начала выполнения операций/функций;
- разделение множества операций/функций на временные фрагменты (множественные временные операторы (MBO)), включающие совокупность операций/функций, выполнение которых начинается одновременно в конкретный момент дискретного времени;
- разделение множества данных на фрагменты данных, поставленные в однозначное соответствие множественным временным операторам и используемые в соответствующие моменты дискретного времени;
- наличие информации о разбиении множества команд различных фрагментов на подмножества (нити), выполняемые соответствующими модулями/процессорами;
 - наличие информации о единицах измерения физических величин данных.

Новизна класса времяпараметризованных мультипараллельных программ обуславливает необходимость решения задачи разработки новых методов верификации, ориентированных на применение формата структур семантико-числовой спецификации [1].

В качестве одного из этапов верификации времяпараметризованных мультипараллельных программ предлагается использовать компиляционно-семантическую верификацию. Основой компиляционно-семантической верификации является использование задаваемых пользователем единиц измерения («семантики») исходных данных и выходных результатов задач, автоматическое определение в процессе решения задач единиц измерения промежуточных и выходных результатов и их сравнение с единицами измерения выходных результатов, заданными пользователем.

Целью статьи является описание нового метода компиляционно-семантической верификации времяпараметризованных мультипараллельных программ в интересах создания систем автоматического синтеза высокоэффективных параллельных программ для вычислительных систем различных классов.

2 Основная часть

Исходные данные компиляционно-семантической верификации:

- исходная статическая Си-программа задачи;
- Си-текст временной мультипараллельной программы, соответствующей исходной Си-программе и удовлетворяющей требованиям/ограничениям пользователя;
- семантическая база данных (БД) «SEM» единиц измерения физических величин;
- семантика (единицы измерения) исходных данных и выходных Си-программы, задаваемые пользователем структура *US_SEM*.

Требуется:

- проверить семантическую корректность исходной Си-программы задачи;
- проверить семантическую корректность времяпараметризованной мультипараллельной программы.
- проверить логическую эквивалентность временной мультипараллельной программы и исходной Си-программы задачи.

Выходными данными являются:

- 1. Семантико-числовая спецификация (СЧС) исходного кода программы (список единиц измерения исходных данных задачи, значений размерности результатов промежуточных вычислений и значений размерности результатов выполнения Си-программы).
- 2. Результаты проверки идентичности значений размерности результатов выполнения Сипрограммы и пользовательской семантической спецификации задачи.
- 3. Результаты проверки семантической корректности временной модели и текста времяпараметризованной мультипараллельной программы.

Основные этапы метода компиляционно-семантической верификации времяпараметризованных мультипараллельных программ приведены на рис. 1.

Рассмотрим содержание основных этапов метода компиляционно-семантической верификации.

Этап 1 (символ 2 на рис. 1) обеспечивает для Си-программы (см. рис. 2) синтез структур BF и CF семантико-числовой спецификации (табл. 3 представляет BF).

На этапе 2 (символ 3 рис. 1) обеспечивается графическая визуализация исходной Сипрограммы в виде Си-графа (см. рис. 2), исходя из структур СЧС *BF*, сформированных при выполнении 1-го этапа. Построение Си-графа осуществляется с помощью средств визуализации параллельных аппаратно-программных объектов, описанных в [1].

Третий этап (символ 4 на рис. 1) обеспечивает синтез единиц измерения данных, формируемых «внутренними» и «выходными» операторами P_i структур СЧС и Си-графа.

