CS&CS, Issue 2(2) 2016

UDC 004.056.55

KEY SCHEDULE OF BLOCK SYMMETRIC CIPHERS

Alexandr Kuznetsov?*, Yuriy Gorbenko®, levgeniia Kolovanova®

V.N. Karazin Kharkiv National University, Svobody sq., 4, Kharkov, 61022, Ukraine
kuznetsov@Kkarazin.ua, YuGorbenko@iit.kharkov.ua, e.kolovanova@gmail.com

Reviewer: Victor Dolgov, Dr., Full Professor, V.N. Karazin Kharkiv National University, Svobody sg., 4, Kharkov,
61022, Ukraine
dolgovvi@mail.ru

Received on June 2016.

Abstract. We investigate combinatorial properties of the block symmetric ciphers key schedule in the assumption
that the cyclic (round) keys are generated randomly, with equal probability and independently of each other.
The model of random homogeneous substitution is used for an abstract description of this formation. Analytical
expressions allow us to estimate the power of implemented encryption-decryption maps set, obtain estimates of the
probability properties of round keys sequences and ratios of the average number of different key sequences to power
of different master keys set. The simulation results confirm the accuracy and validity of these analytical expressions.
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1 Problem statement and analysis of the literature

Ciphering is widely used in modern information and telecommunication systems for information
protection and security. Ciphering is a reversible cryptographic transformation of open data to hide
its semantic content from unauthorized user (attacker). Bijective processes of encryption and de-
cryption of plaintext blocks and ciphertext blocks are parameterized by key data, which is the same
for symmetric cryptographic transformation [1].

Most of block symmetric ciphers (BSC) are iterative [1], so the encryption is realized by cycli-
cally repeating reversible round function (Fig. 1). The round (cyclic) keys K® K, ... ,K® are
used for parameterization of round transformations at each iteration of BSC. These keys are formed
by extending (key scheduling) the master key K [1].

Encryption key
> Round (cyclic) keys formation scheme
(master key) K
Round key Round key Ro(u)nd key
(x) (x) X
1 K, K
A 4 A 4 A 4
Plaintext Iteration 1 Iteration 2 Iteration t Ciphertext
> of the > of the — .. — of the —»
(before encryption) encryption encryption encryption (after encryption)

Fig. 1 - Block diagram of an iterative block cipher
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The structure of iterative BSC key schedule and simplicity of round keys formation and/or inter-
dependence are used in the known attacks on the key schedule construction, especially slide attack
[2-4], related-key attack [5-7], etc [1].

In the simplest case the key schedule construction can consist of master key repetition for each
round. A similar approach was used in the formation of cyclic keys in the Soviet symmetric algo-
rithm of cryptographic transformation GOST (State Standard) 28147-89, which is now also the en-
cryption standard of Ukraine DSTU (State Standards of Ukraine) GOST 28147: 2009 [1]. Howev-
er, in the case where to the input of each round function (see. Fig. 1) a certain key is fed, and this
key is the same for all rounds, the cipher becomes vulnerable to slide attack [2,3]. The option when
deployment function involves cyclic repetition of a certain set of round keys (round self-similarity
ciphers) can also be easily reduced to this case [4].

To confront the key schedule cryptanalytic attacks modern BSC use the complicated round keys
schedule construction implemented using conversion cipher transformations. One of these BSC is
the US national standard FIPS -197 (AES) [8,9], adopted in 2001. It is an international algorithm,
which is the most prevalent in today's security protocols. The key schedule of BSC AES is a linear
array of 4-byte words. The first elements of the array contain master encryption key, the rest are
determined recursively by modulo summation of two previous items. For certain positions of the
array additional cipher transformation is also applied, in particular, the nonlinear permutation data

block, and cyclic shift and etc. [8,9]. As a result, a sequence of round key K® K& . K& is

formed which non-linearly dependent’s on the original master key K™, and this additional non-
linearity can effectively resist slide attacks on key schedule [1].

