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Abstract. The classic methodological approaches to the determination of channel capacity have been considered. The 

contradiction between analytical and geometric definitions of maximum achievable transmission rate has been 

shown. Objectivity of maximum likelihood rule usage in low-quality channels with low signal/noise ratio has been 

analyzed. The correct formulation of the mathematical and physical content of channel capacity has been made. In-

variance of capacity to a noise distribution in continuous channels has been proved. The main causes of the crisis in 

the development of information transmission theories have been indicated.  
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Introduction and problem formulation 

 

Currently, the definitions of fundamental limits of speed, reliability of data transmission, channel 

capacity, value of signal/noise ratio, as the key indicator of predicted communication quality, have 

become the most extensively used categories in communication theory and its applications. The 

works of Kotelnikov [1] and Shannon [2], published in 1946–1948, are considered to be the discov-

ery of the fundamental laws of compression, data transmission and marks the birth of information 

theory in its modern sense. The theory based on the deep intersection with probability theory, statis-

tics, computer science and other fields of knowledge was the basis for the development of commu-

nications, data storage and processing, and other information technologies.  

This theory can be defined as a science dealing with the study and optimization of information 

encoding/decoding algorithms in order to create economical and reliable ways of its transmission 

through communication channels and its memory storage. The theory has arisen from the needs of 

radio, radar, telephone, television and computer technology, and is the theoretical base for the con-

struction of communication systems. This theory focuses on the problem of optimal (in terms of 

speed, reliability and efficiency) usage of available technical devices for transmission, transfor-

mation, distribution and storage of information. At present, by the depth and amount of the re-

searches, information theory can be matched with many branches of mathematical physics.  

Undoubtedly, the main category of modern information theory is the concept of noisy channel 

capacity defined by Shannon [2,6]. According to his interpretation, capacity is a boundary of the 

data transmission rate, which cannot be exceeded with any encoding/decoding methods under any 

high level of transmission reliability, but it can be approached arbitrarily close to by choosing the 

proper methods of encoding and decoding. Channel capacity was expressed in statistical terms by 

introducing mathematical characteristic of the joint probability distribution of two random varia-

bles, called the amount of information. It is equal to the maximum amount of information in the 

signal at the channel output relative to the signal at its input, where the maximum is taken over all 

probability distributions of the input signal. The amount of information, in its turn, is expressed 

through another value, which has long been used in thermodynamics – the entropy, and represents 

the difference between the entropy of the channel output signal and the conditional entropy, if the 

input signal is known.  Methodological role of capacity is extremely high in information theory, be-

cause it is not only the basis for the coding theorem stated by Shannon, but also is instrumental in 

proving the majority of other fundamental theorems and the existing limits.  
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Despite the undeniable achievements in information theory, it has been criticized recently. The 

reason for this is not only a lack of practicality and constructiveness in various statements of theo-

rems but, moreover, the theory development crisis is manifesting. Visible technological progress in 

communication services cannot hide the absence of significant increase in specific efficiency of tel-

ecommunication equipment. The channel and physical layer protocols of information transmission 

system (ITS) are rather expensive. Error correcting codes, which have history of theoretical and ex-

perimental studies that amounts to more than 70 years, almost are not used in practice. The reason is 

not only the computational complexity of constructing and decoding cumbersome constructions in 

high-speed channels, but also the unacceptability of substantial residual amount of erroneous decod-

ing probability for a transmission of data and program texts. It can be said without exaggeration that 

the specific efficiency of telecommunications has not changed since the twenties of the last century. 

The development of technique and communication technology is purely extensive. Performance 

improvement is achieved mostly by the development of transceiver technological base, as well as 

the bandwidth expansion and transmitter power (which, actually, determines the mathematical defi-

nition of capacity). It has negative moral, material and ecological effects. The problem of electro-

magnetic compatibility is becoming all the more essential. Overloaded traditional radio frequency 

ranges and a small bandwidth of metallic communication lines have forced switch to the optical 

range (however its potential is not infinite). As a result, ITS has become less reliable and more ex-

pensive. Mobile technology is not undergoing radical changes, but only extensive modifications. 

Geostationary orbit of communication satellites is approaching the saturation limit. The increase in 

demand rate for communication services is exceeding the rate of ITS performance increment. This 

serves as a testament of the explicit crisis in the theory and practice of data transmission system 

construction. 

The purpose of this work is to reveal three main causes of the crisis – the errors embodied in the 

"base" of information theory which are the root cause of its evolution dead end, in particular: 

- proving obvious methodological errors in the existing definitions of continuous channels capac-

ity; 

- justifying incorrectness of the statement that capacity is the limit of attainable rates for any con-

tinuous channel models; 

- «debunking" the view that the decision-making based on maximum likelihood rule is the best 

way to estimate noisy channel output state at low signal/noise ratio. 

Undoubtedly, the issues being considered can be seen as debatable, especially out of context of 

newly obtained scientific results which are not the subject of this work and are waiting for being 

published. This paper should be considered as the motivations for searching fundamentally new so-

lutions in the mathematical theory of communication, which correspond to the true physical content 

of information transmission process. 

 

1 The differential entropy of continuous distributions and analytical determination of 

Gaussian channel capacity 

 

Considering the work’s subject, at first let’s pay attention to some well-known facts. The first 

definition of the capacity of discrete binary channel without memory with symmetric transition 

graph determined by the error probability p0, is given in [2], and uses statistical measure of uncer-

tainty  of discrete choice, called entropy: 

    
P(X)

C V max H X H X Y   ,    (1) 

where X, Y  – the messages at the input and output of a noisy channel;       P X p 0 ,p 1  – prob-

ability distribution of binary alphabet symbol; V  – the number of binary symbols transmitted 

through the channel per second;  

          H X p 0 log p 0 p 1 log p 1            (2) 
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– the entropy (uncertainty) of a binary message source (if information is measured in bits – loga-

rithm base equals two);  

        0 0 0 0H X Y p log p 1 p log 1 p         (3) 

– the channel unreliability – the entropy (uncertainty) of noise. If the channel quality specified by 

the parameter p0, s known, maximum (1) is achieved with equiprobable source symbols 

   p 0 p 1 1 2 
 
and amounts to: 

 C V 1 H X Y    .      (4) 

The definition bI C V  is often used for calculating the average amount of information, which 

a single binary symbol on the output of a discrete noisy channel contains. It is particularly used in 

assessing the index of specific effectiveness of ITS [3].  

