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Abstract. The Publishing House “World Scientific” recently published two fundamental books: Alexey Stakhov “The 

Mathematics  of  Harmony” (2009)  and  Alexey  Stakhov and Samuil Aranson  “The “Golden”  Non-Euclidean   

Geometry” (2016). In the given article the author develops the Mathematics of Harmony and “Golden”  Non-

Euclidean Geometry as a new interdisciplinary direction of modern science based on the golden section, Fibonacci 

numbers and their generalizations.  The newest discoveries in different fields  of  modern science based  on  the  

Mathematics of Harmony, namely,  mathematics  (a  general  theory of hyperbolic  functions  and  a  solution  to  

Hilbert’s Fourth  Problem,  algorithmic  measurement theory  and  “golden”   number   theory),  computer  science  

(the “golden”   information technology), crystallography (quasi-crystals), chemistry (fullerenes), theoretical physics 

and cosmology (Fibonacci-Lorentz transformations, the “golden” interpretation  of  special  theory of  relativity and  

“golden”  interpretation of the Universe evolution), botany (new geometric theory of phyllotaxis), genetics (“golden” 

genomatrices)  and  so on, creats a general picture  of  the “Golden” Scientific Revolution,  which can influence  

fundamentally  on the development of modern science and  education.   

 

Keywords: golden section, mathematics of harmony, binomial coefficients, Pascal’s triangle, Fibonacci and Lucas 

hyperbolic functions, Hilbert’s Fourth Problem, Fibonacci matrices, “golden” matrices.  

 

 

 

The article is dedicated to the blessed memory of my father Pe-

ter Stakhov, student of historical faculty of Kharkov University 

and soldier of the famous Kharkov studbat, who died heroically 

in October 1941, near Moscow.  

Alexey Stakhov 

 

Preface 
 

Differentiation of modern science and its division into separate branches do not allow often see-

ing the overall picture of science and the main trends of scientific development. However, in sci-

ence there are research objects, which unite disparate scientific facts into a single picture. The gold-

en section is one of these scientific objects. The ancient Greeks raised the golden section at the level 

of “aesthetic canon” and “major ratio” of the Universe. For centuries or even millennia, starting 

from Pythagoras, Plato, Euclid, this ratio was the subject of admiration and worship of eminent 

minds of humanity - in the Renaissance, Leonardo da Vinci, Luca Pacioli, Johannes Kepler, in 

the 19 century - Zeizing, Lucas, Binet. In the 20 century, the interest in this unique irrational num-

ber increased in the mathematical community, due to the works of Russian mathematician Nikolay 

Vorobyov and the American mathematician Verner Hoggatt.  

We are developing in this article a new approach to Euclid’s Elements (Proclus hypothesis) with 

purpose to find there the sources of new mathematical theory – the Mathematics of Harmony, based 

on the golden section and Platonic solids, and then basing on this approach to predict the most im-

portant trends and directions of modern science, which can lead to global processes in modern sci-
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ence called “Golden” Scientific Revolution. The present article is a result of author’s research in the 

field of the golden section, Fibonacci numbers and their applications in modern science [1-37]. 

In 1996  the lecture The Golden Section and Modern Harmony Mathematics (The Seventh Inter-

national Conference on Fibonacci Numbers and Their Applications. Graz, Austria, July 15-19, 

1996) [14] Alexey Stakhov put forward the concept of the Mathematics of Harmony as a new inter-

disciplinary direction of modern science. It plays an important integrating role for modern science 

and allows bringing together all scientific disciplines from the general point of view - the golden 

section. The ideas of the article [14] have been continued and generalized in two fundamental books 

published by World Scientific: Alexey Stakhov “The Mathematics of Harmony. From Euclid to 

Contemporary Mathematics and Computer Science” (2009) [11] and Alexey Stakhov and Samuil 

Aranson “The “Golden” Non-Euclidean Geometry” (2016) [83].   

The main objective of this article is to consider modern science from this point of view. By 

means of collection and generalization of all the scientific facts and theories related to the golden 

section, the author have suddenly opened for himself the global picture of the Universe based on the 

golden section, and saw the main trend of modern science - the resurgence of the interest in the ide-

as of Pythagoras, Plato and Euclid on the numerical harmony of the Universe and the golden sec-

tion what may result in the “Golden” Scientific Revolution. This revolution shows itself, first of all, 

in modern mathematics ("Golden" Fibonacci Goniometry and Hilbert's Fourth Problem), theoreti-

cal physics (Fibonacci-Lorentz transformations and "golden" interpretation of the Universe evolu-

tion), and computer science («Golden» Information Technology) and could become the basis for the 

mathematical education reform based on the ideas of harmony and the golden section. 

 

1  Introduction 
 

1.1. Mathematics. The Loss of Certainty. What is mathematics? What are its origins and 

history? What distinguishes mathematics from other sciences? What is the subject of mathematical 

research today? How does mathematics influence on the development of modern scientific revolu-

tion? What is a connection of mathematics and its history with mathematical education? All these 

questions always were interesting for both mathematicians, and representatives of other sciences. 

Mathematics was always a sample of scientific strictness. It is often named “Tsarina of Sciences,” 

what is reflection of its special status in science and technology. For this reason, the occurrence of 

the book Mathematics. The Loss of Certainty [39], written by Morris Kline (1908-1992), Professor 

Emeritus of Mathematics Courant Institute of Mathematical Sciences (New York University), be-

came a true shock for mathematicians. The book is devoted to the analysis of the crisis, in which 

mathematics found itself in the 20-th century as a result of its “illogical development.”  

Morris Kline’s view on the deep connection of mathematics to theoretical natural sciences is ex-

pressed in the following words:  

“Science had been the life blood and sustenance of mathematics. Mathematicians were willing 

partners with physicists, astronomers, chemists, and engineers in the scientific enterprise. In fact, 

during the 17th and 18th centuries and most of the 19th, the distinction between
 
mathematics and 

theoretical science was rarely noted. And many of the leading mathematicians did far greater work 

in astronomy, mechanics, hydrodynamics, electricity, magnetism, and elasticity than they did in 

mathematics proper. Mathematics was simultaneously the queen and the handmaiden of the scienc-

es.” 

However, according to the opinion of famous mathematicians Felix Klein, Richard Courant 

and many others, starting from 20-th century mathematics began to lose its deep connections with 

theoretical natural sciences and to concentrate its attention on its inner “pure” problems.  

Thus, by following to Felix Klein, Richard Courant and other famous mathematicians, Morris 

Kline asserts that the main reason of the contemporary crisis of mathematics is the severance 

of the relationship between mathematics and theoretical natural sciences, what is the greatest 

“strategic mistake” for the 20th century mathematics.   
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1.2. Dirac’s Principle of Mathematical Beauty. By discussing the fact why mathematics needs 

in theoretical natural sciences, we should address to Dirac’s Principle of Mathematical Beauty.  On 

May 13, 2006, the eminent Russian mathematician and academician Vladimir Arnold presented a 

public lecture: “The complexity of finite sequences of zeros and units, and the geometry of finite 

functional spaces” [40] at the Moscow Mathematical Society. Let us consider some of its general 

ideas. Arnold notes:  

1. In my opinion, mathematics is simply a part of physics, that is, it is an experimental science, 

which discovers for mankind the most important and simple laws of nature. 

2. We must begin with a beautiful mathematical theory. Dirac claims: “If this theory is really 

beautiful, then it necessarily  appears as a perfect model of important physical phenomena. It is 

necessary to search for these phenomena to develop applications of the beautiful mathematical the-

ory and to interpret them as predictions of new laws of physics.” Thus, according to Dirac, all new 

branches of physics, including relativistic and quantum, are developing in this way.  

At Moscow University there is a tradition that the 

distinguished visiting-scientists are requested to write on 

a blackboard a self-chosen inscription. When Dirac vis-

ited Moscow in 1956, he wrote "A physical law must 

possess mathematical beauty." This inscription is the 

famous Principle of Mathematical Beauty that Dirac de-

veloped during his scientific life. No other modern phys-

icist has been preoccupied with the concept of beauty 

more than Dirac.  

Thus, according to Dirac, the Principle of Mathemat-

ical Beauty is the primary criterion for a mathematical 

theory to be used as a model of physical phenomena. Of 

course, there is an element of subjectivity in the defini-

tion of the “beauty" of mathematics, but the majority of 

mathematicians agrees that "beauty" in mathematical 

objects and theories nevertheless exist.  

Let's examine some of "beautiful" mathematical objects, which have a direct relation to the 

theme of this article.  

1.3. Platonic Solids. We can find the beautiful mathematical objects in Euclid’s Elements. As is 

well known, in Book XIII of his Elements Euclid presented a theory of 5 regular polyhedrons called 

Platonic Solids (Fig.1). Really, these remarkable geometrical figures got very wide applications in 

theoretical natural sciences; in particular, in crystallography (quasi-crystals), chemistry (fullerenes), 

biology and so on what is brilliant confirmation of Dirac’s Principle of Mathematical Beauty.  

 

  Paul Adrien Maurice Dirac 

(1902-1984) 

  

  

 

Fig. 1 - Platonic Solids: tetrahedron, octahedron, cube, icosahedron, dodecahedron 
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1.4. Binomial coefficients, the binomial formula, and Pascal’s triangle.  