Related-key attacks were first proposed in [5] and further developed in [6,7]. In particular, the
first cryptanalytic attack on the basis of related keys on a full-cipher AES-192 and AES-256 (vari-
ants of FIPS-197 with key lengths 192 and 256 bits) was described in [7]. It should be noted that the
attacks in [7] are more effective than the full search of master keys, i.e. we can talk with certainty
about the actual decrease of standardized cryptographic algorithm resistance.

Thus, the attacks on the key schedule are continuously improved and their possible use repre-
sents a real security threat to modern information systems and technologies [1-7]. Efficient BSC
must effectively resist to the key schedule attacks and the key schedule construction must not con-
tain any vulnerabilities caused by the simplicity of formation and the mutual dependence of cyclic
keys [11]. In fact, we are talking about "ideal" round keys deployment, when each element of the

sequence K, K& ..., K™ are generated randomly, with equal probability, and independently of

the other cyclic keys. Only in this case we can talk with certainty about the futility of the key
schedule attacks because each round BSC is parameterized by randomly chosen value and would
operate independently from other iterations of the encryption scheme (see. Fig. 1).

As an example of the key schedule schemes development we can use the algorithm "Kalyna",
adopted as a national standard of BSC in Ukraine [12]. It has enhanced the cyclic key schedule con-
struction, due to the use of special one-way functions. The cyclic keys of BSC "Kalyna" are formed
as a result of several rounds of encryption, parameterized by auxiliary key. The auxiliary key, in its
turn, is also formed as a result of multiple rounds encryption parameterized by master key. In other

words, the separate elements of the cyclic keys sequence K™, K{,...,.K® are generated by inde-

pendent encrypting of various input data blocks on different keys. Assuming that applied encryption
implements are a random substitution (permutation) of data blocks [13-14], then the resulting round
keys are generated randomly, with equal probability and independently of each other [11,15]. In
particular, in [15] the properties of the key schedule of BSC "Kalyna™ are investigated to confirm
the resilience of the cipher to related-key attacks and attacks on implementation.

It should be noted that, even under random, equiprobable and independent formation of the
round key the corresponding sequence can be the same, what is equivalent to reduction the power of
encryption-decryption implemented maps set.
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The aim of this work is to analyses combinatorial properties of BSC key schedules, provided that
cyclic keys are generated randomly, with equal probability and independently of each other. The
model of random homogeneous substitution is used for an abstract description of this formation.
The practical benefit of this research results consists in providing its interpretation in order to assess
the properties of the key schedule in recently adopted national standard BSC of Ukraine.

2 Random substitution as a model for the cyclic keys formation

Let us consider the definition and basic properties of a random substitution (permutation)
[13,14], that will be used further to assess the probability properties of round key sequences.
In combinatorics, a permutation is an ordered set of numbers 1,2,...,n, that is a bijection on the

set {1, 2,..., n} , Which puts the i-th elements of the set in correspondence to the i number. The num-

ber n in this case is called the order (degree) of permutation [13,14].
The substitution s of arbitrary set Y ={y,,V,,..., ¥, } is a rule that each element y. of set Y puts

in correspondence some other element s(y;) [13,14]:

S:[ 7B PR 7 j
s(y)) s(Y) - S(¥n)

In group theory the substitution is a bijection of this set into itself, i.e. substitution s degrees n
is considered as a permutation of the elements of the set Y ={y,,¥,,...,y,} and for all i=12,...,n
correspondings(y,) €Y .

The function s(y;) value for a specific element y, €Y will be called the implementation of sub-
stitution s in i-th point.