The equation (4) has been generalized for the case of non-binary channel without memory (see, 

for example, [4,10]). By now, in addition to the above cases for discrete channel models, analytical 

definitions of channel capacity with erasing and some "exotic" examples of asymmetric transition 

graphs discussed by C. Shannon in his original paper [2] are known. 

By itself, any discrete channel model is a kind of an add-on to the model of continuous (in time 

and level) channel. The equations (1)-(4) are objectively understandable, are clear from the physical 

and mathematical point of view and will not be discussed further. They need to be considered in 

order to keep track of the continuity of the methodological approach used by Shannon for an analyt-

ic derivation of the continuous channel capacity equation. The class of continuous channels with 

defined capacity is narrowed to "Gaussian" [2, 5, 7, 8] in the current paradigm. Its incorrectness will 

be shown below. 

For a continuous source, when the messages are selected from the infinite set, Shannon, follow-

ing the logic of (1)-(4), introduces the concept of the entropy of a continuous distribution (often re-

ferred to as the differential entropy): 

     H X f x log f x dx





     ,     (5) 

where  f x  – the probability density function (PDF) of continuous random variable x . According-

ly, the joint and conditional entropy of two statistically related random arguments which determine 

the input and output of a continuous channel are given by: 

     H X,Y f x, y log f x, y dx dy

 

 

      ;    (6) 

   
 

 

f x, y
H Y X f x, y log dx dy

f y

 

 

 
   

 
  .    (7) 

The main properties of the entropy of the continuous case (5) include the following: 

1) for a given constraint on the average power 2  of the continuous process centered relatively 

to zero, the entropy (5) is maximal if this process is Gaussian, i.e. 

 
2

22

1 x
f x exp

22

 
     

 ,    (8) 

in this case            
 

   2

f x
max H x log 2 e   ;     (9) 

2) unlike Shannon’s discrete definition (5) – (9) [see. 2] the differential entropy measurement is 

relative to the given coordinate system, i.e., it is not absolute. This means that when the argument of 

the logarithm after calculating the integrals is less than unity, the differential entropy (5) – (8) can 

take on negative values! Such computing subjectivism has no a sensible physical interpretation till 
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now, and therefore, in most cases, simply is suppressed. Although Shannon tried to justify this fact 

asserting that, the possibility of negative differential entropy notwithstanding, the sum or the differ-

ence between two definitions of entropy is always positive [2]. However, such justification does not 

prevent the collapse, which will be shown below in the analytical determination of capacity by av-

erage mutual information (ratio of differential entropy).  

In a continuous channel, the input source signals  x t  are continuous functions of time, and the 

output signals –      y t x t t   are their implementations distorted by summing them with 

noise. The noise implementations  t  are also a continuous function of time. Continuous channel 

capacity is defined in [2] as the maximum (over all possible input distributions) of the function 

which essentially similar to the expression (1): 

    
f (x)

1
C 2FT max H Y H Y X

T

 
   

 
,    (10) 

where F – the frequency band which restricts the channel; T – duration of channel output observa-

tion; 2FT – number of degrees of freedom, defined on the duration T, as the number of independent 

measurements of function with a limited spectrum, defined by the sampling theorem [1,2].  In the 

formula (10) H(Y) – denotes the channel output entropy, and conditional entropy H(YX) defined 

by the expression (7). The difference, the maximum of which is sought in (10), is usually referred to 

as the average mutual information between the input and output per one channel usage: 

       
 

   

f x, y
I X,Y H Y H Y X f x, y log .

f x f y

 

 

        (11) 

Then for one channel usage: 

  
f (x)

C max I X,Y .               (12) 

It is convenient to consider the relationship of Shannon’s information definitions for a continu-

ous channel using the Venn diagram, shown in  Fig. 1.  

 

Fig. 1 – Relationship definitions of entropy for continuous channel 

Therefore, the capacity of a continuous channel where noise is additive and not statistically asso-

ciated with the signal, per one dimension equals the maximum of average mutual information for all 

variants of input distributions. [2,4,7,8] state that  

    
f (x)

C 2F max H Y H    ,    (13) 

where  H   – the noise entropy. The theorem 16 in [2] postulates that when noise and signal are 

independent and additively interactive, the data transmission rate per one channel usage equals the 

difference between the channel output entropy and noise entropy:   
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   R H Y H   ,     (14) 

accordingly  

 
f (x)

C max R .      (15) 

The formulas (10), (12), (13) and (15) represent, in fact, various ways of defining the same phys-

ical magnitude for different types of measurements (total or per one channel usage). Let’s continue 

the reasoning for the Gaussian channel in accordance with the logic of the presentation in [2], which 

is traditionally used in textbooks and monographs on information theory:  

 H log 2 eN   ,       (16) 

where N  – the noise power. To maximize the rate, based on the properties (9), it is necessary to 

require that the source distribution is to be also Gaussian with the power S :  

 H X log 2 eS  .      (17) 

Since signal and noise are not linked statistically, due to the stability of normal distribution to the 

composition of any number of summable random variables [9], the distribution of their sum will be 

also normal with a total power which equals  S N
 
 

   H Y log 2 e S N   .     (18) 

As a result, we arrive at the well-known formula 

    C F log 2 e S N log 2 eN           (19) 

or     
S N

C F log
N

 
  

 
.      (20) 

It should be noted that the distribution of channel output is to be normal in the only case, when 

both signal and noise are Gaussian. The formula (20) being derived, only the signal and noise 

probability density functions has been used, and the methods of information receiving have not 

been mentioned, thereby this formula is referred to as "Capacity of Gaussian channel" [2–8]. 