 

For the given non-negative integers n and k, there is the following beautiful formula that sets the 

binomial coefficients:   

!

!( )!
k
n

n
C

k n k



,                                                                 (1) 

where n!=1×2×3×…×n  is a factorial of n.  

One of the most beautiful mathematical formulas, the binomial formula, is based upon the bino-

mial coefficients: 

  .
1 1 2 2 2 1 1... ...

n
n n n k n k k n n n

n n n na b a C a b C a b C a b C ab b                (2) 

There is a very simple recurrence method for the calculation of the binomial coefficients based 

on their following graceful properties called Pascal’s rule:  

.
1

1
k n k

n nnC C C
             (3) 

By using the recurrence relation (3) and taking into consideration that 0 1n
n nC C   and 

k n k
n nC C  , we can construct the following beautiful table of binomial coefficients called Pascal’s 

triangle (see Table 1).  
 

Table 1 - Pascal’s triangle 

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

 

 

1.4. Fibonacci and Lucas numbers.  Let us consider the simplest recurrence relation:  
 

1 2nn nF F F    ,                                                            (4) 

where n=0,1,2,3,… . This recurrence relation was introduced for the first time by the famous 

Italian mathematician Leonardo of Pisa (nicknamed Fibonacci).  

For the seeds  

0 10 and  1F F  ,                                                         (5) 

the recurrence relation (4) generates a numerical sequence called Fibonacci numbers (see Table 2). 

In the 19th century the French mathematician Francois Edouard Anatole Lucas (1842-1891) 

introduced the so-called Lucas numbers (see Table 2) given by the recurrence relation  
 

1 2n n nL L L                                                                   (6) 

with the seeds  

0 12 and  1L L                                                                 (7) 
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Table 2 shows the so-called “extended” Fibonacci and Lucas numbers, which are considered for 

positive and negative values of the index n. It follows from Table 2 that the “extended” Fibonacci 

and Lucas numbers build up two infinite numerical sequences, each possessing graceful mathemati-

cal properties.  
 

Table 2 - The “extended” Fibonacci and Lucas numbers 

n 0 1 2 3 4 5 6 7 8 9 10 

Fn 0 1 1 2 3 5 8 13 21 34 55 

F-n 0 1 -1 2 -3 5 -8 13 -21 34 -55 

Ln 2 1 3 4 7 11 18 29 47 76 123 

L-n 2 -1 3 -4 7 -11 18 -29 47 -76 123 
 

As can be seen from Table 2, for the odd indices 2 1n k   the elements nF  and nF  of the 

Fibonacci sequence coincide, that is, 2 1 2 1k kF F   , and for the even indices 2n k  they are op-

posite in sign, that is, 2 2k kF F  . For the Lucas numbers nL  all is vice versa, that is, 

2 2 2 1 2 1;k k k kL L L L      .  

1.5. Cassini’ formula. In the 17th century the famous astronomer Giovanni Domenico Cassini 

(1625-1712) deduced the following beautiful formula, which connects three adjacent “extended” 

Fibonacci numbers in the Fibonacci sequence:  

2 1
1 1 ( 1)n

n n nF F F 
    .      (8) 

This wonderful formula evokes a reverent thrill, if we imagine that this formula is valid for any 

value of n (n can be any integer within the limits of to +  ). The alternation of +1 and -1 in the 

formula (8) within the sequential passage of all “extended” Fibonacci sequence leads to genuine 

aesthetic enjoyment by  its rhythm and beauty.  
 

1.6. The Golden Section.  If we take the ratio of two adjacent Fibonacci numbers 1/n nF F   and 

direct this ratio towards infinity, we come at the following unexpected result:  

1

1 5
lim

2
n

n
n

F

F



  ,                    (9) 

where   is the famous irrational number, which is the positive root of the algebraic equation:  

2 1x x  .                                                               (10) 

The number   has many beautiful names – the golden section, golden number, golden mean, 

golden proportion, and the divine proportion (see Scott Olsen, page 2 [40]). 

The golden section or division of a line segment in extreme and mean ratio descended to us from 

Euclid’s Elements [42]. Over the many centuries the golden section has been the subject of enthusi-

astic worship by outstanding scientists and thinkers including Pythagoras, Plato, Leonardo da 

Vinci, Luca Pacioli, Johannes Kepler and several others.  

Note that formula (9) is sometimes called Kepler’s formula after Johannes Kepler (1571-1630) 

who deduced it for the first time. Many outstanding mathematicians of the past century have proved 

the uniqueness of the golden ratio among other real numbers. In this connection, we should like to 

draw attention to the brochures of the Russian mathematicians Alexander Khinchin (1894-1959) 

[43] and Nikolay Vorobyov (1925-1995) [44]. As it is shown in these works, the unique feature of 

the golden ratio for number theory is the fact that among all irrational numbers the golden ratio is 

most slowly approximated by rational fractions. That is, we are talking about the representation 

of golden ratio in the form of a continued fraction as follows:  
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1
1

1
1

1
1

1 ...

  





      (11) 

If now we will be approximating the golden ratio (11) by rational fractions /m n , which are 

convergent for  , then we come to the numerical sequence consisting of the ratios of the neighbor-

ing Fibonacci numbers:  

1 2 3 5 8 13 21 1 5
, , , , , , ,...

1 1 2 3 5 8 13 2


 . 

But these ratios represent the famous botanic Law of phyllotaxis [45], according to which pine 

cones, cacti, pineapples, sunflower heads, etc are formed.  In other words, Nature uses the unique 

mathematical feature of the golden ratio in its remarkable constructions! This means that the golden 

ratio is not “mathematical fiction” because this unique irrational number exists in Nature! That is, 

the Fibonacci numbers are a brilliant embodiment of Dirac’s Principle of Mathematical Beauty.  

 

1.7. Binet’s formulas. In the 19th century, French mathematician Jacques Philippe Marie Bi-

net (1786-1856) deduced the two magnificent Binet’s formulas:  

( 1)
; ( 1)

5

n n n
n n n

n nF L


   
     .                               (12) 

The analysis of Binet’s formulas (12) gives us a possibility to feel "aesthetic pleasure" and once 

again to be convinced in the power of human intellect! Really, we know that the Fibonacci and Lu-

cas numbers and  n nF L  always are integers. On the other hand, any power of the golden ratio is 

irrational number. It follows from Binet’s formulas (12) that the integer numbers nF  and nL  can be 

represented as the difference or the sum of irrational numbers, the powers of the golden ratio!  

 

1.8. How the golden mean is reflected in modern mathematics and mathematical education? It 

is well known the following Kepler’s quote, concerning the golden ratio:  

“Geometry has two great treasures: one is the Theorem of Pythagoras; the other, the division of 

a line into extreme and mean ratio. The first, we may compare to a measure of gold; the second we 

may name a precious stone.”  

 

Johannes Kepler  (1571-1630) 

The above Kepler's statement raises the significance of the golden ratio on the level of Pythago-

rean Theorem, one of the most famous theorems of geometry. As a result of the unilateral approach 

to mathematical education each schoolboy knows Pythagorean Theorem, but he has rather vague 

idea about the golden ratio, the second “treasure of geometry.” The majority of school textbooks on 

geometry originate to Euclid’s Elements. But then we can ask the question: why in the majority of 

them there is very small description of Euclidean golden ratio? There is an impression that “the ma-

terialistic pedagogics” has thrown out the golden ratio from mathematical education on the dump of 

http://en.wikipedia.org/wiki/Image:Johannes_Kepler_1610.jpg
http://en.wikipedia.org/wiki/Image:Johannes_Kepler_1610.jpg
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the "doubtful scientific concepts” together with astrology and others esoteric sciences where the 

golden ratio is widely used. We can consider this sad fact as one of the “strategic mistakes” of 

modern mathematical education  [32,33].  

Alexey Losev (1893 - 1988), the Russian prominent philosopher and researcher for the aesthetics 

of Ancient Greece and Renaissance, expressed his relation to the golden ratio and Plato’s cosmolo-

gy in the following words (cited from [46]):   

“From Plato’s point of view, and generally from the point of view of all antique cosmology, the 

Universe is a certain proportional whole that is subordinated to the law of harmonious division, the 

golden ratio... Greek system of cosmic proportions is considered sometimes in literature as curious 

result of unrestrained and preposterous fantasy. Full anti-scientific helplessness sounds in the ex-

planations of those who declare this. However, we can understand the given historical and aesthet-

ical phenomenon only in the connection with integral comprehension of history, that is, by using 

dialectical-materialistic idea of culture and by searching the answer in peculiarities of the ancient 

social existence.”   

We can ask the question: how the golden ratio is reflected in contemporary mathematics? Unfor-

tunately, the answer is the following:  only in the most impoverished manner. In mathematics, Py-

thagoras and Plato’s ideas are considered sometimes as a “curious result of unrestrained and prepos-

terous fantasy.” Therefore, the majority of mathematicians consider the study of the golden ratio 

and its applications as an empty pastime, which is unworthy for serious mathematicians. 