The composition of substitutions s, and s, degree n is defined as the consistent fulfillment of
the set Y elements permutation [13, 14]:

Yi Y, Yn
oS ‘(su (5,00 60D - s, (sw(yn»j’ ey

Concerning operations of sequential substitutions execution the set of all n! permutations degree
n forms a group, called the symmetric group and denoted as S, ={s,S,,...,S,}-
By definition [13,14], random substitution (permutation) s, is the random vec-

tor{s,(v,),S,(Y,),---,S,(¥,)}, where all elements take values from the Y set and the probability of a
match of any two elements is equal to 0. In other words, a random substitution is randomly chosen

permutation from the set S
< :( 7S A
" Sx(yl) Sx(yz) Sx(yn)

defined by a set (vector) of random values {s, (,),S,(Y,),---, S, (Y,)}, that match probabilities satisfy
the following condition:

J, s, €S,, xe{l,2,...,nl},

Viz je{l,2,...,n}:P(s,(y;)=s,(y;))=0.

Thus, under the implementation of a random substitution s, we mean the specific implementa-
tion of random vector {s, (y,),S.(Y,),---.S,(Y,)} and the corresponding value of the s (y,) function
we will call the implementation of a random substitution s, in the i -th point.

Independent random substitution is called such a random permutation {s, (,),S,(Y,),---»S.(Y,)},
for which is true
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p(s,) = PEODPE, (1) P60

glp(su(yl))P(su(yZ))P(Su(yn))
If Vi,ue{l,2,...,n}:P(s,(y,))=n" then
P, (Y))P(S,(¥,)) - P(s,(y,)) _ n" 1

P(Sx): n! i = nl
5P, (PG, () - P, () X ™

and s, is called the random, equiprobable and independent (or, in abbreviated form, homogeneous)
random substitution.

Thus, the concept of a random homogeneous substitution corresponds to a uniform probabilistic
distribution on the set S, ={s,,s,,...,S,,} With the independent implementation of random vectors

{Sx(y1)1 Sx(yz)’ ety sx(yn)} (2)
s, €S,, Vxefl,2,..,.n1}:P(s,) =(n))".

Modern BSC are commonly described by the random homogeneous substitution model [1,11],
i.e. it is a standard assumption that probabilistic properties of a processed data blocks bijection im-
plemented by encryption function, satisfies the characteristics of a random substitution.

Indeed, if random, equiprobable and independent selection of the master key K is associated
with the choice of substitution s, e€S,, then the resulting ciphering transformation will match a
random, equiprobable and independent comparison of ciphertext blocks to plaintext blocks on all
possible options of bijective mapping, parameterized by key. For instance, for |-bit cipher with a k
bit master key the model of random substitution will consist of subset

S ={s"8" .8 =S, ={s,,8,,... 8}

with random, equiprobable and independent 2% substitutions degree n=2' (acting on the set
Y ={y., Vo, yz,} of binary data blocks). At that the choice of substitution s', €S’ < S, (imple-

1)

mentation of random vector {sx(yl),sx(yz),...,sx(y2I )}) is set randomly, with equal probability and

independently of selected k -bit master key K™ value.

We use the properties of random homogeneous substitution for the analysis of round key se-
quences probability characteristics. For this purpose, on the set S’ we define the uniform probabil-
istic distribution:

Vie{l,2,..,.2Vue{l,2,.., 2 : P(s, (y,) =2,

i.e. all probabilities of comparison of i-th block from y, and u-th block from s (y,) are equal to

each other and do not depend on i or .u.. Therefore, the probability of a random selection of sub-
stitution s', €S’ < S, (and the corresponding encryption master key) does not depend on the type

of substitution, and defined as the inverse value of the power of the master keys set. Using (1) we
get the next form:

p(sn) - ELODPEL0) - PO 0D 2

S P (IPEL (1) - PEL(Y,) 22"

Applying the considered model of random homogeneous substitution to analyse the probability
properties of the key schedule elements we can estimate probabilities of coincidence of individual
cyclic keys and their sequences, assuming that the round keys are generated randomly, equiprobable
and independent from each other.

=2, (3)
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3 Probabilistic Properties of cycle keys

Let us introduce the following notations. Let randomly, equiprobably (probability is equal to

27%) and independently generated master key K™ with length k bit be the input of key schedule
construction (fig. 1). Then we note the sequence of t formed round Kkeys as

K ={K™, K,..., KM}, where every K is the i-th cyclic key with length | -bit.