Now let’s focus on a strange behavior of the component analytical determination (19). To do 

this, we should recall that the minuend is the channel output entropy  H Y , and the subtrahend is 

the noise entropy  H  . What happens to the value C in case of the noise power decrease? It fol-

lows from (20) that if F 0  then 
N 0
lim C


  . At the same time the formula (19) shows that the ca-

pacity increases indefinitely not due to the growth channel output entropy (which, on the contrary, 

decreases), but due to the fact that the noise entropy (the subtrahend in (19)) tends to minus infinity: 

 
N 0
lim H


    .     (21) 

This observation contradicts the physical meaning which is inherent in the definition of the dif-

ference (14). This change in the sign and adding of the subtrahend to the output entropy occurs al-

ready at "weak" noise:  
1

N 2 e


  .  It is difficult to understand the physical meaning of this phe-

nomenon. Although in the form (20) the capacity formula shows the monotonicity of the function 

 C N  at N 0 , that allows to explain this phenomenon by the difference between determining 

differential and discrete entropy, noted earlier. However, due to the lack of a clear physical interpre-

tation of this phenomenon, correctness of the analytical derivation of capacity by using the concepts 

of the differential entropy and the average mutual information is doubtful.  
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As we will see later, attributing to this formula the ability to determine the upper limit of data 

transmission rates for the Gaussian channel is even more doubtful.  

 

2  Geometric definition of capacity 
 

After the publication of his work [2], a year later Shannon published a paper [6], which provides 

another method for determining capacity based on multi-dimensional geometric construction of the 

signal and noise space, represented in the "flat" image in Fig. 2. Any implementation of a continu-

ous random signal, which has duration T, and which frequency spectrum is limited to F, is repre-

sented as a point in n = 2FT - dimensional space. If the transmission system is “good”, those points 

– Si are uniformly distributed within the hyper sphere with the radius determined by the average 

signal power and the dimension of the space  

Sr nS       (22) 

and volume    
 

 
n

n

SV nS
n 2 1



 

,     (23) 

where Г(n2+1) – gamma function. For uniform distribution of signal points, an arbitrary choice 

of n  coordinates – random variables with zero mean and variance, which equalsS can be used. 

Providing the dimensions of space n  increase unlimitedly, the distribution of points will monoto-

nously approach the uniform. This asymptotic property of uniformity is the basis for the construc-

tion of random codes, almost any of which is "good" [7]. The random signal realization is a channel 

form of a codeword of a random code and can be obtained by two following ways:  

 

 
 

2FT 1

i

i 0

sin(2 F t i t )
S(t) s , t 1 2F

2 F t i t





  
  

  
 ;   (24) 

   2 i 1 2 i 1 1

2FT

i 1

i i
2 F 2 F

T T
S(t) s sin s cos  



 
    

     
    

 .  (25) 

The formula (24) is an expansion of a random signal in the basis of the sinc -functions and has a 

continuous spectrum effectively bounded by the frequency F.  

 

Fig. 2 – The geometric representation of the information transmission system space 
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For (25) the Fourier expansion in the orthogonal (on the interval T ), harmonic basis is used. 

Thereby the realization S(t) is periodic on T, and if it is repeated indefinitely, it will have a discrete 

spectrum bounded above by F, non-zero measurements of which are arranged with a frequency step 

of 1 T .  

Both methods (24) and (25) may be used in the description of capacity attainment by means of 

coding given by Shannon in [2] (quoting 1): «…Let m = 2
k
  samples of white noise be constructed, 

each of duration T. These are assigned binary numbers from 0 to m-1. At the transmitter, the mes-

sage sequences are broken up into groups of k   and for each group the corresponding noise sample 

is transmitted as the signal. At the receiver the m  samples are known and the actual received signal 

(perturbed by noise) is compared with each of them. The sample which has the least R.M.S. dis-

crepancy from the received signal is chosen as the transmitted signal and the corresponding binary 

number reconstructed. This process amounts to choosing the most probable (a posteriori) signal…». 

The formulas (24) and (25) in conjunction with the above quote is a description of the process of 

construction and decoding of a random code, where the decoding is performed according to the 

rule, which is traditionally called the Rule of Maximum Likelihood (MLR). With an unlimited in-

crease in the length of the code block (synchronous increase parameters k and n 2TF ), if a noise 

is not too large, the probability of an error in the received codeword can be arbitrarily small. Thus, 

the geometric definition of capacity is the highest attainable rate of an arbitrary code which is de-

coded with the MLR and an arbitrarily low unreliability is provided.  

In the geometric interpretation of the best code (Fig. 2), the point son channel output, 

 iS , i 0,m 1  , which correspond to the transmitted code words, are displaced under the influence 

of Gaussian noise within the spheres of uncertainty with the radius  

Nr nN       (26) 

and the volume  

 
 

n
n

NV nN
n 2 1



 

.     (27) 

In accordance with the law of large numbers, when n increases, the probability of finding the dis-

placed points outside the sphere with the radius Nr n  tends to zero ( – an arbitrary small val-

ue). Spheres of uncertainty become more delineated. Shannon compares them with regular billiard 

balls [2,6,8]. Since the signals of codewords and noise do not depend on each other, the total radius 

of hyper spherical space, which contains m  spheres of uncertainty, is characterized by the radius 

and volume: 

 S Nr n S N   ,      (28)  

 
  

n
n

S NV n S N
n 2 1




 
 

.     (29) 

With n   and n 0   we can determine the maximum amount of non-overlapping spheres, 

which can be packed in the volume S NV  , in such a way that there is practically no empty space 

between them:  
n 2FT

C S N N

S N S N
m V V

N N


 
   .    (30) 

Let’s recall that, if codewords are constructed in accordance with the rules (24) or (25), 2FT = n – 

the dimension of geometrical code space. Finding the logarithm (30) and averaging over the time T 

gives the maximum achievable code rate, or (according to the modern information theory) – chan-

nel capacity:  
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C

1 S N
C log m F log

T N

 
   

 
.                                             (31) 

The results of (20) and (31) are the same apparently; allegedly it confirms the definition of C as 

the maximum achievable information rate in a channel with an additive noise and arbitrarily small 

unreliability. However, it should be noted, that according to the logic of the formulae derivation 

(31), (and of the quote discussed above as well), the value C is the limit rate of the best code, when 

the Maximum Likelihood Rule is used in decoding. If this was not true, and the receiver would not 

need to store samples of the signal realization segments in its memory in order to use them in the 

MLR comparisons (as it is described in the above quote from [2]) and when N S , it would be suf-

ficient to switch to the noise receiving (would there be any difference which of these two processes 

could be reliably distinguished from their mix?), in order to compensate the noise in the output mix-

ture of the channel. We can refer to [8] or other works, which consider the physical and mathemati-

cal meaning of capacity, and see, that the value C, in the theorems proved by the author, is strictly 

an upper limit of rates for the codes in the Gaussian channel when the MLR is used, but not for the 

Gaussian channel itself, transmission and signal processing method notwithstanding. In the prevail-

ing views on information theory there is no difference between these two concepts, because in the 

scheme of ITS, introduced by Shannon [2], the channel’s encoder and decoder are present by de-

fault. The possibility to build an effective ITS, which does not use coding, is not considered at all! 