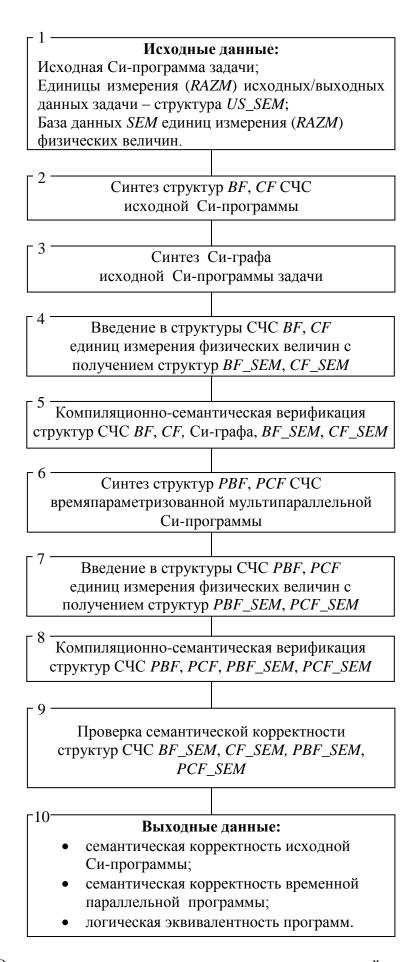


Рис. 1 Основные этапы метода компиляционно-семантической верификации

Синтез единиц измерения данных производится исходя из заданных пользователем единиц измерения исходных и выходных данных Си-программы задачи, типов операций, выполняемых операторами P_j , Си-программы, и общепринятой базы данных единиц измерения физических величин.

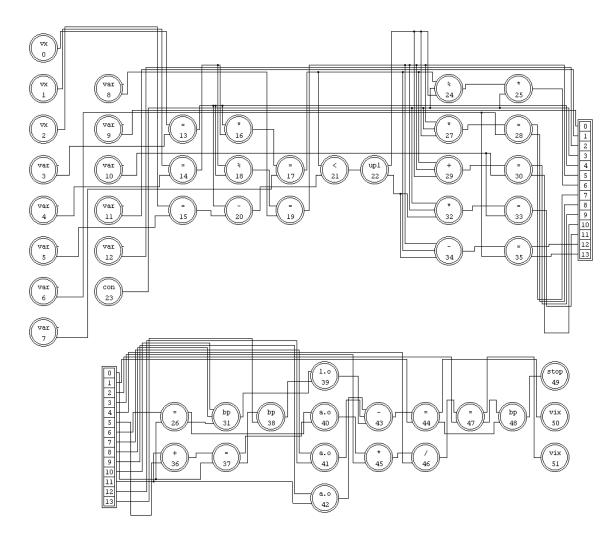


Рис. 2 – Си-граф исходной разветвляющейся Си-программы

Четвёртый этап (символ 5 на рис. 1) путем компиляционной верификации выполняет проверку синтеза структур СЧС Си-программы и соответствующего Си-графа. Методика компиляционной верификации рассмотрена в [1,4]. Кроме этого, 4-й этап обеспечивает проверку семантической корректности структур СЧС BF_SEM , CF_SEM исходной Си-программы. Проверка осуществляется путем сравнения рассчитанных единиц измерения данных, соответствующих выходным операторам синтезированной структуры BF_SEM исходной Сипрограммы, с единицами измерения выходных данных, заданными пользователем.

На 5-м этапе (символ 6 на рис. 1), аналогично этапу 1 (символ 2 на рис. 1), выполняется синтез структур *PBF*, *PCF* СЧС времяпараметризованной мультипараллельной программы.

На этапе 6 (символ 7 на рис. 1) осуществляется введение в структуры СЧС *PBF*, *PCF* единиц измерения физических величин с получением структур *PBF_SEM*, *PCF_SEM*.

На этапе 8 (символ 8, рис. 1) осуществляется компиляционная верификация структур СЧС *PBF*, *PCF* с одновременной проверкой семантической корректности расширенных структур СЧС *PBF_SEM*, *PCF_SEM* времяпараметризованной мультипараллельной программы. Проверка проводится путем сравнения рассчитанных единиц измерения данных (соответствую-

щих выходным операторам синтезированной структуры *PBF_SEM*) с единицами измерения выходных данных, заданными пользователем.