Let us assume that the cyclic keys K® are independent implementations of a random homoge-
neous substitution in the i-th point:
Viefl,2,..,t3: K =s" (y,),
i.e. they are generated randomly, equiprobably and independently from each other, and for every
K™ the specific implementation of a random substitution s’ €S' < S, (implementation of the

vector {s', (¥,),S"(Y,),-...S",(¥,)}) is independent of i €{L,2,...,t}.
Consider the probabilistic properties of randomly generated round key K® values for some

fixed i. We estimate the average number of different values of cyclic key can be formed using all
2% values of master keys K.

Lemma. The average number of different |-bit cyclic keys K* formed by 2 implementations
of the random homogeneous substitution is defined by expression:

N(K, 1) =2' (1-(1=2")%) ~ 2 {1_(3 J ~2 (1—(0,37)2“ ) 4)

Proof. If the formation scheme of every cyclic key from the sequence Kl(,i) is described by the
model of a random homogeneous substitution with probability (1) of selection s', €S’ <SS, (by
the entered master key K®), then, by definition, for any fixed i e{l,2,...,t} the probability of K®
does not depend on y, €Y ={y,, ¥,, ..., y2,} or K® and it is defined as the inverse of the power of
the set Y, i.e. it is equal to P(s' (y;)=K®)=2". Master keys K™ are selected independently
from each other and corresponding events s' (y,) = K® are independent. Therefore, we can use the
formula for finding the probability of target event M times in N tests (Bernoulli formula):

P(N,M)=CY (1-P(s",(y;) = KON ™M (P(s", () = KP)™ =CN (@-27")" M (27")™.

The value P(N, M) specifies the probability that at N independent implementations of random
homogeneous substitution in i-th point a specific round key K® =s' (y,) appears exactly M
times. The value

P(2,0)=(1-2")"
specifies probability that at N =2* independent implementations of random substitution in i-th
point (in full set of master keys K™ values) the round key K® =s' (y,) will not appear a single

time.
Inverse value

P(2*,>0)=1-P(2*,0) = _szc;k -2y @'y =1-@1-2")* (5)

specifies probability of an event when at 2“ independent tests the round I - bit length key K® will
be formed at least once.

Power of different ¢-bit values set is equal to 2° where each of these values in 2 independent im-
plementations of the vector (2) appears at least once in i-th point of random substitution with prob-
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ability (5). l.e. for 2% different master keys K® defining vector (2) implementation by the key
schedule construction it will be formed in average

N(k,1)=2'P(2",>0)=2'(1-(1-2")%)
different round keys K. Using substitution (1—2")2I ~e™ gives us a simplified formula in the

right side of the expression (3), and, thus, completes the proof.

For the most simple case k =1 (equality of ciphertext block length to key length) the probability
(5) gets the form

P2 ,>0)= _zzlc; 1-2")27 2"y =1-P(2',0) =1-(1-2")% ~1-e" ~0,63

and the ratio of the average number N(k,1) of different round keys K™ to the number of 2* dif-
ferent master keys K™ under k =1 is determined as

N(k,I) 2'(1-P(2"0)
R
what corresponds to the formula (27) in [15].

Under k =1 formula (6), as well as formula (27) in [15], is not satisfied, and we need to estimate
the ratio o(k,l) according to the general formula

S(k,1) = w =2 (- (1-2")F) 2 [1_(3 ] ~ 2k (1—(0, 37)2“ ) . (7).

Let us consider an example of using these relations.