Unfortunately, we can also find neglectful relation to the golden ratio in contemporary theoreti-

cal physics. In 2006 “BINOM” publishing house (Moscow) published the interesting scientific book 

Metaphysics: Century XXI [47].  In  the Preface  to the book, its compiler  and  editor Professor 

Vladimirov  (Moscow University)  wrote:  

“The third part of this book is devoted to a discussion of numerous examples of the manifestation 

of the golden ratio in art, biology and our surrounding reality. However, paradoxically, the golden 

ratio is not reflected enough in contemporary theoretical physics. In order to be convinced of this 

fact, it is enough to merely browse 10 volumes of Theoretical Physics by Landau and Lifshitz. The 

time has come to fill this gap in physics, all the more given that the golden ratio is closely connect-

ed with metaphysics and ‘trinitarity’ [the ‘triune’ nature of things].” 

Thus, the neglect of the golden ratio and its scanty reflection in modern mathematics, 

mathematical education and theoretical physics is one more “strategic mistake” of modern 

mathematics, mathematical education and theoretical physics  [32,33].  

 

2. Proclus hypothesis: revolutionary idea in the mathematics history 
 

As is known, the first mathematical knowledge originated in the ancient civilizations (Babylon, 

Egypt and other countries) and they were used for the solution of two important practical problems: 

counting of things and measurement of time and distances [48].  Ultimately, the problem of count-

ing led to the first fundamental mathematical notion – natural numbers. The problem of measure-

ment underlies geometry origin and then, after the discovery of incommensurable line segments, led 

to the second fundamental mathematical notion – irrational numbers. Natural and irrational num-

bers are the basic notions of the Classical Mathematics, which had originated in the ancient Greek 

science. When we study the ancient Greek science, we should point out on one more important 

problem, which had influenced fundamentally on the development of the Greek science, including 

mathematics. We are talking on the harmony problem, which was formulated for the first time by 

Pythagoras, Plato and other ancient thinkers. The harmony problem was connected closely with the 

golden ratio, which was raised in the ancient Greece to the level of aesthetic canon and main math-

ematical constant of the Universe.   

There is very interesting point of view on Euclid’s Elements suggested by Proclus Diadochus 

(412-485), the best commentator on Euclid’s Elements [49]. As it is well-known, the concluding 

book of Euclid’s Elements, Book XIII, is devoted to the description of the theory of the five regular 

polyhedra (Fig. 1), which played a predominate role in Plato’s cosmology. They are well known in 

modern science under the name Platonic Solids.  

http://ru.wikipedia.org/wiki/1893
http://ru.wikipedia.org/wiki/1988
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Proclus had paid special attention to this fact. Usually, the most important data are presented in 

the final part of a scientific work. Based on this fact, Proclus put forward hypothesis that Euclid 

created his Elements primarily not for the description of the axiomatic approach to geometry (alt-

hough this is very important), but in order to give a systematic theory of the construction of the 5 

Platonic Solids, in passing throwing light on some of the most important achievements of the an-

cient Greek mathematics. Thus, Proclus’ hypothesis allows one to suppose that it was well-known 

in ancient science that the Pythagorean Doctrine on the Numerical Harmony of the Cosmos and 

Plato’s Cosmology, based on the regular polyhedra, were embodied in Euclid’s Elements, the great-

est Greek work of mathematics. From this point of view, we can interpret Euclid’s Elements as 

the first attempt to create a Mathematical Theory of Harmony what was the primary idea of 

the ancient Greek science. This historical information is primary data for the development of new 

approach to the history of mathematics, described in [29,33,35,36].  

A new approach to the mathematics origins is presented in Fig. 2. We can see that three “key” 

problems - counting problem, measurement problem, and harmony problem - underlie mathematics 

origin.  The first two “key” problems resulted in the origin of two fundamental mathematics notions 

- natural numbers and irrational numbers that underlie the Classical Mathematics. The harmony 

problem, connected with the division in the extreme and mean ratio (Proposition II.11 of Euclid’s 

Elements), resulted in the origin of the Harmony Mathematics - a new interdisciplinary direction of 

contemporary science, which has relation to contemporary mathematics, mathematical education, 

theoretical physics, and computer science. Such approach had resulted in the conclusion, which is 

unexpected for many mathematicians.   
 

 

Prove to be, in parallel with the Classical Mathematics one more mathematical direction - the 

Harmony Mathematics - was developing in ancient science. Similarly to the Classical Mathematics, 

the Harmony Mathematics takes its origin in Euclid’s Elements. However, the Classical Mathemat-

ics accents its attention on “axiomatic approach,” while the Harmony Mathematics is based on the 

golden section  (Theorem II.11)  and  Platonic Solids  described  in  the  Book XIII  of  Euclid’s 

Elements.  Thus, Euclid's Elements is a sourсe of two independent directions in the mathematics de-

velopment - Classical Mathematics and Harmony Mathematics.  

The “key” problems of the ancient mathematics 

 

Measurement 

problem 

 

Counting 

problem 

 

Harmony 

problem 

Positional 

principle of number 

representation 

Incommensurable 

line 

segments 

Division 

in extreme and 

mean ratio 

Number 

theory and natural 

numbers 

Measurement 

theory and irrational 

numbers 

Theory of Fibonacci 

and Lucas numbers and 

the Golden Section 

 

Classical mathematics 

Theoretical physics 

Computer science 

Harmony mathematics 

“Golden” theoretical physics 

“Golden” Computer science 

Fig. 2 - Three “key” problems of the ancient mathematics 



ISSN XXXX-XXXX  CS&CS, Issue 2(2) 2016 

 39 

We affirm that the three greatest mathematical discoveries of the ancient mathematics – posi-

tional principle of number representation, incommensurable line segments, and division in extreme 

and mean ratio (the golden section) – were those mathematical discoveries, which influenced fun-

damentally on the mathematics at the stage of its origin. The positional principle of number repre-

sentation (Babylon) became the “key” principle for the development of the concept of natural num-

bers and number theory. The incommensurable line segments led to the development of the concept 

of irrational numbers. The concepts of natural numbers and irrational numbers are two great math-

ematical concepts, which underlie the Classical Mathematics. The division in extreme and mean 

ratio, named later the golden section, is the third fundamental mathematical discovery, which un-

derlies the Mathematics of Harmony.  

During many centuries the main forces of mathematicians were directed on the creation of the 

Classical Mathematics, which became Czarina of Natural Sciences. However, the forces of many 

prominent mathematicians - since Pythagoras, Plato and Euclid, Pacioli, Kepler up to Lucas, Bi-

net, Vorobyov, Hoggatt and so on - were directed on the development of the basic concepts and 

applications of the Harmony Mathematics. Unfortunately, these important mathematical directions 

developed separately one from other. A time came to unite the Classical Mathematics and the Har-

mony Mathematics. This unusual union can result in new scientific discoveries in mathematics and 

natural sciences. The newest discoveries in natural sciences, in particular, Shechtman’s quasi-

crystals based on Plato’s icosahedron (Nobel Prize of 2011) and fullerenes based on the Archime-

dean truncated icosahedron (Nobel Prize of 1996) do demand this union. All mathematical theories 

and directions should be united for one unique purpose to discover and explain Nature's Laws.  

A new approach to the mathematics history (see Fig. 2) is very important for school mathemati-

cal education. This approach introduces in natural manner the idea of harmony and the golden sec-

tion into school mathematical education. This allows to give pupils access to ancient science and to 

its main achievement – the harmony idea – and to tell them on the most important architectural and 

sculptor works of the ancient arts, based on the golden section (Cheops pyramid, Nefertity, Parthe-

non, Doriphor, Venus and so on).   

 

3  The Mathematics of Harmony as a “beautiful” mathematical theory 
 

The Mathematics of Harmony is described in [1-37]. The Mathematics of Harmony suggests 

new recurrence relations, which generates new numerical sequences and new numerical constants, 

which can be used for modeling different processes and phenomena of Nature. The most important 

of them are the following:  
 

3.1. Generalized Fibonacci p-numbers. For a given р=0, 1, 2, 3, ... they are given by the follow-

ing general recurrence relation [1]:  

             1 1 ; 0 0, 1 2 ... 1p p p p p p pF n F n F n p F F F F p          . (13) 

Note that the recurrence formula (13) generates an infinite number of different recurrence se-

quences because every p generates its own recurrence sequences, in particular, the binary sequence  

1, 2, 4, 8, 16, … for the case p=0 and classical Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, … for the case 

p=1.  
 

3.2. Generalized Lucas p-numbers are given by the following general recurrence relation:  

             1 1 ; 0 1, 1 2 ... 1p p p p p p pL n L n L n p L p L L L p           , (14) 

where p= 0, 1, 2, 3, ... is a given non-negative integer.  

Note that the recurrence formula (14) generates an infinite number of different recurrence se-

quences because every p generates its own recurrence sequences, in particular, the binary sequence  

1, 2, 4, 8, 16, … for the case p=0 and classical Lucas numbers 2, 1, 3, 4, 7, 11, 18, … for the case 

p=1. 
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3.3. The golden p-proportions. It is easy to prove [1] that the ratio of the adjacent Fibonacci and 

Lucas p-numbers aims in limit (n) for some constant, that is,  

 
 

 
 

lim ,
1 1

p p
p

n
p p

F n L n

F n L n
 

 
    (15) 

where p is a positive root of the following algebraic equation:  

x
p+1

 = x
p
 + 1,       (16) 

which for р=1 is reduced to the algebraic equation (10).  