This contradicts the practical observation, noted in the introduction, that the error-correction codes 

are hardly used in the systems where mistakes are not allowed. To answer the question: what the 

value C denotes: just the upper limit rate of information transmission over a channel with additive 

noise or the upper limit data transmission rate over the channel when the MLR is used for encoding 

and decoding (unreliability is arbitrarily low in any case), let’s turn to the analysis of mathematical 

and logical correctness of the reasoning used in the derivation of the formulas (20) and (31). For an 

objective analysis we need to change the conditions for which the formulas (20) and (31) have been 

obtained, i.e. consider the channel models different from the Gaussian one.  

 

3 Comparison of the analytical and geometric definitions of capacity for  

non-Gaussian channel 
 

Let’s consider the following model of a continuous channel with the bandwidth limited value F , 

(where F - the frequency band which restricts the channel)and additive, stationary and signal-

independent noise. Let the signal be Gaussian process with the probability density function:  

 
2

1

1 x
f x exp

2S2 S

 
     

,     (32) 

with the mathematical expectation and variance  

   M x 0, D x S  .      (33) 

The entropy of the signal is determined by the expression (17). The noise in the channel adds a 

random error to any signal measurement. This error has a uniform probability density in the range 

of 
a a

, , a 0
2 2

 
  
 

:  

 
 

2

1 a , при y a 2,a 2 ;
f y

0, при y a 2 .

  
 



            (34) 

The corresponding numeric characteristics of distribution (34) are: 

    2M y 0, D y N a 12   .    (35) 



ISSN 2519-2310  CS&CS, Issue 4(4) 2016 

 13 

The entropy of the noise is defined by the value: 

 H N loga .      (36) 

In some cases, the exposure of the quantizer of level signal when it is measured with the values 

of the sampling interval t 1 2F   and the limited (greater than zero) value a  (the quantization step) 

can be described with such a noise model [3].  

By the theorem 18 in [2] Shannon defines the limits of the capacity value for arbitrary non-

Gaussian channel in the following form:  

1

1 1

S N S N
Flog C Flog

N N

 
  ,    (37) 

Where Nl – an entropy power, i.e., the power of equivalent Gaussian noise which has the same en-

tropy as the original non-Gaussian noise do. For this model, we can calculate the entropy power by 

equating the values  (16) and (36): 

 2
1

12
N a 2 e N

2 e
  


.     (38) 

Now let’s calculate the capacity of the channel described, using an analytical approach (11) – 

(14). The channel output entropy, in this case, is the differential entropy of the process, which ob-

tained by adding two independent processes:  

 normal (signal) - with a mathematical expectation and variance (33); 

 uniform (noise) - with a mathematical expectation and variance (35). 

To calculate the entropy of the output channel H(Y) it is necessary to define the probability density 

function of the overall process f(y). The function, in this case, will be a composition of two distribu-

tions [9]:  

     1 2f z f w f z w dw





  .    (39) 

Using (32) and (34) in (39) makes it possible to write:  

   
 

2a 2
1 2

a 2

z w1
f z 2 S exp dw

a 2 S





   
    

    


1 a 2z a 2z
erf erf

2a 8 S 8 S

     
    

     
,   (40) 

where  
A

t

0

2
erf A e dt


 .  

Due to the independence of those two processes, numerical characteristics of the composition 

(40) are:  

           M z M x M y 0; D z D x D y S N.          (41) 

The distribution (40) is not Gaussian, although is very similar to it. To make a comparison, Fig. 3 

shows the probability density function (PDF) (40) and the similar PDF of the equipotent centered 

Gaussian process with the normalized dispersions a 2 3; S N 1   .  

Naturally, values of the differential entropy computed for PDF composition of two normal pro-

cesses (formula (18)) and for the PDF composition of the case considered, are very similar as well.  

For example, for the values of numerical characteristics shown in Fig. 3 in (18) we have: 

 H Y log 2 e 2 2,547    . 

Calculation of the entropy of the distribution (40) yields:  



ISSN 2519-2310  CS&CS, Issue 4(4) 2016 

 14 

     H Y f z log f z dz 2,544





    ,  

i.e., the entropy of the channel output with a uniform noise almost coincides with similar entropy of 

the Gaussian channel but it remains a bit smaller  

   H Y H Y .      (42)  

 

 

Fig. 3 – Comparison of Gaussian and composite PDFs 

This result is a natural consequence of the central limit theorem of the probability theory [9]. We 

can write the expression for the analytical calculation of the capacity per one usage of this channel 

which has a uniform PDF of noise in the following form:  

 C H Y log 12 N    ,     (43) 

where value N determined by the formula (35).  

The comparison of value (43) with the capacity per one usage of Gaussian channel, derived from 

(19), under the same energy conditions, gives  

 

 

H Y log 12 NC

C log 2 e S N log 2 eN

  


   
.    (44) 

Example 1  For the case of equipotent signal and noise S=N=1, considered for the PDF in Fig. 3, 

we have: 

 the entropy power determined in (38)  1N 0,703 ; 

 the boundaries (37) defined by Shannon  0,638 C 0,755  ; 

 the actual value calculated from (43)  C 0,751  ; 

 the Gaussian channel capacity, defined by the expression (19) under equivalent energy condi-

tions 

C 0,5 ; 

 the ratio of capacities, which defined by (44)  

C C 1,502  . 