Проиллюстрируем содержание основных этапов метода компиляционно-семантической верификации с помощью Си-программы, представленной на рис. 3. В состав исходных данных входят также фрагмент базы данных единиц измерения физических величин (см. табл. 1) и перечень данных, задаваемых пользователем (см. табл. 2).

```
#include <stdio.h>
void main(void)
int a,b,c,r, k,l,m,p, s,t;
         scanf("%d %d %d\n",&a,&b,&c);
         k = a * b;
         1 = b \% a;
         if(k < a-c)
         \{ m = (k \% 2) * 2;
         r = 1 * 2;
         p = k + 1;
         else
         \{p = 2 * 1;
         r = 1 - k;
         m = p + 1;
         s = p - r;
         t = (m * 2) / a;
         printf ("%4d %4d\n",s,t);
```

Рис. 3 – Исходная Си-программа

Базовая структура BF (см. табл. 3) описывает номера и состав операторов P_j задачи (массив N), их типы (массив TYP), число входных (массив SJD) и выходных (массив WJD) связей каждого оператора P_j , идентификаторы операторов (массив RES), указатели на начало цепочек сопряженных и внешних операторов (массивы NSJ и NWJ) для каждого оператора Сипрограммы. Синтез структур BF и CF СЧС осуществляется в соответствии с методикой, изложенной в [1].

гаолица 1 — Фрагмент семантической оазы данных «БЕМ»													
KOD_RAZM	RAZM	KOD_RAZM	SEM										
2	M	14	рад/с										
3	КГ	15	м/(с*с)										
4	c	16	рад/(с*с)										
5	A	17	1/M										
6	К	18	кг/(м*м*м)										
7	МОЛЬ	19	м*м*м/кг										
8	кд	20	A/(m*m)										
9	рад	21	А/м										
10	ср	22	моль/(м*м*м)										
11	M*M	23	1/c										
12	M*M*M	24	m*m/c										
13	м/с	25	кд/(м*м)										

Таблица 1 – Фрагмент семантической базы данных «SEM»

Таблица 2 – Структура US SEM единиц измерения, задаваемых пользователем

N_OP	REZ	VHOD_VIH	KOD_SEM
3	a	0	2
4	b	0	2
5	c	0	2
11	S	1	2
12	t	1	11

Таблица 3 – Базовая структура BF операторов исходной Си-программы

N	MET	TYP	NSJ	SJD	BJ	NWJ	WJD	MPI	MP2	VH	ИIН	RES	N	MET	TYP	NSJ	SJD	BJ	NWJ	WJD	MPI	MP2	VH	ИIН	RES
0	0	58	-1	0	0	0	1	0	0	0	1	a_in	26	0	12	24	2	1	48	2	0	0	2	2	=
1	0	58	-1	0	0	1	1	0	0	0	1	b_in	27	0	3	26	3	1	50	1	0	0	3	1	*
2	0	58	-1	0	0	2	1	0	0	0	1	c_in	28	0	12	29	2	1	51	2	0	0	2	2	=
3	0	47	-1	0	0	3	1	0	0	0	2	a	29	0	1	31	3	1	53	1	0	0	3	1	+
4	0	47	-1	0	0	4	1	0	0	0	2	b	30	0	12	34	2	1	54	2	0	0	2	2	=
5	0	47	-1	0	0	5	1	0	0	0	2	c	31	0	50	36	3	1	56	1	3	0	3	1	bp
6	0	47	-1	0	0	6	2	0	0	0	2	r	32	2	3	39	3	2	57	1	0	0	3	1	*
7	0	47	-1	0	0	8	1	0	0	0	2	k	33	0	12	42	2	2	58	2	0	0	2	1	=
8	0	47	-1	0	0	9	1	0	0	0	2	1	34	0	2	44	3	2	60	1	0	0	3	1	_
9	0	47	-1	0	0	10	2	0	0	0	2	m	35	0	12	47	2	2	61	2	0	0	2	2	=
10	0	47	-1	0	0	12	2	0	0	0	2	P	36	0	1	49	2	2	63	1	0	0	2	1	+
11	0	47	-1	0	0	14	1	0	0	0	2	S	37	0	12	51	2	2	64	2	0	0	2	2	=
12	0	47	-1	0	0	15	1	0	0	0	2	t	38	0	50	53	2	2	66	1	3	0	2	1	bp
13	0	12	0	2	0	16	4	0	0	2	1	=	39	3	54	55	2	3	67	1	0	0	2	1	l.o
14	0	12	2	2	0	20	2	0	0	2	1	=	40	0	53	57	2	3	68	1	0	0	2	1	a.o
15	0	12	4	2	0	22	1	0	0	2	1	=	41	0	53	59	2	3	69	1	0	0	2	1	a.o
16	0	3	6	2	0	23	1	0	0	2	1	*	42	0	53	61	2	3	70	1	0	0	2	1	a.o
17	0	12	8	2	0	24	4	0	0	2	1	=	43	0	2	63	3	3	71	1	0	0	3	1	_
18	0	5	10	2	0	28	1	0	0	2	1	%	44	0	12	66	2	3	72	2	0	0	2	2	=
19	0	12	12	2	0	29	5	0	0	2	1	=	45	0	3	68	2	3	74	1	0	0	2	1	*
20	0	2	14	2	0	34	1	0	0	2	1	_	46	0	4	70	2	3	75	1	0	0	2	1	/
21	0	25	16	2	0	35	1	0	0	2	1	<	47	0	12	72	2	3	76	2	0	0	2	2	=
22	0	51	18	1	0	36	5	1	2	1	2	upl	48	0	50	74	2	3	78	1	980	0	2	1	bp
23	0	57	-1	0	1	41	5	0	0	0	1	C2_	49	980	49	76	1	4	-1	0	0	0	1	0	stop
24	1	5	19	3	1	46	1	0	0	3	1	%	50	0	48	77	1	4	-1	0	0	0	1	0	s out
25	0	3	22	2	1	47	1	0	0	2	1	*	51	0	48	78	1	4	-1	0	0	0	1	0	t_out