Note that the result (15) is a generalization of Kepler’s formula (9) for the classical Fibonacci 

and Lucas numbers (p=1).  

The positive root of Eq. (16) was named golden р-proportion [1]. It is easy to prove [1] that the 

powers of the golden р-proportions are connected between themselves by the following identity:  

11 1n pn n n
p p p p p

       ,    (17) 

where 0, 1, 2, 3,...n     . It follows from (17) that each power of the “golden р-proportion” is con-

nected with the preceding powers by the “additive” correlation 11 n pn n
p p p

    and by the 

“multiplicative” correlation 1n n
p p p

    
(similarly to the classical “golden mean”).  

 

3.4. Generalized Fibonacci  numbers.  Let 0   is a given positive real number. Then we 

can consider the following recurrence relation [48-50]:  

         1 2 ; 0 0, 1 1F n F n F n F F          .                            (18) 

First of all, we note that for the case 1   the recurrence relation (18) is reduced to the recur-

rence relation (4), which for the seeds (5) generates the classical Fibonacci numbers: 0, 1, 1, 2, 3, 5, 

8, 13, …. For other values of   the recurrence relation (18) generates infinite number of new recur-

rence numerical sequences. In particular, for the case 2   the recurrence relation (18) generates 

the so-called Pell numbers: 0, 1, 2, 5, 12, 29, 70, … .  

Table 3 shows the four “extended” Fibonacci -sequences, corresponding to the cases of 

1,2,3,4  .  
 

Table 3 - The “extended” Fibonacci -numbers ( 1,2,3,4  ) 

 

 

 

 

 

 

 

 

1

1

2

2

3

3

4

4

0 1 2 3 4 5 6 7 8

0 1 1 2 3 5 8 13 21

0 1 1 2 3 5 8 13 21

0 1 2 5 12 29 70 169 408

0 1 2 5 12 29 70 169 408

0 1 3 10 33 109 360 1189 3927

0 1 3 10 33 109 360 1199 3927

0 1 4 17 72 305 1292 5473 23184

0 1 4 17 72 305 1292 5473 23184

n

F n

F n

F n

F n

F n

F n

F n

F n

    

    

    

    

 

 

3.5. Generalized Cassini’s formula: a unique property of the Fibonacci  -numbers. Cassini’s 

formula (8) is one of the most remarkable identities for the classical Fibonacci numbers.  

By studying the Fibonacci  -numbers, Alexey Stakhov found in [38] the following unique 

mathematical property of the Fibonacci  – numbers, which is true for  all  =1,2,3,…:  

        12 1 1 1
n

F n F n F n


       .                                                       (19) 
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As for the case =1 the formula (19) is reduced to the well-known Cassini’s formula (8), the 

formula (19) was named in [38] generalized Cassini’s formula, which sounds as follows.  

For the given 1,2,3,...   the quadrate of any Fibonacci -number  F n
 are always different 

from the product of the two adjacent Fibonacci -numbers  1F n   and  1F n  , which sur-

round the initial Fibonacci -number  F n
, by the number 1; herewith the sign of the difference of 

1 depends on the parity of n: if n is even, then the difference of 1 is taken with the sign “minus”, 

otherwise, with the sign “plus”.  

Until now, we have assumed that only the classic Fibonacci numbers have this unusual property, 

given by Cassini’s formula (8). However, as is shown in [38], a number of such numerical sequenc-

es are infinite. All the Fibonacci -numbers, generated by the recurrence relation (18) have similar 

property, given by the generalized Cassini’s formula (19)! 

As  is well  known, a study of  integer  sequences  is the area of number  theory. The Fibonacci 

-number are integers for the cases =1,2,3,… . Therefore, for many mathematicians in the field of 

number theory, the existence of the infinite number of the integer sequences, which are given by 

(18) and satisfy to the generalized Cassini’s formula (19), may be a great surprise! 

 

3.6. Metallic means. It follows from (18) the following algebraic equation:  

2 1 0x x   ,                                                                           (20) 

which for the case 1   is reduced to (10). A positive root of Eq. (20) produces infinite number of 

new “harmonic” constants – the  golden -proportions, which are expressed  by  the  following 

general formula:  

24

2

 
  .                                                           (21) 

According to Vera W. Spinadel [50], the golden -proportions (21) are called also metallic 

means by analogy to the classical golden mean.  

If we take 1,2,3,4   in (21), then we get the following mathematical constants having, accord-

ing to Vera W. Spinadel, special titles:   

   

   

1 2

3 4

1 5
the golden mean, =1 ; 1 2 the silver mean, = 2 ;

2

3 13
the bronze mean, = 3 ; 2 5 the cooper mean, = 4 .

2


      


      

(22) 

Other metallic means ( 5  ) do not have special names:  

5 76 8 .
5 29 7 2 14

; 3 2 10; ; 4 17
2 2

 
            

The metallic means (21) possess two remarkable properties [49]:  

1 1 1 ...     ;    1
1

1

...

 





.   (23) 

which are generalizations of similar properties for the classical golden mean  1  : 

1
1 1 1 ... ; 1

1
1

1
1

1 ...

       





.         (24) 
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4  Introduction into new theory on hyperbolic functions 

4.1. A history of hyperbolic functions and hyperbolic geometry. Although Johann Heinrich 

Lambert (1728-1777), a French mathematician, is often credited with introducing hyperbolic func-

tions, hyperbolic sine and cosine  

( )
2

x xe e
sh x ;      ( )

2

x xe e
ch x ,       (25) 

it was actually Vincenzo Riccati (1707-1775), Italian mathematician, who did this in the middle 

of the 18th century. Riccati found the standard addition formulas, similar to trigonometric identi-

ties, for hyperbolic functions as well as their derivatives. He revealed the relationship between the 

hyperbolic functions and the exponential function. For the first time, Riccati used the symbols sh 

and ch for the hyperbolic sine and cosine.  

In 1826, the Russian mathematician Nikolay Lobachevski (1792-1856) made revolutionary 

mathematical discovery. We are talking on the non-Euclidean geometry. This Lobachevski’s ge-

ometry is also named hyperbolic geometry because all mathematical relations of Lobachevski’s ge-

ometry are based on the hyperbolic functions (25). The first published work on non-Euclidean ge-

ometry, Lobachevski’s article About the Geometry Beginnings, was published in 1829 in The Kazan 

Bulletin. Three years later Hungarian mathematician Janosh Bolyai (1802-1860) published the arti-

cle on non-Euclidean geometry, called the Appendix. After Gauss’ death it was clear that he also 

had developed geometry similar to those of Lobachevski and Bolyai. A revolutionary significance 

of hyperbolic geometry consists of the fact that this geometry is beginning of hyperbolic ideas in 

theoretical natural sciences. We recall two remarkable properties of classical hyperbolic functions 

(25):  

       : ;sh x sh x ch x ch x    Parity property .                                (26) 

2 2: 1ch x sh x Analog of Phythagoras theorem .                                      (27) 

 

4.2. Hyperbolic Fibonacci and Lucas functions. In 1984 Alexey Stakhov published the book 

Codes of the Golden Proportion [3]. In this book Binet’s formulas (12) were represented in the form 

not used in earlier mathematical literature:  

, 2 1
, 25

;
, 2 1

, 2
5

n n

n n

n nn n n n

n k
n k

F L
n k

n k





 

 
     

  
      



,   (28) 

where 0, 1, 2, 3,...k      .   

The similarity of Binet’s formulas (28) to the classical hyperbolic functions (25) is so striking 

that the formulas (28) can be considered to be a prototype of a new class of hyperbolic functions, 

based on the golden ratio. That is to say, Alexey Stakhov in 1984 [3] predicted the appearance of a 

new class of hyperbolic functions, hyperbolic Fibonacci and Lucas functions. The first article on 

hyperbolic Fibonacci and Lucas functions was published by the Ukrainian mathematicians Alexey 

Stakhov and Ivan Tkachenko in 1993 [13] (by recommendation of academician Yuri Mitropol-

ski). More recently, early of 21-th century, Alexey Stakhov and Boris Rosin have developed this 

idea further and introduced in [18] the so-called symmetrical hyperbolic Fibonacci and Lucas func-

tions.  

Symmetrical hyperbolic Fibonacci sine and cosine 

( )
5

x x

sF x
 

 ;  ( )
5

x x

cF x
 

                                        (29) 
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Symmetrical hyperbolic Lucas  sine and cosine 

( ) ;x xsL x        .( ) x xcL x       (30) 

4.3. Hyperbolic and recursive properties of the symmetrical hyperbolic Fibonacci and Lucas 

functions. Note that the symmetrical hyperbolic functions (29), (30), on the one hand, are similar to 

the classical hyperbolic functions (25), on the other hand, they are generated by Binet’s formulas 

(28), given the extended” Fibonacci and Lucas sequences. This leads to the following features of 

the functions (29), (30), which we call hyperbolic and recursive properties of the functions (29), 

(30).  