The conclusion: the results of an analytical entropic definition of channel capacity with uniform-

ly distributed noise lead to the following statement:  
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The channel capacity with uniformly distributed noise half as much again as the 

Gaussian channel capacity calculated for equipotent signal and noise! 
(45) 

 

Now let’s use the geometric method, discussed in Sec. 2, to determine channel capacity with uni-

formly distributed noise. To that end, we compare the geometric representation and the characteris-

tics of uncertainty spheres of (Fig. 2), within which the signal points are shifted by the action of 

normal and uniform noise. Let’s introduce the concept of normalized (to the dimension of the signal 

space n ) displacement of a signal point under the influence of noise: 

 for Gaussian noise    

1 2
n

2
n i

i 1

1
r n

n 

 
  
 
 ;     (46) 

 for uniformly distributed noise 
1 2

n
2

u i

i 1

1
r u

n 

 
  
 
 ;     (47) 

where
 

 i in , u , i 1,n    – random value i -th coordinates of additive noise for a normal and uni-

form noise respectively. The probability distribution densities of these quantities are determined by 

the formulas  

 
21 n

f n exp
2N2 N

 
      

;     (48) 

 
1 12 N , при u 3 N, 3 N ;

f u
0, при n 3 N .

           
   

   (49) 

Normalized radii of uncertainty spheres nr  and ur for two noise distributions, under considera-

tion, are determined by the mathematical expectation of random variables (46) and (47), which are 

the functions of random summands having the PDF (48) and (49), and "delineation degree" of the 

spheres determined by their dispersion  nD r
 
и  uD r . The analytical result for normal noise is 

known [9]: 

 n n

2N n 1 n
r M r

2 2n

     
       

    
;    (50) 

 
2

n

2 n 1 n
D r N 1

2 2n

       
        

      

.    (51) 

Analytical calculation of similar numerical characteristics for the uniformly distributed noise ur  

and  uD r  is difficult because a multidimensional compositional PDF of a random variable (47) is a 

discontinuous (piecewise-linear) function. Therefore, these characteristics have been calculated by a 

statistical model. The results of the analytical and statistical research of the characteristics of uncer-

tainty spheres for a normal and uniform distribution of the noise coordinates are illustrated in 

Fig. 4-6. The results are expectable due to the law of large numbers. Fig. 4 shows the "virtual" 

cross-sections by the plane of the multidimensional picture of the displacement points for a normal 

(left) and uniform (right) distribution of noise coordinates, and calculated for three different values 

of space dimension at the number of tests equal 10
6
. The images of the cross-sections of the spheres 

are obtained under the even noise power (equals 1) and are normalized per space dimension for 

convenient comparison.  
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Fig. 4 – The projections of the normalized distributions of the vectors of 

Gaussian and uniform noise on the plane 

 

 

 Fig. 5 – Dependence of the function ur  and  nr  from the space dimension 

n for normal and uniform noise 
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The main conclusions from the 

results of the statistical experiment 

and analysis of the illustrations are 

following: 

1) the spheres of normal and uni-

form noise have approximately 

equal average radii, while the value 

ur  tends  to  limiting and normal-

ized value slightly faster than nr . 

This phenomenon is illustrated in 

Fig. 5;  

2) the dispersion of scattering of 

the radius values for the sphere of 

uniform noise is smaller than the 

dispersion for the sphere of normal 

noise (the contours of the spheres on 

the right is more defined), and cal-

culations yield the following limit 

ratio:  

 

    n u
n
lim D r D r 2,5


 ,     (52) 

i.e., the effective width of the "ring" of scattering for uniformly distributed noise less, on average, in 

2,5  times(practically, in any space dimension n ), than the same parameter for normal noise. 

Limiting absolute values of the dispersions for the radii of the spheres are: 

     n u
n n
lim n D r N 2, lim n D r N 5
 

    .     (53) 

This phenomenon is illustrated by the graphs in Fig. 6 for N 1 . For the normally distributed noise, 

the absolute dispersion of the radius increases and tends to the limit value "from below", but for 

uniformly distributed noise it decreases and tends to the limit value (53) "from above". Finally, we 

can draw the main and obvious conclusion:  

3) the average radii of the uncertainty spheres for the types of the noise PDF under consideration 

coincide asymptotically:  

n u
n n
lim r lim r n N
 

   .     (54) 

This result is a consequence of the law of large numbers. Of course, it can be generalized for any 

kind of centered PDF of signal and noise, i.e. for any continuous channel with additive noise, which 

are not statistically associated with signal. The parameters of the geometrical representations of ITS 

at n   are affected only by the average power values of continuous signal and noise, but not the 

type of their distribution!  

For similar reasons, the radius of the hyper sphere on non-Gaussian channel output space also 

coincides with the value determined by the expression (29), then using (27), (29) and (30) we arrive 

at the same value of channel capacity with uniformly distributed noise: 
S N

C C Flog
N


   , which 

contradicts the definition (43) and the statement (45). Thus, two Shannon’s works [2] and [6] pub-

lished at one year interval contradict each other when being applied to a non-Gaussian channel. To 

the question "which of two methods of determining the capacity, the analytical (entropic) or geo-

metrical, is correct?" – there is the definite answer: the geometrical one. The correctness of the ge-

ometrical approach can easily be verified by the statistical modeling of a random code [12]. Analytical 

Fig. 6 – The dispersion of the radii of uncertainty spheres 

for  the  normal  and  uniform  noise  as  a  function  of  

the dimension of space 
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method gives the result which coincides with the result of the geometrical method in the only case 

when signal and noise are Gaussian processes. It's just a coincidence which can be explained by the 

properties of normal distribution, which has a special significance in the theory of probability and 

stochastic processes. Due to the mentioned reasons, the methodology of using "entropic power" and 

the boundaries defined by (37) are not correct.  

The results of the analysis for both non-Gaussian and Gaussian channels (as, indeed, for any oth-

er model) have shown that these channels have the same capacity C C , the value of which de-

pends only on the signal/noise ratio and the channel bandwidth. Therefore, the definition of C  (20) 

as the limit of information transmission rate in a Gaussian channel with additive noise is not correct, 

to say the least.  