Fig. 2 and 3 show dependency of the probabilities (5) and the relationships (7) for the blocks of
length 0<1<16 and keys 0<k <16. It is obvious that even for such small lengths | and k which
do not exceed 16 bits, there is a sharp transition from very small values (almost equal to zero values

P(2*,>0) and o(k,1)), to very large values (close to unity). This is true for the dependency

k
P(2 ’>O), and the multiplier 2'™* in (7) smoothes the final function (7), inverting the high-
quality form of the dependency (5).

ok, 1) = =P2',>0)~1-e'~0,63 (6)

=
=
W
RN

\\\\\\\a

Fig. 2 - Dependence P(2*,>0), if 0<1<16 Fig. 3 - Dependence S5(k,l), if 0<1<16
and 0<k <16 and 0<k<16
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Table 1 summarizes the values of the ratio of the different cyclic keys K™ average number
N(k,l) to the number 2* of different master keys K™ for the most common values | and k in

modern BSC and their scale models.
Data presented in Table 1 is calculated by the simplified formula on the right hand side of formu-
la (7) using the Wolfram Alpha system computing algorithms [1,7]. These calculated values show

efficiency of obtained analytical formulas for the round keys probability characteristics estimation.

Table 1 - The ratio of the average number of different | -bit cyclic keys K™ formed by 2
implementation of the random homogeneous substitution
to the power of different master keys K™ set

k =16 k =32 k =64 k =128 k =256 k =512
=16 0,63 1,52:10° 3,55-10™% 1,93-10% 5,66:107 4,89-10™°
=32 1-7,6310° 0,63 2,33-10%° 1,26:10%° 3,71-10% 3,20-10™%
=64 1-1,7810" | 1-1,16:10™ 0,63 5,42:10% 1,59-10° 1,38:107%
=128 | 1-9,6310% | 1-631-10%* | 1-271-10% 0,63 2,94:10°% 2,54:10™1
=256 | 1-2,83-107° | 1-1,8510% | 1-79710% | 1-1,47.10% 0,63 8,64:107®
=512 | 1-2,4410™° | 1-1,60-10™ | 1-6,89-10™ | 1-1,27-10™° | 1-432:107° 0,63

To estimate probabilistic properties of cyclic keys KI(;) sequences we summarize the positions of
the lemma proved above for random, equiprobable and independent values K, K{”,...,, K. Let
us estimate the average number of different sequences Kf,ﬁ) that is generated using all 2* values of
master keys K™ . The following theorem is true.

Theorem. The average number of different cyclic keys sequences K% ={K™ K{”, .., K™},

that is formed by 2% independent implementations of random homogeneous substitution in i-th
point, i e{L,2,...,t}, is defined by:
Zk—tl
N (K, 1,t) = 2 (L— (1= 27)2) ~ 2" 1-(% ~ 2! (1-(0,37)2k ') . ®)
e
Proof is a generalization of the lemma’s results in the case of K% ={K® K{’ .. K®} se-

quences formation. Indeed, in accordance with the assumption of K® cyclic keys generating by the
independent implementations of random homogeneous substitution in i-th point, for each
i e{L2,...,t} the probability of K does not depend on y; €Y ={y,,¥,,...,y,} or K. This prob-
ability is equal to P(s' (y,) = K®)=2". The joint probability of independent events is the product
of the probabilities of these events, i. e.:

t
P(KS ={KP, KP .., KPP =TTP(s",(y,) =KM)=2"
i=1

Master keys K™ are selected independently from each other and the corresponding events
K ={K,K,..., K} are independent too. Therefore, using the Bernoulli formula just as in the

lemma proof, we obtain the expression
P(N,M,t)=Cl @—27")" M (2 "),
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which specifies the probability of the case that in N independent implementations the sequence
K would appear exactly M times. The value

P(2,>0,t) = %zkcgk L-2M7(21) =1-P(2¥,0,t) =1- (1—-2")* (9)

gives the probability of the case when in 2* independent tests the specific sequence K}ﬂf is formed
at least once.