Hyperbolic properties 

It is proved in [18],  that the symmetrical hyperbolic  Fibonacci and  Lucas functions (29), (30) 

retain all the known properties of the classical hyperbolic functions (25). In this case, for example, 

the properties (26), (27) look as follows:  

       

:

( ) ( ); ( ) ( )

;

sF x sF x cF x cF x

sL x sL x cL x cL x





    

    

Parity property

     (31) 

       
2 2 2 24

; 4
5

cF x sF x cL x sL x                 

Analogs of Pythagoras theorem :

.  (32) 

 

Recursive properties  

On the other hand, as it follows from a comparison of Binet’s formulas (28) with the symmetrical 

functions (29), (30), the following unique properties connects the "extended" Fibonacci and Lucas 

sequences (28) with the symmetrical hyperbolical Fibonacci and Lucas functions (29), (30): 

 

 

for 2

for 2 1
n

sF n n k
F

cF n n k

 
 

 
;                               (33) 

 

 

for 2 1

for 2
n

sL n n k
L

cL n n k

  
 


.                     (34) 

where 0, 1, 2, 3,...k      .  

Note that the property, given by the formulas (33), (34), is unique because the classical hy-

perbolic functions (25) do not possess such property.  

The properties (33), (34) gives us the right to name the functions (29), (30) the recursive hyper-

bolic functions.   

Let us consider the examples of the recursive property of the functions (29), (30) [18].  

Theorem 1. The following relations, which are similar to the recursive relations for the Fibo-

nacci and Lucas numbers 
2 1n n nF F F    and 

2 1n n nL L L   , are valid for the recursive hyperbol-

ic Fibonacci and Lucas functions:  

     

     

     

     

2 1

2 1

2 1

2 1

sF x cF x sF x

cF x sF x cF x

sL x cL x sL x

cL x sL x cL x

   

   

   

   

Recursive relation for the Fibonacci hyperbolic functions :

Recursive relation for the Lucas hyperbolic functions :
                         (35) 
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Theorem 2 (a generalization of Cassini’s formula for continues domain). The following rela-

tions, which are similar to Cassini’s formula  
12

1 1 1
n

n n nF F F


    , are valid for the recursive hy-

perbolic Fibonacci functions:  

     

     

2

2

1 1 1

1 1 1

sF x cF x cF x

cF x sF x sF x

      

     

Cassini's formula :

                                        (36) 

4.4. Fibonacci and “golden” matrices: a unique class of square matrices  

Fibonacci Q-matrices 

It is known that a square matrix A is called non-singular, if its determinant is not equal to zero, 

that is  

det 0A .      (37) 

In linear algebra, the non-singular square (nn)-matrix is called invertible because every non-

singular matrix A has inverse matrix 1A , which is connected with the initial square matrix A by the 

following correlation:  
1

nAA I  ,                                                                   (38) 

where In is the identity (nn)-matrix.  

The Fibonacci Q-matrix   











01

11
Q ,                                                                  (39) 

introduced in [53] is a partial case of the non-singular matrix.   

If we raise the Q-matrix (39) to the n-th power, we obtain:  

1

1

nn n

n n

F F
Q

F F




 
  
 

 .      (40) 

It follows from Cassini formula (8), that the determinant of the Q-matrix (40) is equal:  

 det 1
nnQ         (41) 

Fibonacci G-matrices 

Alexey Stakhov introduced in [30] the so-called Fibonacci G – matrix:   

1

1 0
G

 
  
 


 ,      (42) 

where   0  is a given positive real number. It is clear that for the case =1 the Fibonacci G – ma-

trix (42) is reduced to the Fibonacci Q-matrix (39).   

The Fibonacci G – matrix (42) is generating matrix for the Fibonacci  - numbers (18) and has 

the following properties [30]:   

( 1) ( )

( ) ( 1)
n F n F n

G
F n F n
 


 

 
 
 
 





    (43) 

 det 1
nnG   .                                                        (44) 

The “golden” matrices   

Alexey Stakhov has introduced in [26] a special class of the square matrices called “golden” 

matrices. Their peculiarity consists of the fact that the hyperbolic Fibonacci functions (29) are ele-

ments of these matrices. Let us consider the simplest of them [26]:  
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   0 1

(2 1) (2 ) (2 2) (2 1)
;

(2 ) (2 1) (2 1) (2 )

cFs x sFs x sFs x cFs x
Q x Q x

sFs x cFs x cFs x sFs x

     
    

    
    (45) 

If we calculate the determinants of the matrices (45), we obtain the following unusual results:  

   0 1det 1; det 1Q x Q x   .                                             (46) 

4.5.  Theory of Fibonacci Numbers as a “Degenerate” Case of the Theory of the Recursive 

Hyperbolic Fibonacci and Lucas Functions. As follows from Theorems 1 and 2, the two "continu-

ous" identities (35), (36) for the recursive hyperbolic Fibonacci and Lucas functions  always corre-

spond to one "discrete" identity for the “extended” Fibonacci and Lucas numbers. Conversely, we 

can obtain the "discrete" identity for the “extended” Fibonacci and Lucas numbers by using two 

corresponding “continuous” identities for the recursive hyperbolic Fibonacci and Lucas functions 

(29), (30). As the “extended” Fibonacci and Lucas numbers, according to (33), (34), are the "dis-

crete" cases of the recursive hyperbolic Fibonacci and Lucas functions (29), (30), this means that 

due the introduction of the recursive hyperbolic Fibonacci and Lucas functions (29), (30) [18], the 

classical “theory of Fibonacci numbers" [44] as if "degenerates," because this theory is a partial 

("discrete") case of the more general ("continuous) theory of the recursive hyperbolic Fibonacci 

and Lucas functions (29), (30). This conclusion is another unexpected result, which follows from 

the theory of the recursive hyperbolic Fibonacci and Lucas functions [18]. Such approach requires a 

revision of the existed “theory of Fibonacci numbers” [44] from the point of view of the more gen-

eral (continues) theory of the recursive hyperbolic Fibonacci and Lucas functions (29), (30).  

 

5. General theory of the recursive hyperbolic functions 
 

5.1. Gazale’s formulas for Fibonacci and Lucas  numbers as analog of Binet’s formulas. 

Based on the metallic means (21), Midchat Gazale deduced in [51] the following remarkable for-

mula, which allows representing the Fibonacci  - numbers by the metallic means (21):  

2

( 1)
( )

4

n n n

F n


 


   



.     (47) 

The formula (47) was named in [30]  Gazale’s formula for the Fibonacci  - numbers after Mid-

chat Gazale [51].  

Alexey Stakhov deduced in [30] Gazale’s formula for the Lucas  - numbers:  

( ) ( 1)n n nL n 
           (48) 

Note that for the case  = 1 the formulas (47) and (48) are reduced to Binet’s formulas (12). The 

formula (48) is analytical representation of new recurrence sequence, Lucas  numbers, which are 

given by the recurrence formula:  

         1 2 ; 0 2, 1L n L n L n L F          .                   (49) 

It is easy to prove [30] that  Gazale’s formulas can be represented in the following form:  

 
2

2

for 2
4

for 2 1
4

n n

n n

n k

F n

n k



 

 

 

  



 

   
  

               (50) 

 
for 2 1

for 2

n n

n n

n k
L n

n k



 

 

 

   
 

  
                (51) 

Note that for the case p=1 Gazale’s formulas (50), (51) are reduced to Binet’s formulas (28). But 

Binet’s formulas (12), (28) are well known in mathematics and belong to the category of outstand-



ISSN XXXX-XXXX  CS&CS, Issue 2(2) 2016 

 46 

ing mathematical formulas, like Euler's formula and other formulas, which underlie the basis of 

mathematics. But Gazale’s formulas (47), (48), (50), (51) are a generalization of Binet’s formulas 

(12), (28) and therefore rightfully Gazale’s formulas (47), (48), (50), (51) can be attributed to the 

category of outstanding mathematical formulas.   
 

5.2. Self-similarity and recursion: Gazale’s hypothesis. In mathematics, a self-similar object is 

exactly or approximately similar to a part of itself (i.e. the whole has the same shape as one or more 

of the parts). Many objects in the real world, such as coastlines, are statistically self-similar: parts of 

them show the same statistical properties at many scales. Self-similarity is a typical property 

of fractals and underlies botanic phenomenon of phyllotaxis. Recursion is the process of repeating 

items in a self-similar way and is brilliant example of reflection of self-similarity principle in math-

ematics. All the recurrent relations (4), (6), (13), (14), (18), (49) are based on the self-similarity 

principle.  

Gazale’s book Gnomon. From Pharaohs to Fractals [51] is devoted to mathematical  justifica-

tion of  the  principle of self-similarity.  In  this  book, Midhat Gazale  put  forward  the  following  

hypothesis.  

Gazale’s hypothesis: "A key role in the study of self-similarity play a numerical sequences, 

which I call here the Fibonacci sequence of the order m, where  

,, 2 , 1m nm n m nF F mF   .”                                               (52) 

If we compare the recurrence relation for the Fibonacci sequences of the order m, given by (52), 

to the introduced above Fibonacci -numbers, given by the recurrence relation (18), we come to the 

unexpected conclusion that the recurrence relations (18) and (52) coincide if we take: m  . This 

means that the Fibonacci -numbers play a key role in the study of the principle of self-

similarity.  
 