The true physical meaning of capacity in the geometric derivation is to determine the maximum 

of information transmission rate through a channel with any kind of additive noise when the chan-

nel encoding and the maximum likelihood rule in decoding are used. 

Consequently, capacity is not a channel characteristic, it is the natural limit which arises for any 

continuous channel model, as soon as we decide to use the encoding of information (in the sense of 

making the decision according to the results of the comparison between the channel output and the 

known samples of valid signal realization). As a result, it is necessary to partition the signal space at 

the channel output into the fields of "similarity" which, in fact, are the spheres of uncertainty in the 

geometric representation in Fig. 2. These fields will not overlap as long as the noise power at a 

fixed transmitter power budget does not exceed a permissible value. This value does define the so-

called capacity (actually, the limit rate of the best achievable code). The dominant axiomatic inevi-

tability of code usage and the decision-making process based on the "the greatest similarity" princi-

ple are the source of fundamental limitations in the existing information theory paradigm. In other 

words, the scant achievements of the modern information transmission theory are the consequence 

of invariable usage of the so-called maximum likelihood rule.  

In conclusion of this section we’d like to present some considerations as an additional argument 

for proving the incorrectness of the existing analytical definition of capacity as the maximum aver-

age mutual information, considered in Sec. 1.  In the quotation from [2] (see Sec. 2), decoding is 

considered as the process of comparing the noise sample with one of 
kM 2  combinations of the 

source symbols. Therefore, obviously, the entropy of that sample can be defined correctly not by the 

formula (17), but as the uncertainty of discrete choice (according to the principle (2)), i.e. 

  kH X log2 k  .      (55) 

Therefore, it is this definition that should be used in the calculations (17) – (20). This leads to the 

another collapse, because in the same expression two different definitions of the entropy (for the 

discrete and the continuous choice) will be present which, according to Shannon, exist in different 

measurement systems.  

 

4  The rule of maximum likelihood 

Cramer Theorem (1740):  

“There is no other method of treatment of the experimental results, 

which would give a better approximation to the truth than the maxi-

mum likelihood method.” 

The name of the rule (method) - the Maximum Likelihood Rule (MLR) is appropriate to its role 

in the statistical estimation of the random experience realizations and the decision-making processes 

under conditions of multiple-hypothesis. Modern information transmission paradigm in all known 

practical applications deals with the decision-making process concerning the noisy channel output 

state under the conditions of equiprobable hypotheses, i.e. all the source messages are assumed to 

be equally probable, and the effect of noise in the channel on them is assumed to be same (symmet-

ric). This explains why other statistical methods and decision-making criteria are no alternative to 
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the MLR. Without much exaggeration we can say that the rule of maximum likelihood came to the 

statistical theory of communication from our life experience. We always try to hear the phrase in a 

disturbing noise or to recognize the object in low visibility conditions, subconsciously using the al-

gorithm: "what (known to us) does it most look like?" This explains why the usage of the MLR in 

all standard applications of the information transmission theory is axiomatic. 

The quotation from [2], which has been already referred to (see Sec. 2 of this paper), reflects the 

justifiable (taking into consideration our physiological experience) opinion of Shannon that the de-

coder on the channel output has to make a decision on the received codeword (signal) by comparing 

the proximity (in the mean square sense) of the received sample of a random process at the channel 

output with the samples available to the receiver.  

The same approach can be observed in the description of the ideal (according to Kotelnikov) re-

ceiver for the non-coded modulation [1] (quotation 2): «… we assume that, depending on the total 

oscillation y(t), which affects the receiver input, it is certain to reproduce one of the possible mes-

sage values
 

   1 mS t , ,S t . … Obviously … full range of possible values y(t) can be divided in-

to m non-overlapping areas. … The correct messages will be reproduced more or less frequently 

according to the configuration of the areas determined by the receiver. … We will call the receiver 

the ideal one when it is characterized by such (correctly selected) areas and thereby gives the mini-

mum number of incorrectly reproduced messages when noise is applied».   

Consequently, the basic postulate of the modern theory of potential noise immunity [1], as well 

as the error-correcting coding theory [2], is the rule of processing noisy signals (codes) based on the 

maximum likelihood (or the maximum similarity), which is used by the authors as the foundation 

for the further theories.   

If the values of apriority probabilities of source messages are the same, the mathematical formu-

lation of the MLR in the selection of  k -th hypothesis from m alternatives is following:  

 
 

 k

i

f S y
1, for all i 1,m , i k

f S y
   ,    (56) 

where  if S y  – the likelihood function recorded for message Si. The problem of finding the most 

reliable solution comes to maximizing the likelihood function, and, in some cases, may have an ana-

lytical (non-exhaustive search) resolution based on methods of finding the extremum known from 

the mathematical analysis. In cases for a continuous channel (see the quotations 1 and 2 above), the 

likelihood function for the message Si  on  the duration  T  can  be  expressed via  the  Euclidean 

(Hilbert) distance:  

     
1 2

2

i i

T

f S y S t y t dt


      
 
 .    (57) 

In accordance with the maximum likelihood (maximum similarity) principle, the hypothesis, 

which has maximum of the function (57), is considered to be true [1,2]. Resorting to such a rule, we 

automatically introduce a limit on the permissible intensity of noise, i.e. we limit from below S/N 

ratio at which the output signal point will not be outside its own area of similarity. This process 

originates all the basic statements and, so-called, the fundamental limits of information transmission 

theory. These limits (the most important of which is, undoubtedly, channel capacity) are extremely 

rigid, unfortunately, and that is the reason for the scant achievements of the information transmis-

sion theory.  