The power of different t-sequences sets of |-bit values is equal to 2", and each of these se-
quences with the probability (9) appear at the output of the round key schedule construction at least

once. I. e. for 2% different master keys K™ that specify the implementations of random homogene-
ous substitution the cyclic key schedule construction it will be formed in average

N(k,I,t) =2"1-P(2",0,1))
different K& ={K® K ,..., K} sequences, what under (1—2")? ~e™ simplification gives the

target formula (8). This theorem allows us to obtain expression to estimate the ratio of different
K9 sequences average number to the power of different K® master keys set:

5k, 1,p =MLY (;’k"t) = 21K (- (-2 ) m 21 (1—(3 J ~ 20 (1—(0, 37" ) (10)

For convenience of &(k,I,t) relations calculations we can write formula (10) in a different way.

In the majority of practically important cases of block cipher (for instance, in estimating the proper-
ties of the BSC "Kalyna" key schedule) the master key length k is a multiple of the block length I,
i.e. the ratio k =ml is true, what after substitution in (10) it gives

Hl(m-t)
S(ml,1,t) = 2™ (1 (1 —271)2" ) & 21em [1-(%) ] ~ (M (1—(0,37)2'( ) ) R

Formula (11) shows that increasing of the multiplicity m is equivalent, in a probabilistic sense,
to the corresponding decreasing of the sequence K% ={K K{’,.., K™} length t. And converse-
ly, the increasing of round keys sequence length t decreases the probability (9) as well master key

length. A typical demonstration of this effect would be symmetry of function graphs relative to val-
ues | and k (Fig. 2,3). In this sense, the calculated values &(ml,1,t) for the case | €{16,32} and

m,t €{L,2,4,8,16} can be obtained from the data in Table 1 when selecting column with symbols
ml and rows with symbols tl. As an example, table 2 shows the calculated valuesl &(ml,I,t) for
| =32, which fully comply to the data presented in Table 1.

Table 2 - The ratio of the average number of different cyclic keys sequences to the power
of set of different master keys length of | =32

m=1 m=2 m=4 m=28 m =16
t=1 0,63 2,33-10™ 1,26:107% 3,71-10% 3,20-10™%
t=2 1-1,16:10™° 0,63 5,42:10% 1,59-10™° 1,38-10™%
t=4 1-6,31-10% 1-2,71-10% 0,63 2,94:10°% 2,54-101
t=8 1-1,8510° 1-7,97-10% 1-1,47-10% 0,63 8,64107
t=16 | 1-1,60-10™* 1-6,89:10"% 1-1,27-10™"° 1-432:107 0,63

_ om0
values S(ml, 1,t) in tables 2-4 are calculated using simplified formula e S(ml, I,t) = 2'"™ (1—6 2 )
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The calculated values S(ml,1,t) for cases | €{64,128,256}, me{1,2,4,8} and te{1,2,4,816}

are shown in Table 3.

The calculated values in Table 3 improve data on d(k,l,t) estimation in [15]. The conclusion
about virtually identical of the round keys sequences powers and encryption master keys in [15] is
true. Data in the Table 3 clearly confirms this pattern. For all considered and practically significant
relationships | and k, when t >m is true, the ratio of the average number of different round keys
sequences to the power of the different master keys set only slightly differs from unity. With further
increasing of the round key sequence t length this difference rapidly decreases.

Table 3 - The ratio of the average number of different round keys sequences to the power
of different master keys set

m=1 m=2 m=4 m=28
| = 64
t=1 0,63 1,52:107° 5,66:107 4,89-10™°
t=2 1-7,62:10° 0,63 3,71-10°% 3,20-10™%
t=4 1-1,78-10" 1-1,1610™ 0,63 8,64-10"
t=8 1-2,44-10™° 1-1,60-10™ 1-1,27-10™° 0,63
t=16 | 1-513-10%° 1-9,46-10%" 1-3,22:10% 1-3,7310™°
| =128
t=1 0,63 2,94-10°% 2,54-10° 1,89-10%°
t=2 1-1,47-10% 0,63 8,64:107° 6,44-10%
t=4 1-1,27-10™° 1-432:10" 0,63 7,45:10™°
t=8 1-9,46:10°" 1-3,22:10%% 1-3,74-10™ 0,63
t=16 | 1-526:10°" 1-1,79-10°° 1-2,07-10"% 1-2,78-10°%
| =256
t=1 0,63 8,64:107 6,44-107%% 3,58:10°%
t=2 1-432:107 0,63 7,45-10™° 4,15:10™
t=4 1-3,22:10%% 1-3,73:10™° 0,63 5,56-10°%
t=8 1-1,79-10°° 1-2,0810™% 1-2,78-10%" 0,63
t=16 | 1-55410™ 1-6,42:10"%° 1-8,61:10%° 1-1,55-10°
| =512
t=1 0,63 7,46:10™° 4,15-10™% 1,28:1071°7
t=2 1-3,73:10™° 0,63 5,56-10°% 1,72:10°%%”
t=4 1-2,08-10% 1-2,78-10°% 0,63 3,09-10°"
t=8 1-6,42:10"%° 1-8,60-10°% 1-1,55-10°% 0,63
t=16 ~1 ~1 ~1 1-4,79-10"%%