5.3. Recursive hyperbolic Fibonacci and Lucas -functions. In 2006 Alexey Stakhov has de-

veloped in [30] the so-called hyperbolic Fibonacci and Lucas -functions, which are a generaliza-

tion of the symmetrical hyperbolic Fibonacci and Lucas functions (29), (30):  

Hyperbolic Fibonacci  -sine  

2 2

2 2

1 4 4
( )

2 24 4

x x
x x

sF x




 


    
    
    
     

     
  

 
  (53) 

Hyperbolic Fibonacci  -cosine  

2 2

2 2

1 4 4
( )

2 24 4

x x
x x

сF x




 


    
    
    
     

     
  

 
  (54) 

Hyperbolic Lucas  -sine  

2 2

2

1 4 4
( )

2 24

x x

x x
sL x




  

    
    
    
     

   
   


  (55) 

Hyperbolic Lucas  -cosine  

2 2

2

1 4 4
( )

2 24

x x

x xcL x




  

    
    
    
     

   
   


  (56) 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Similarity_(geometry)
https://en.wikipedia.org/wiki/Coastline
https://en.wikipedia.org/wiki/Fractal
https://en.wikipedia.org/wiki/Self-similarity
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The formulas (53)-(56) give an infinite number of hyperbolic functions because every real num-

ber 0   generates its own class of the hyperbolic functions (53)-(56).  In particular, for the case 

1   the hyperbolic functions (53)-(56) are reduced to the symmetrical hyperbolic Fibonacci and 

Lucas functions (29), (30).   

By comparing the “extended” Fibonacci and Lucas  numbers, represented by Gazale’s for-

mulas (50), (51) to the functions (53)-(56), it is easy to establish the following simple relationship 

between them: 

, 2 , 2
;

, 2 1 , 2 1.

sF n n k cL n n k
F n L n

cF n n k sL n n k

 

 

 

  (57) 

For the case p=1  the formulas (57) are reduced to the relationships (33), (34).  

 

5.4. Hyperbolic and recursive properties of hyperbolic Fibonacci and Lucas -functions. Let 

us study the properties of the hyperbolic  Fibonacci and Lucas -functions (53) – (56).  

Hyperbolic properties (example) 

As example of hyperbolic properties for the functions (53) – (56) we consider the formulas for 

analogs of Pythagoras Theorem:  

       
2 2 2 2

2

4
; 4

4
cF x sF x cL x sL x                    

 
  (58) 

Note that for the case =1 the formulas (58) are reduced to the formulas (32).  

Recursive  properties (examples)  

     
     

     

2 1
2 1

2 1

sF x cF x sF x
F n F n F n

cF x sF x cF x

  

  

  





    
     

    
  (59) 

     

     

2

2 1

2

1 1 1
( ) ( 1) ( 1) ( 1)

1 1 1

n
sF x cF x cF x

F n F n F n
cF x sF x sF x

  

  

  

       
      

     

 (60) 

 

6 Hilbert’s Fourth Problem and “Golden” Hyperbolic Geometry: revolution in hyperbolic 

geometry  

6.1. Hilbert’s Fourth Problem. In the lecture Mathematical Problems presented at the Second 

International Congress of Mathematicians (Paris, 1900), David Hilbert (1862 – 1943) had formu-

lated his famous 23 mathematical problems. These problems determined considerably the develop-

ment of the 20th century mathematics. This lecture is a unique phenomenon in the mathematics his-

tory and in mathematical literature. The Russian translation of Hilbert’s lecture and its comments 

are given in the work [54]. In particular, Hilbert’s Fourth Problem is formulated in [54] as follows: 

 “Whether is possible from the other fruitful point of view to construct geometries, which with the 

same right can be considered the nearest geometries to the traditional Euclidean geometry”.  

In particular, Hilbert considered that Lobachevski’s geometry and Riemannian geometry are 

nearest to the Euclidean geometry. In mathematical literature Hilbert’s Fourth Problem is some-

times considered as formulated very vague what makes difficult its final solution. As it is noted in 

Wikipedia [55], “the original statement of Hilbert, however, has also been judged too vague to ad-

mit a definitive answer.”  

In spite of critical attitude of mathematicians to  Hilbert's Fourth Problem, we  should empha-

size great importance of this  problem for mathematics, particularly for geometry.  Without doubts,  

Hilbert's intuition led him to the conclusion that Lobachevski's geometry and Riemannian geometry 
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do not exhaust all possible variants of non-Euclidean geometries. Hilbert’s Fourth Problem directs 

attention of mathematicians at finding new non-Euclidean geometries, which are the nearest geome-

tries to the traditional Euclidean geometry.  
 

6.2. A solution to Hilbert’s Fourth Problem based on the Mathematics of Harmony. As is 

known, the classical model of Lobachevski’s plane in pseudo-spherical coordinates 

 , , 0 ,u v u v       with the Gaussian curvature  K= -1 (Beltrami’s interpretation of hy-

perbolic geometry on pseudo-sphere) has the following form:  

      
2 2 22ds du sh u dv  ,                                                    (61) 

where ds is an element of length and sh(u) is hyperbolic sine.  

In connection with Hilbert’s Fourth Problem, Alexey Stakhov and Samuil Aranson suggested 

in [83] an infinite set of models (in dependence on real parameter    ) of Lobachevski’s plane at 

the coordinates  , , 0 ,u v u v      of the Gaussian curvature K= -1, such that the met-

ric form looks as follows:  

        
2 22 2 22 4

ln
4

ds du sF u dv 
 
 


   ,                               (62) 

where 
24

2
   is the metallic mean and  sF u  is hyperbolic Fibonacci -sine.  

The partial cases of the metric -forms of Lobachevski’s plane (golden, silver, bronze, cooper), 

corresponding to different values of the parameter =1,2,3,4,  are given in Table 4.  
 

Table 4 – Metric -forms of Lobachevski’s plane  

        

        

        

2 2
22 2 22

22 2 22
1

22 2 22
2 2

Title Analitical formula

4 4
General form  ln

2 4

1 5 5
"Golden" form 1 1.61803 ln

2 4

"Silver"  form 2 1 2 2.1421 ln 2

"Br

ds du sF u dv

ds du sFs u dv

ds du sF u dv



  





 

     
          


          

           

        

        

      

22 2 22
3 3

22 2 22
4 4

2 2 22

3 13 13
onze"  form 3 3.30278 ln

2 4

"Cooper"  form 4 2 5 4.23607 ln 5

Classical form 2.350402 2.7182
ee

ds du sF u dv

ds du sF u dv

e ds du sh u dv








          

           

      

 

Thus, these considerations result in the conclusion that the  -models of Lobachevski’s plane 

(62), based on the recursive Fibonacci hyperbolic functions (53), (54), result in an infinite number 

of new hyperbolic geometries, having general title “Golden” Hyperbolic Geometry, which together 

with the classical Lobachevski geometry, Riemannian geometry and Minkovski geometry “can be 

considered the nearest geometries to the traditional Euclidean geometry” (David Hilbert).  

A new solution to Hilbert’s Fourth Problem is brilliant confirmation of effective application of 

the Mathematics of Harmony to the solution of complicated mathematical problems.  
 

7 New scientific principles based on the Golden Section 

7.1. Generalized principle of the golden section.  There are some general principles of the divi-

sion of the whole (the “Unit”) into two parts. The most known from them are dichotomy principle, 

which is based on the trivial identity 
0 1 11 2 2 2    ,             (63) 

and golden section principle based on the identity:  



ISSN XXXX-XXXX  CS&CS, Issue 2(2) 2016 

 49 

0 1 2    ,       (64) 

where  1 5 / 2    is the golden mean.  

It follows from the identity (17) more general principle  

,
10 11 p

p p p
         (65) 

which is called in [23] the Generalized Principle of the Golden Section.  

Consider the examples of the use of the Generalized Principle of the Golden Section (65) in some 

natural phenomena.  

7.2. Mathematical theory of biological populations. As is known, Fibonacci numbers are a re-

sult of the solution to Fibonacci’s problem of “rabbit” reproduction.  Let us recall that the Law of 

“rabbit” reproduction boils down to the following rule.  Each mature rabbit's pair А gives birth to a 

newborn rabbit pair B during one month.  The newborn rabbit's pair becomes mature during one 

month and then in the following month said pair starts to give birth to one rabbit pair each month.  

Thus, the maturing of the newborn rabbits, that is, their transformation into a mature pair is per-

formed in 1 month.  We can model the process of “rabbit reproduction” by using two transitions: 

A AB       (66) 

.B A       (67) 

Note that the transition (66) simulates the process of the newborn rabbit pair B birth and the tran-

sition (66) simulates the process of the maturing of the newborn rabbit pair B.  The transition (66) 

reflects an asymmetry of rabbit reproduction because the mature rabbit pair А is transformed into 

two non-identical pairs, the mature rabbit pair А and the newborn rabbit pair B.  