Результаты компиляционной верификации структур семантико-числовой спецификации Си-программы Си-графа И (View of test results) представлены на рис.4.

Результаты синтеза семантико-числовой спецификации BF_SEM Си-программы представлены в табл. 4.

C:\My_prog\C\Result\CNSV\VIXVIX1.TXT C:\My_prog\C\Result\CNSV\VIXVIX2.TXT файл элементов: файл связей элементов:

ТЕСТ КОРРЕКТНОСТИ ФАЙЛОВ:

максимальное количество элементов: 0 - 35 максимальное количество связей: 0 - 38 ТЕСТ СООТВЕТСТВИЯ ЧИСЛА СОПРЯЖЕННЫХ И ВНЕШНИХ СВЯЗЕЙ: ОК

ТЕСТ ЧИСЛА СВЯЗЕЙ ПО СОПРЯЖЕННЫМ ЭЛЕМЕНТАМ: ОК

ТЕСТ ЧИСЛА СВЯЗЕЙ ПО ВНЕШНИМ ЭЛЕМЕНТАМ: ОК

ТЕСТ СООТВЕТСТВИЯ ВЫВОДОВ ПО СОПРЯЖЕННЫМ ЭЛЕМЕНТАМ: ОК

ТЕСТ СООТВЕТСТВИЯ ВЫВОДОВ ПО ВНЕШНИМ ЭЛЕМЕНТАМ: ОК

ТЕСТ СООТВЕТСТВИЯ ЧИСЛА ВХОДОВ ЭЛЕМЕНТА И КОЛИЧЕСТВА ЕГО СОПРЯЖЕННЫХ: ОК

Рис. 4 – Результаты компиляционной верификации

N	TYP	NSJ	GSS	BJ	NWJ	WJD	RES	SEM	N	TYP	NSJ	<i>GISS</i>	BJ	NWJ	WJD	RES	SEM	
0	58	-1	0	0	0	1	a_in	\mathcal{M}	26	12	24	2	1	48	2	=	м*м	
1	58	-1	0	0	1	1	b_in	\mathcal{M}	27	3	26	3	1	50	1	*	безразм.	
2	58	-1	0	0	2	1	c_in	\mathcal{M}	28	12	29	2	1	51	2	=	безразм.	
3	47	-1	0	0	3	1	a	\mathcal{M}	29	1	31	3	1	53	1	+	м*м	
4	47	-1	0	0	4	1	b	\mathcal{M}	30	12	34	2	1	54	2	=	м*м	
5	47	-1	0	0	5	1	c	\mathcal{M}	31	50	36	3	1	56	1	bp	безразм.	
6	47	-1	0	0	6	2	r	безразм.	32	3	39	3	2	57	1	*	безразм.	
7	47	-1	0	0	8	1	k	м * м	33	12	42	2	2	58	2	=	безразм.	
8	47	-1	0	0	9	1	1	безразм.	34	2	44	3	2	60	1	_	м*м	
9	47	-1	0	0	10	2	m	м * м	35	12	47	2	2	61	2	=	м * м	
10	47	-1	0	0	12	2	P	м * м	36	1	49	2	2	63	1	+	безразм.	
11	47	-1	0	0	14	1	S	\mathcal{M}	37	12	51	2	2	64	2	=	безразм.	
12	47	-1	0	0	15	1	t	м * м	38	50	53	2	2	66	1	bp	безразм.	
13	12	0	2	0	16	4	=	\mathcal{M}	39	54	55	2	3	67	1	l.o	безразм.	
14	12	2	2	0	20	2		\mathcal{M}	40	53	57	2	3	68	1	a.o	м*м	
15	12	4	2	0	22	1	=	\mathcal{M}	41	53	59	2	3	69	1	a.o	безразм.	
16	3	6	2	0	23	1	*	м * м	42	53	61	2	3	70	1	a.o	м*м	
17	12	8	2	0	24	4	=	м * м	43	2	63	3	3	71	1	_	м*м	
18	5	10	2	0	28	1	%	безразм.	44	12	66	2	3	72	2	=	м*м	
19	12	12	2	0	29	5		безразм.	45	3	68	2	3	74	1	*	м*м	
20	2	14	2	0	34	1	_	\mathcal{M}	46	4	70	2	3	75	1	/	\mathcal{M}	
21	25	16	2	0	35	1	<	безразм.	47	12	72	2	3	76	2	=	\mathcal{M}	
22	51	18	1	0	36	5	upl	безразм.	48	50	74	2	3	78	1	bp	безразм.	
23	57	-1	0	1	41	5	C2_	безразм.	49	49	76	1	4	-1	0	stop	безразм.	