To confirm the adequacy and accuracy of the obtained results and our conclusions driven by the-
se results the numerical experiment was executed. The experiment essence is counting the ratios of
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the average number of different round keys sequences to power 2% of the set of different master
keys. To simulate the random substitution a simple function of random number generation, integrat-
ed into the environment of rapid applications development Embarcadero RAD Studio for Microsoft
Windows from Embarcadero Technologies company, was used [18]. Each observation included
estimation of sample mean (empirical average) of 100 model implementations. Each model imple-
mentation included calculation of the ratio of the average number of different round keys sequences
to power 2 of the set of different master keys.

In the experiment, we estimated both the sample means J*(m/,/¢) and sample variance D when
the sample size of 100 elements. The results are summarized in Table 4. The last column of this
table shows the accuracy values & of the estimated characteristics for a given level of sig-
nificance a = 0,05.

Table 4 - Results of experimental researches and their comparison with theoretical calculations

o(ml,Lt) o*(ml,L1) D £
=4, m=1
t=1 0,632121 0,6453125 | 0,005716 | 0,014818
t=2 0,969391 0,969125 | 0,001758 | 0,008218
t=3 0,998049 0,9983125 | 0,000110 | 0,002056
t=4 0,999878 0,999875 | 0,000008 | 0,000554
=4, m=2
t=1 0,062500 0,062500 0 0
t=2 0,632121 0,633074 | 0,000372 | 0,003780
t=3 0,969391 0,969675 | 0,000103 | 0,001989
t=4 0,998049 0,997934 | 0,000008 | 0,000554
=4, m=3
t=1 0,003906 0,003906 0 0
t=2 0,062500 0,062500 0 0
t=3 0,632121 0,632152 | 0,000023 | 0,000940
t=4 0,969391 0,969492 | 0,000007 | 0,000519
=8, m=1
t=1 0,632121 0,632836 | 0,000360 | 0,003719
t=2 0,998049 0,998051 | 0,000007 | 0,000519
t=3 0,999992 0,999961 | 0,000002 | 0,000277
=8, m=2
t=1 0,003906 0,003906 0 0
t=2 0,632121 0,632176 | 0,000002 | 0,000277
t=3 0,998049 0,998063 2,98:10° | 3,38:10°

As can be seen from the values in Table 4, results of experimental research fully confirm the va-
lidity of theoretical assumptions. In all cases the calculated values J(m/,[,z) and obtained empirical
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data o*(ml, 1,¢) differ on not more than ¢ (the absolute value of the error), and the probability with
which the specified accuracy is achieved (the accuracy estimation) is 0,95. Since the accuracy char-
acterizes the repeatability and stability of experiments [19], it can be argued that in 95% of the cases
the value 6*(ml 1,¢) will differ from d(ml,[,¢) less than &.

4 Conclusions and prospects for further researches

Our research of BSC round keys probabilistic properties have shown that even under random,
equiprobable and independent formations the used key sequences can be the same, what inevitably
reduces the power of implemented encryption-decryption mapping sets.