Note that we should treat “rabbits” in Fibonacci’s problem of “rabbit” reproduction as some bi-

ological objects. For example, as is shown in [11], family tree of honeybees is based strictly on Fib-

onacci numbers.  

Note that Fibonacci’s problem of “rabbit” reproduction is a primary problem of the mathemati-

cal theory of biological populations [56].  

By using the model of “rabbit reproduction,” which is described by the transitions (66) and (67), 

we can generalize the problem of “rabbit” reproduction in the following manner.  Let us give a 

non-negative integer p≥0 and formulate the “generalized Fibonacci’s problem of “rabbit” repro-

duction” for the condition when the transition of newborn rabbits into mature state is realized for p 

month, where p=0, 1, 2, 3, … .   

It is clear that for the case p=1 the generalized variant of the “rabbit reproduction” problem coin-

cides with the classical “rabbit reproduction” problem formulated by Fibonacci in 13th century.   

Note that the case p=0 corresponds to the “idealized situation,” when the rabbits become mature 

at once after birth.  One may model this case by using the transition: 

A  AA.      (68) 

It is clear that that the transition (68) reflects symmetry of “rabbit reproduction” when the mature 

rabbit pair А turns into two identical mature rabbit pairs АA.  It is easy to show that for this case the 

rabbits are reproduced according to the above dichotomy principle (63), that is, the amount of rab-

bits doubles each month: 1, 2, 4, 8, 16, 32, … .   

It is easy to prove that for the general case 0p   a process of the “rabbit reproduction” is mod-

elled by the recurrence relation (18) generating the generalized Fibonacci p-numbers. This means 

that the generalized Fibonacci p-numbers model some general principle of “rabbit reproduction” 

called the generalized asymmetry principle of organic nature.  

7.3. Fibonacci’s division of biological cells. At first appearance the above formulation of the 

generalized problem of “rabbit reproduction” appears to have no real physical sense.  However, we 

should not hurry to such a conclusion! The article [57] is devoted to the application of the general-

ized Fibonacci p-numbers for the simulation of biological cell growth.  The article affirms that “in 

kinetic analysis of cell growth, the assumption is usually made that cell division yields two daughter 



ISSN XXXX-XXXX  CS&CS, Issue 2(2) 2016 

 50 

cells symmetrically. The essence of the semi-conservative replication of chromosomal DNA implies 

complete identity between daughter cells.  Nonetheless, in bacteria, insects, nematodes, and plants, 

cell division is regularly asymmetric, with spatial and functional differences between the two prod-

ucts of division….  Mechanism of asymmetric division includes cytoplasmic and membrane locali-

zation of specific proteins or of messenger RNA, differential methylation of the two strands of DNA 

in a chromosome, asymmetric segregation of centrioles and mitochondria, and bipolar differences 

in the spindle apparatus in mitosis.”  In the models of cell growth based on the Fibonacci 2- and 3-

numbers are analyzed  [57]. 

The authors of [57] made the following important conclusion: “Binary cell division is regularly 

asymmetric in most species.  Growth by asymmetric binary division may be represented by the gen-

eralized Fibonacci equation ….  Our models, for the first time at the single cell level, provide ra-

tional bases for the occurrence of Fibonacci and other recursive phyllotaxis and patterning in biol-

ogy, founded on the occurrence of regular asymmetry of binary division.”  

 

8  The Mathematics of Harmony: a renaissance of the oldest mathematical theories 

 

8.1. Algorithmic measurement theory. The first crisis in the foundations of mathematics was 

connected with a discovery of incommensurable line segments. This discovery turned back mathe-

matics and caused the appearance of irrational numbers.  

In 19-th century, Dedekind and then Cantor made an attempt to create a general measurement 

theory. For this purpose, they introduced the additional axioms into the group of the continuity axi-

oms.  For instance, let us consider Cantor’s axiom.   

Cantor’s continuity axiom (Cantor's principle of nested segments).  If an infinite sequence of 

segments is given on a straight line A0B0, A1B1, A2B2, …, AnBn, …, such that each next segment is 

nested within the preceding one, and the length of the segments tends to zero, then there exists a 

unique point, which belongs to all the segments.   

The main result of the mathematical measurement theory that is based on the continuity axi-

oms is a proof of the existence and uniqueness of the solution q of the basic measurement equality:  

Q=qV,                                                                   (69) 

where V is a measurement unit, Q is a measurable segment, and q is any real number named a result 

of measurement.   

However, the Cantor’s axiom raises the most doubts. According to this axiom, a measurement is 

a process, which is completed during infinite time. Such idea is a brilliant example of the Cantorian 

style of mathematical thinking based on the concept of actual infinity. However, this concept was 

subjected to sharp criticism from the side of the representatives of constructive mathematics. The 

famous Russian mathematician A.A. Markov (1903-1979) wrote [58]: "We cannot imagine an end-

less, that is, never finished process as complete process without rough violence over intellect, which 

rejects such contradictory fantasies.” 

As the concept of actual infinity is an internally contradictory notion (“the completed infinity”), 

this concept cannot be a reasonable basis for the creation of constructive mathematical measure-

ment theory.  If we reject Cantor’s axiom, we can try to construct mathematical measurement theory 

on the basis of the idea of potential infinity, which underlies the Eudoxus-Archimedes’ axiom.  The 

constructive approach to measurement theory led to the creation of the so-called algorithmic meas-

urement theory [1].  

Algorithmic measurement theory led to new, “optimal” measurement algorithms based of the 

generalized Fibonacci p-numbers. The main outcome of the algorithmic measurement theory [1] is 

that every “optimal” measurement algorithm generates a new positional numeral system. It is 

proved in [1] that all the known positional numeral systems (binary, decimal, ternary, duodecimal 

and so on) are generated by the corresponding “optimal” measurement algorithms, which are partial 

cases of some very general class of the “optimal” measurement algorithms, which  generate very 

unusual positional numeral  systems.  From  these general reasoning’s, we can conclude  that  the 
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algorithmic measurement theory [1] resulted in general theory of positional numeral systems, that 

is, in new mathematical theory, which is not existed before in mathematics. 

The so-called Fibonacci’s measurement algorithm generates the so-called Fibonacci p-code:  

N = anFp(n) + an-1Fp(n-1) + ... + aiFp(i) + ... + a1Fp(1),   (70) 

where N is natural number, ai{0, 1} is a binary numeral of the i-th digit of the code (70); n is the 

digit number of the code (70); Fp(i) is the i-th digit weight calculated in accordance with the recur-

rence relation (18). The abridged notation of the sum (70) has the following form:  

N = an an-1 ... ai … a1.      (71) 

Note that the notion of the Fibonacci p-code (70) includes an infinite number of different posi-

tional “binary” representations of natural numbers because every p produces its own Fibonacci p-

code (p=0,1,2,3,…). In particular, for the case p=0 the Fibonacci p-code (70) is reduced to the clas-

sical binary code: 

N=an2
n-1

+an-12
n-2

+…+ai2
i-1

+…+a12
0
     (72) 

For the case p=1 the Fibonacci p-code (70) is reduced to the following sum: 

N = anFn + an-1Fn-1 + ... + aiFi + ... + a1F1.    (73) 

Note that Fibonacci’s representation (73) in the “Fibonacci numbers theory” [53] is called Ze-

kendorf’s sum after Belgian researcher Eduardo Zekendorf (1901-1983). For the case p   all 

Fibonacci p-numbers in (70) are equal to 1 identically and then the Fibonacci p-code (70) is re-

duced to the sum  

N
N

   1 1 1...        (74) 

which is known in number theory as Euclidean definition of natural number.  

Thus,  the Fibonacci p-code (70) is  a  wide  generalization  of  the  classical binary code (72), 

Zekendorf’s sum (73) and Euclidean definition of natural numbers (74).  
 

8.2. The “golden” number theory. As is known, the first definition of a number was made in 

the Greek mathematics. We are talking about the Euclidean definition of natural numbers (74).  In 

spite of utmost simplicity of the Euclidean definition (74), we should note that all number theory 

begins from the definition (74). This definition underlies many important mathematical concepts, 

for example, the concept of the prime and composed numbers, and also the concept of divisibility 

that is one of the major concepts of number theory. Here we would like to note that in mathematics 

only natural numbers have a strong definition (74); all other real numbers do not have such a strong 

definition.  

Within many centuries, mathematicians developed and defined more exactly a concept of  num-

ber. In 17-th century, that is, in period of the creation of new science, in particular, new mathemat-

ics, different methods of the “continuous” processes study was developed and the concept of a real 

number again goes out on the foreground. Most clearly, a new definition of this concept is given by 

Isaac Newton (1643 – 1727), one of the founders of mathematical analysis, in his  Arithmetica  

Universalis (1707):   

“We understand a number not as the set of units, however, as the abstract ratio of one magni-

tude to another magnitude of the same kind taken for the unit.“ 

This formulation gives us a general definition of numbers, rational and irrational. For example, 

the binary system  

2i

i

i

aA        (75) 

is the example of Newton’s definition, when we chose the number 2 for the unit and represent a 

number as the sum of the number 2 powers.  
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Bergman’s numeral system 

In 1957 the American mathematician George Bergman published the article  A number system 

with an irrational base [59]. In this article Bergman developed very unusual extension of the notion 

of the binary positional numeral system.  He suggested using the “golden mean”  1 5 / 2    as a 

base of a special positional numeral system. If we use the sequences 
i
 {i=0, ±1, ±2, ±3, …} as 

“digit weights” of the “binary” numeral system, we get the “binary” numeral system with irrational 

base :  

 
i

i

iaA       (76) 

where А is real number, ai are binary numerals 0 or 1, i = 0, ± 1, ± 2, ± 3 …, 
i
 is the weight of the 

i-th digit,  is the base or radix of the number system (76).  