24	5	19	3	1	46	1	%	м*м	50	48	77	1	4	-1	0	s_out	м*м	
25	3	22	2	1	47	1	*	м*м	51	48	78	1	4	-1	0	t_out	М	

Таблица 4 — Структура *BF_SEM* — результат синтеза единиц измерения операторов исходной Си-программы

В данной таблице приняты следующие обозначения: массив RAZM — единицы измерения исходных данных и данных — результатов выполнения операций: «м» — метр; «нет» — отсутствие вычисленного значения выходной переменной; «б/раз» — безразмерная величина; «м*м», «м*м*м» — синтезированные единицы измерения производных величин.

Таблица 4 отображает результаты автоматической проверки идентичности значений размерности результатов выполнения Си-программы и пользовательской семантической спецификации задачи.

3 Выводы

В настоящее время во многих областях науки и техники находят все более широкое применение времяпараметризованные мультипараллельные программы, что обусловило актуальность вопросов верификации и тестирования программ данного класса.

Рассмотренный метод компиляционно-семантической верификации времяпараметризованных мультипараллельных программ, в отличие от уже известных методов, обеспечивает учет целой совокупности групп факторов, оказывающих существенное влияние на эффек-

тивность программных средств параллельных вычислительных систем. К таким факторам следует отнести:

- использование реального времени в качестве одного из основных параметров формального синтеза параллельных программ и соответствующих им временных параллельных процессов;
- явное отражение в конструкциях параллельных программ состава фактически используемых методов параллельной обработки данных;
- явное отражение в конструкциях параллельных программ единиц измерения (семантики) обрабатываемых данных;
- поддержку (в явном виде) структурами временных параллельных программных и аппаратных продуктов требований архитектурной и/или проблемной ориентации;
- поддержку (в явном виде) структурами параллельных программных и аппаратных продуктов требований и ограничений пользователей (например, обеспечение требуемого времени выполнения программы, заданной тактовой частоты обработки данных цифровым устройством и т. п.).

Рассмотренный в данной статье метод позволяет автоматизировать процесс верификации времяпараметризованных мультипараллельных программ, что уменьшает общие трудозатраты на их разработку.