What is the value of probability P , which describes the similarity of the process at the channel 

output to the true transmitted message at the low S/N ratio? The answer is obvious – it is very 

small. Let assume that the channel alphabet allows you to send  m  different messages that may ap-

pear with an equal regularity. Then, for the fixed signal power S and increasing of noise power N it 

is true that:   
1

N m
lim P m ; lim P 0

 
  .     (58) 
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With any heavy noise (if the rate is higher than channel capacity) the process at a channel output 

with high probability is not similar to the true transmitted message, since its representing point is 

equally likely to be in the area of similarity of almost any of the m possible messages. When signal 

points in n -dimensional space are packed most densely [11], the number of uncertainty spheres, 

which are adjacent to the similarity sphere of the true transmitted signal may be too large. It does 

not allow to create a multi-dimensional ordered manipulation codes (such as Gray code), which 

minimize the number of distorted binary symbols at errors of the true message transformation to the 

nearest to it in the ITS space. For example, at n 24  there is the densest packing based on the 

Leech lattice and built with the Golay binary code [10, 11], in which the surface of one sphere is 

adjoined by 196560 surrounding spheres. If on the basis of this lattice any redundant  24,k -codes 

with k 1,2, ,18 , are constructed, it will be possible to provide mutual equidistance between all 

signal (code) points. Even if channel capacity is exceeded insignificantly (small overlapping of the 

uncertainty spheres), reception of any codeword on the channel output on the basis of MLR is al-

most equiprobable and practically independent from the transmitted word (message). In such condi-

tions maximum likelihood rule usage certainly leads to an error in the reception. Therefore, there is 

a paradox and contradiction: on the one hand, MLR is the best way to receive, which minimizes the 

probability of errors at a low noise; on the other hand – the rule itself is the cause of limitations on 

the permissible rate and/or noise power. Can the decision-making rule be modified when we use 

encoding and probabilistic estimation of the channel output state?  

 

5 Can codes work without Maximum Likelihood Rule? 
 

It is convenient to estimate the possibility of changing the decision rule, when the true message 

is not considered to be the closest one to the realization on the channel output, with the help of the 

presentation of ITS space by Poisson field of points [12]. A random or ordered algebraic code being 

constructed, its codebook (a plurality of signal points) forms a random (Poisson) field of the points 

in a n -dimensional space, as following conditions are always satisfied:  

1) at a fixed average power budget of the transmitter all the points of code words are placed in 

the limited volume of the multidimensional space, and with increasing n this placement asymptoti-

cally approaches a uniform (for random code) one, i.e. the density of the field of points is constant 

throughout the volume of code space;  

2) the probability of occurrence of an arbitrary number of points in any volume of space does 

not depend on the quantity of points falling into any volumes which do not intersect the chosen one; 

3) the probability of two or more points falling into the elementary volume is negligible in com-

parison with the probability of one point falling into it.  

Let’s assume that the transmission rate in an arbitrary Gaussian channel exceeds its capacity. In 

the geometrical representation it will lead to the mutual crossing of the uncertainty spheres which is 

shown for the fragment of channel output space in Fig. 7. To simulate the situation let’s use the 

known [9] analytical description of PDF φ(Δ) of the random variable of the displacement under the 

noise influence nn r    (here nr  is determined by the formula (46)):  

 
n 1 2

n

2
exp

n 2N
2N

2

   
         

 

.     (59) 

The numerical characteristics φ(Δ) are derived from (50), (51) as follows: 

  nM n r   ,    nD n D r   .     (60) 

Let the message, which corresponds to the point 1,be transmitted over the channel under the 

noise. Displacement caused by the noise is such that the point 2 is available for the receiver to ob-

serve at the channel output. Let’s also assume that value of displacement is   M    . Using 
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the MLR in this situation will identify the point 3 (which is the closest one to the received point 2) 

as true transmitted, which, obviously, leads to the error.  

Let’s modify the decision-making rule as follows: taking the point 2 observed at the channel out-

put as the center and let’s reconstruct the surface of the sphere with the radius M[Δ]
 
around it. 

Then, checking all codebook points one by one we can identify the point which is the closest to this 

surface. This point will be considered as true transmitted. In accordance with the rule described in 

Fig. 7, the point 1 located at a distance from the surface of the auxiliary sphere is the true transmit-

ted. This corresponds to the error-free receiver solution in this example. Let’s name this decision-

making rule the "Uncertainty Sphere Rule" (USR). According to this rule, not the message, which is 

the most similar one to the observed channel output realization, is considered to be the true, but the 

message, which is the nearest one to the surface of the sphere with the radius M[Δ] drawn around 

the observed output point.  

Likelihood function of an arbitrary signal iS
 
for the USR can be written in the form: 

       

1 2

2 2

i i

T

f S y S t y t dt M



      .   (61) 

The signal having a maximum value of the function (61) is considered to be truly transmitted. 

The described rule will lead to the error-free decision only on condition that the auxiliary sphere 

around the received point (on the Fig. 7 – a point 2) has a radius which is exactly equal to the mag-

nitude of the noise displacement of the transmitted point, i.e. if the noise power added to the trans-

mitted signal (codeword) in a particular realization of the observed channel output is known pre-

cisely.  

However, since it is impossible to know the exact power of the noise component in the particular 

received realization of a signal-noise mixture, then the auxiliary sphere can be outlined only by a 

radius which is equal to its mathematical expectation M[Δ]. This can lead to a wrong decision if any 

other codebook point will occur in the layer (with the thickness of  ) between two concentric 

spheres with radii   M     and M[Δ] (the hatched ring in Fig. 7).   

On the basis of the Poisson field properties, the probability of a wrong decision can be calculated 

as a function of S, N, n . The occurrence of at least one code point within the space between two 

concentric spheres will lead to the error. For the Poisson field, the probability of this event is: 

      P , 1 exp m V ,           (62) 

where λ – a field density, containing  m  points:  

  S Nm m V   ;     (63) 

the value S NV   is defined by (29); 

V(Δ) – the volume of a concentric layer around the auxiliary sphere: 

 
 

    

    

n nn

n nn
2

M , when 0 M ;

V
1 M , when M .

      
 

  
        



  (64) 

Using (62) - (64) and averaging the result in accordance with the distribution (59) we can calcu-

late the probability of error in decoding by USR:  

   er

0

P P , d



      .     (65) 
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With the set values S, N and n, the number of signal points Cm  in the code space which corre-

sponds to the capacity is derived from (30), and the density of the field of points  Cm
 
is calculat-

ed by the formula (63). Introducing the coefficient   changes of the transmission rate per one 

channel usage, we can model the situations, when the rate R exceeds the capacity C, which leads to 

intercrossing uncertainty spheres:  

 CR C R C 1 m m


       ;    (66) 

or, by contrast, does not reach the channel capacity (uncertainty spheres do not intersect having a 

certain margin):  

 CR C R C 1 m m


       .    (67) 

For these expressions the argument, that regulates the simulated rate, is the number of points of dif-

ferent signals (codewords) for a fixed volume of signal space. For Cm m  the channel capacity is 

exceeded, and for Cm m  – the transmission rate does not reach the channel capacity. The coeffi-

cient   in (66) and (67) is located in the exponent because the transmission rate is measured by the 

logarithm of m.  