To describe the round keys schedule construction an abstract model of random substitution pa-
rameterized by encryption master key value was used. The obtained analytical relations allow us to
estimate the probability properties of BSC cycle keys. In particular, the probability of multiple
matching of round keys for a given number of the random homogeneous substitution implementa-
tions (a given number of master keys) is defined by Bernoulli formula. This ratio gives us an esti-
mate of the probability of events when the specific round key will be generated at least once on the
all set of master keys, i.e., it allows us to estimate the average number of different round keys on the
output of formation scheme. The final result is also generalized on sequences of arbitrary length
round keys, i.e., we can get numerical estimates of the probability properties of all BSC key sched-
ule elements using the defined model.

Calculated values of ratios of the average number of different round keys sequences to power of
different master keys sets provided in Tables 2,3, give an idea about ciphering of all admissible en-
cryption-decryption mappings set. In particular, the given calculated values for the most important
practical cases when the lengths of data blocks | and the keys k =ml indicate that the number of
rounds t <m, with probability close to unity, the specific round keys sequence will not be formed
on the all set of master keys. This is equivalent to the fact, that average number of different round
keys sequences will be negligible compared to the power of the of different master keys, i.e., the
large number of mappings "plaintext - ciphertext" from the all set 2 of maps would not be realized.
And conversely, for the case t >m the ratio of the average number of different round key sequences
to the power of the master keys set almost does not differ from unity. With a further increase of t
this difference decreases rapidly and it must be assumed that in such key schedule all valid map-
pings "plaintext - ciphertext" from a complete set 2¢ of maps will be implemented. The conducted
simulation modeling of the "ideal™ key schedule construction allowed to obtain empirical estimates
that coincide with theoretical calculations by formulas (9) - (11), what confirms the reliability and
validity of research results. In particular, for all investigated cases the calculated values and ob-
tained empirical data do not differ significantly (the relative error value < 3% ), and the probability
that the specified accuracy is achieved (the estimation accuracy) is 0,95. Therefore, we can argue
that in 95% of the cases the calculated values and empirical data differ by less than error value.

It should be noted that the obtained analytical expressions and shown calculated values corre-
spond to the hypothetical case of random, equiprobable and independent formation of round keys,
i.e. to the "ideal” key schedule in the probabilistic aspect. The actual key schedule constructions are
based on deterministic algorithms, parameterized by value of the encryption master key. Therefore,
the obtained estimates on a random homogeneous substitution should be used as the upper limits
for the probabilistic properties of round key sequences: the key schedule of real BSC can only ap-
proach in its characteristics to this "ideal” case and it does not improve the given calculated values.

The practical impact of these results lies in their immediate interpretation to estimate the proba-
bility properties of key schedule elements in the new national standard of BSC of Ukraine [12]. If
the assumption that the cyclic keys of BSC "Kalyna" are independent implementations of random
homogeneous substitution (i.e. it is formed random, equiprobability and independently of each oth-
er) is true, then the conclusion about virtually identical the powers of round keys sequences and en-
cryption master keys is theoretically proven and the calculated values shown in Table 3 clearly con-
firm this regularity. Using in the new standard the “ideal” key schedules in addition to providing
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resistance of cipher to the related keys attacks and to the attacks on implementation [15] allows to
fully implement the key space of master keys and a corresponding set of maps "plaintext - cipher-
text".

As perspective directions for further research one can mention the search or, at least, estimation
the probability properties of subsets of the so-called BSC equivalent keys, when several different by
value master keys lead to the formation of identical cyclic keys sequences, giving the identical bi-
jective encryption-decryption mappings. In other words, the existence of the equivalent keys subsets
reduces the power of the "plaintext - ciphertext" maps set, and the number of the key information
that is numerically equal to the certainty measure of secret encryption parameters is also reduced. In
addition, the existence of several master keys which are different by value, but equivalent by en-
cryption function can be used by an attacker to implement cryptanalytic attacks, for instance, based
on the substitution of protected information by false data in the case using of BSC in generation of
message authentification code mode.
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