Ссылки

- [1] Polyakov G. A. Sintez i analiz parallel'nykh protsessov v adaptivnykh vremyaparametrizovannykh vychislitel'nykh sistemakh: monografiya / G. A. Polyakov, S. I. Shmatkov, E. G. Tolstoluzhskaya, D. A. Tolstoluzhskii. Khar'kov: KhNU im. V. N. Karazina, 2012. 670 s.
- [2] Voevodin V. V. Parallel'nye vychisleniya / V. V. Voevodin, Vl. V. Voevodin. Sankt-Peterburg: BKhV Peterburg, 2004. 608 s.
- [3] Kalbertson R. Bystroe testirovanie / Robert Kalbertson, Braun Kris, Kobb Geri: per. s angl. Moskva: Izdatel'skii dom «Vil'yams», 2002. 384 s.
- [4] Polyakov G. A. Kompilyatsionnaya metodika verifikatsii statiko-dinamicheskikh ob"ektov avtomaticheskogo proektirovaniya mul'tiparallel'nykh tsifrovykh ustroistv. / G. A. Polyakov, D. A. Tolstoluzhskii // Prikladnaya radioelektronika. − 2005. − T.1. − № 2. − S. 37–41.

Reviewer: Georgiy Kuchuk, Doctor of Technical Sciences, Full Professor, Professor of the Department of Computer Science and Programming, National Technical University "Kharkiv Polytechnic Institute", st. Kirpichova, 21, Kharkiv, Ukraine. E-mail: kuchuk56@mail.ru

Received: November 2016.

Authors: Olena Tolstoluzka, Doctor of Technical Sciences, V. N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, 61022, Ukrain.

Email: tps@karazin.ua

Dmitriy Tolstoluzkiy, engineer, V. N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, 61022, Ukrain.

Email: tps@karazin.ua

Olga Moroz, senior lecturer, V. N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, 61022, Ukrain.

Email: tps@karazin.ua

Compilations method and semantic verification time parameterized of multiparallel programs.

Abstract: It provides definitions vremyaparametrizovannyh multiparallelnyh programs that (in contrast to the conventional treatment of parallel programs) contain moments of the start of operations specifications / features, as well as a subset of such operations / functions. The necessity of development of new methods of verification vremyaparametrizovannyh parallel programs. Reveals the stages of solving the problem, a compilation of semantic verification vremyaparametrizovannyh multiparallelnyh programs for the creation of automated synthesis systems, high-performance parallel programs for computing systems of various classes. We present an example illustrating the basic steps of the method.

Keywords: time parameterizing, multiparallelism, parallel programs, verification of parallel programs, compilation-semantic verification, semantic-numerical specification.

Рецензент: Георгій Кучук, доктор технічних наук, професор, професор кафедри обчислювальної техніки та програмування, Національний технічний університет «Харківський політехнічний інститут», вулиця Кирпичова, 21, Харків, Україна, 61000. E-mail: kuchuk56@mail.ru

Надійшло: Листопад 2016.

Автори:

Олена Толстолузька, доктор технічних наук, старший науковий співробітник, Харківський національний університет імені В. Н. Каразіна, майдан Свободи 4, м. Харків, 61022, Україна.

E-mail: tps@karazin.ua

Дмитро Толстолузький, інженер, Харківський національний університет імені В. Н. Каразіна, майдан Свободи 4, м. Харків,

61022, Україна.

E-mail: tps@karazin.ua

Ольга Мороз, старший викладач, Харківський національний університет імені В. Н. Каразіна, майдан Свободи 4, м. Харків,

61022, Україна.

E-mail: tps@karazin.ua

Метод компіляційно-семантичної верифікації часопараметризованих мультипаралельних програм.

Анотація. Наводиться визначення часопараметризованих мультипаралельних програм, які (на відміну від загальноприйнятого трактування паралельних програм) містять специфікації моментів початку виконання операцій/функцій, а також підмножини таких операцій/функцій. Обґрунтовується необхідність розробки нових методів верифікації часопараметризованих паралельних програм. Розкриваються етапи вирішення завдання компіляційного-семантичної верифікації часопараметризованих мультипаралельних програм в інтересах створення систем автоматичного синтезу високоефективних паралельних програм для обчислювальних систем різних класів. Наводиться приклад, що ілюструє основні етапи методу.

Ключові слова: часопараметризовані мільтипаралельні програми, верифікація паралельних програм, компіляційносемантична верифікація, семантично-числові специфікації.