The results of the calculation of a wrong decision probability (65) for USR with different values 

of the coefficient  and  S = N = 1  are shownin  Fig. 8.  

Alas, the main conclusion from the analysis of the curves in Fig. 8 is disappointing – the USR 

(so attractive in the case of Fig. 7) leads to the same result as the MLR does! For R C  the proba-

bility of error, when the space dimension (the number of degrees of freedom or the random code 

block length) increases, tends to unity monotonically.  

When R C  – the probability of error can became arbitrarily small with the corresponding in-

crease of n . This result can be explained by the properties of multidimensional spheres, namely, 

almost all their volume is concentrated in a small area adjacent to the surface. In this area surround-

ing immediately the surface of the auxiliary sphere, PDF (defined by the expression (59)) reaches 

its highest values. Therefore, when the dimension of the space increases, the effective volume of 

layers around of the auxiliary sphere grows faster than the density of the field of points decreases. 

Certainly, we can try to formulate other criteria and decision-making rules, but, obviously, the re-

sults will be no better than the result of the MLR (Cramer's theorem). On the basis of the conducted 

simulation, it is possible to make an unambiguous conclusion – the MLR is the best and the only 

acceptable rule of statistical solutions for the codes – there are no alternatives to it.  

Fig. 7 – Geometric illustration the of uncertainty sphere rules (USR) 
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6  Discussion of results and conclusions 
 

The main conclusions from the results of the analysis of mathematical and physical nature of 

channel capacity, as well as from the modern information transmission theory contradictions are 

following:  

1. The probability-entropy approach to the analytical determination of capacity of continuous 

channels, which uses the concept of the average mutual information between input and output (5) – 

(15), can be considered as the correct one only in case when the distribution of the source and the 

noise is Gaussian (16), (17). Since the usage of this approach for non-Gaussian models of continu-

ous channels leads to the erroneous results (39) – (45), then the unjustified conclusion about the im-

possibility of analytical determining the capacity for such models has been made in many published 

works.  

2. The mathematical definition (31) describes correctly the channel capacity value for any con-

tinuous channel where noise is a stationary random process. The value of channel capacity is not 

affected by a noise distribution type and is determined only by the signal/noise ratio and channel 

bandwidth. Different noise distributions manifest only in changes in the speed of approaching to the 

capacity when the duration of the samples of random noise code sequences increases.  

3. The correct geometric definition of channel capacity determines its physical nature as the limit 

of in-formation transmission rate in a channel with any kind of additive noise, when the cod-

ing/decoding is used and the maximum likelihood rule is applied in decoding. Channel capacity is 

the physical limit only for systems, which use the maximum likelihood method.  

4. The maximum likelihood rule is the best and only decision-making rule for the decoding. At 

the same time capacity is an indirect determination of the lower boundary of the signal/noise ratio 

when the noise displacement of message points in the multidimensional space of the output channel 

is not outside of the fixed "are-as of similarity". The existence of these areas is defined by the max-

imum likelihood method nature. Thus, on the one hand, the maximum likelihood rule is the best 

rule of the statistical decision-making, and on the other hand, it causes the appearance of the physi-

cal limit – channel capacity. Abandoning the MLR usage, which causes the appearance of the phys-

ical limit of data rates, in case when the work of receiver consists in solving the probabilistic and 

statistical problem, is impossible!  

Fig. 8 – The dependencies Per(n) when using RSU and different rates 

(1 → R = 1,05∙C;  2 → R = 0,95∙C;  3 → R = 0,8∙C;   

4 → R = 0,7∙C;   5 → R = 0,6∙C;   6 → R = 0,5∙C)  
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5. These considerations give rise to the following logical causal chain of factors that has led to 

the crisis in the information transmission theory development:  
 

Representation of the signal receiving process under the noise influence as probabilistic and 

statistical problem; 

 

The usage of coding as the best realization of the maximum likelihood method; 

 

Appearance of physical limit rates – channel capacity.  

 

As shown in this paper, we cannot break the chain represented above:  

 it is impossible to exceed the capacity without abandoning the maximum likelihood method; 

 it is impossible to abandon the maximum likelihood method when the work of receiver con-

sists in solving the probabilistic problem.  

Thus, the root of the considered problems is a probabilistic approach to receiving signals under 

the noise influence and even the most ambitious assumptions give no alternatives to it. However, it 

is not so. We do use not all the opportunities, which the nature offers for handling noisy digital sig-

nals in continuous channels. However, this will be discussed in the further publications.  
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Математична і фізична природа пропускної здатності каналів.  
Анотація: Розглянуто класичні методичні підходи до визначення пропускної здатності каналу (зв'язку). Показано протиріч-
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правила максимальної правдоподібності при його використанні для каналів з низьким відношенням сигнал/шум. Виконано 

коректне визначення математичної і фізичної сутності пропускної здатності каналу. Доведена інваріантність величини про-

пускної здатності до виду розподілу шуму в неперервних каналах. Наведено основні причини кризи в розвитку теорії пере-

дачі інформації. 
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Математическая и физическая природа пропускной способности каналов.  

Аннотация: Рассмотрены классические методические подходы к определению пропускной способности канала (связи). 

Показаны противоречия между аналитическим и геометрическим определением максимально достижимой скорости переда-

чи. Анализируется объективность правила максимального правдоподобия при его использовании для каналов с низким от-

ношением сигнал/шум. Выполнено корректное определение математической и физической сущности пропускной способно-

сти канала. Доказана инвариантность величины пропускной способности к виду распределения шума в непрерывных кана-

лах. Приведены основные причины кризиса в развитии теории передачи информации.  
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