Unfortunately, Bergman’s article [59] did not be noticed in that period by mathematicians. Only 

journalists were surprised by the fact that George Bergman made his mathematical discovery in the 

age of 12 years! In this connection, the Magazine TIMES had published the article about mathemat-

ical wunderkind  of America.  
 

Codes of the Golden p-proportions 

Bergman’s system (76) allows the following generalization [3].  Consider the set of the following 

standard line segments:  

 , 0, 1, 2, 3,..i
p pS i      .    (77) 

where 0p   is a given integer, Фр  is the golden p-proportion, a real root of the characteristic equa-

tion (20). Remind that the powers of the golden р-proportions i
p  are connected between them-

selves with the mathematical identity (17).  

By using the set (77), we can “construct” the following positional representation of real numbers:  

i
pi

i
A a  ,                                                                   (78) 

Where ai{0, 1} is a binary numeral of the i-th digit of the positional representation (78),  i = 0, 1, 

2, 3, … , p  is a radix of the numeral system (78). We shall name the sums (78) codes of the 

golden p-proportion. Note, that a theory of these codes is described in Stakhov’s 1984 book [3]. 

The formula (78) “generates” an infinite number of different positional numeral systems because 

every р (р=0, 1, 2, 3, …) leads to its own numeral system of the kind (78). Note, that for р=0 the 

radix 0 2p    and the numeral system (78) is reduced to the classical binary system, the base 

of modern computers. For the case р=1 the golden mean  1 5 2    is the radix of numeral sys-

tem (78) and, therefore, the numeral system (78) is reduced to Bergman’s system (76).  

Note that for the case 0p   all the radices p  of numeral system (78) are irrationals. This 

means that the numeral system (78) set a general class of numeral systems with irrational radices. 

However, for the case 0p   we have the only exception, because for this case the numeral system 

(78) is reduced to the classical binary system.   

The main conclusion from this study is the following. The researchers by George Bergman [59] 

and Alexey Stakhov [3] resulted in the discovery of new class of positional numeral systems – nu-

meral systems with irrational radices, which can become a basis for new information technology – 

“Golden” Information Technology.  
 

New properties of natural numbers 

Let us study the formulas (76) and (78) from number-theoretical point of view. First of all, let us 

say that the expressions (76) and (78) can be seen as a new (constructive) definition of real num-
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bers. It is clear that the sum of (78) specifies an infinite number of such representations because 

every integer 0p   gives its own positional representation in the form (78). Every positional 

presentation (78) divides all real numbers into two groups, constructive numbers, which may be 

represented as the finite sum of the golden p-proportions in the form of (78), and non-constructive 

numbers, which can not be represented in the form of the finite sum (78).  

Thus, the definitions (76) and (78) are sources for the new number theory – the “golden” num-

ber theory. This theory is described for the first time in Stakhov’s article [17] (the article [17] was 

published by recommendation of academician Yuri Mitropolski) and then in the article [79]. Based 

on this approach, Alexey Stakhov has discovered in [17, 79] new properties of natural numbers. Let 

us consider them for the case of Bergman’s system (76), which is partial cases of the codes of the 

golden p-proportions (78) for the case p=1. Let us represent some natural number N in Bergman’s 

system:  
i

i
i

N a  .      (79) 

It is proved in [17,79] that for arbitrary natural number N the sum (79) consists of the finite 

number of terms, that is, arbitrary natural number N is constructive number in the system (79). In 

further we will name the sum (79)  -code of natural number N. It is proved in [17,79] that this 

property is valid for all codes of the golden р-proportions (78).  

The Z-property of natural numbers is based on the following simple reasoning. Let us consider 

the  -code of natural number N given by the sum (79). It is known [11] the following formula, 

which connects the golden mean powers  0, 1, 2, 3,...i i      with the Fibonacci and Lucas num-

bers:  

5

2
i i iL F

  .     (80) 

If we substitute i , given  by (80), in the formula (79), then after simple transformation we can 

write the expression (79) as follows:  

2 5N A B  ,     (81) 

where  

i i
i

A a L        (82) 

.i i
i

B a F        (83) 

By studying the “strange” expression (81), we can conclude that the identity (81) can be valid for 

the arbitrary natural number N only if the sum (83) is equal to 0 (“zero”), and the sum (82) is double 

of N, that is,   

0i i
i

B a F       (84) 

.2i i
i

A a L N       (85) 

Let us compare now the sums (84) and (79).  Since the binary numerals ai in these sums coin-

cide, it follows that the expression (84) can be obtained from the expression (79) by simple substitu-

tion of every power of the golden mean Ф
i
 instead the Fibonacci number iF ,  where the discrete 

variable  i  takes its values from the set {0,1,2,3,…}.  However, according to (84) the sum (83) 

is equal to 0 independently of the initial natural number N in the expression (79).  Thus, we have 

discovered a new fundamental property of natural numbers, which can be formulated through the 

following theorem.  

Theorem 3 (Z-property of natural numbers). If we represent an arbitrary natural number N in 

Bergman’s system (79) and then substitute the Fibonacci number iF  instead  the power of the gold-

en mean Ф
i
 in the expression (79), where the discrete variable i takes its values from the set 



ISSN XXXX-XXXX  CS&CS, Issue 2(2) 2016 

 54 

{0,1,2,3,…}, then the sum that appear as a result of such a substitution is equal to 0 inde-

pendently on the initial natural number N, that is, we get the identity (84).  

The expression (85) can be formulated as the following theorem.  

Theorem 4 (D-property). If we represent an arbitrary natural number N in Bergman’s system 

(79) and then substitute the Lucas number iL  instead the power of the golden mean Ф
i
 in the ex-

pression (79), where the discrete variable i takes its values from the set {0,1,2,3,…}, then the 

sum that appears as a result of such a substitution is equal to 2N independently of the initial natural 

number N, that is, we get the identity (85).  

Thus, Theorems 3 and 4 provide new fundamental properties of natural numbers [17,79].  It is 

surprising for many mathematicians to find that the new mathematical properties of natural numbers 

were only discovered at the end of the 20th century, that is, 2½ millennia after the beginning of 

their theoretical study. The golden mean and the Fibonacci and Lucas numbers play a fundamental 

role in this discovery. This discovery connects together two outstanding mathematical concepts of 

Greek mathematics - natural numbers and the golden section. This discovery is the next confirma-

tion of the fruitfulness of the constructive approach to the number theory based upon Bergman’s 

system (79) and codes of the golden p-proportions (78).  

 

9. The “Golden” information technology: a revolution in computer science 

9.1. Fibonacci computers. The introduced above new positional representations – Fibonacci p-

codes (70), Bergman system (76) and codes of the golden p-proportions (78) can be the sources of 

new computer projects – Fibonacci computers. This concept, first described in Stakhov’s book [1], 

is one of the important ideas of modern computer science.  The essence of the concept consists of 

the following. Modern computers are based on the binary system (75), which represents all numbers 

as the sums of the binary numbers with binary coefficients, 0 and 1. However, the binary system 

(75) is non-redundant numeral system what does not allow detecting errors, which could appear in 

computer in the process of its exploitation. In order to eliminate this shortcoming, Alexey Stakhov 

suggested in [1,3] to use the Fibonacci p-codes and codes of the golden p-proportions.  

International recognition of the Fibonacci Computer concept began after Stakhov’s lecture in 

Vienna on the joint meeting of the Austrian Computer and Cybernetic Societies in 1976. The very 

positive reaction to Stakhov’s lecture by the Austrian scientists, including Professor Aigner, Direc-

tor of the Mathematics Institute of the Graz Technical University, Professor Trappel, President of 

the Austrian Cybernetic society, Professor Eier, Director of the Institute of Data Processing of the 

Vienna Technical University, and also Professor Adam the representative of the Faculty of Statis-

tics and Computer Science of Johannes Kepler Linz University, caused the decision of the Soviet 

Government to patent Stakhov’s inventions in the Fibonacci computer field abroad. The general 

outcome of the Fibonacci invention patenting surpassed all expectations. 65 foreign patents on vari-

ous devices for the Fibonacci computer were given by the State Patent Offices of the U.S., Japan, 

England, France, Germany, Canada, Poland and GDR.  These  patents  testify to  the fact that the 

Fibonacci computer was a world class innovation, because the Western experts could not challenge 

the Soviet Fibonacci computer inventions. This means, as a result, the Fibonacci patents are the of-

ficial legal documents, which confirm Soviet priority in this computer direction.  

Any expert, who is interested in the Fibonacci computer project, will ask the question: what Fib-

onacci computer research is done in other countries? Some publications of American scientists on 

the Fibonacci arithmetic and applications in the Fibonacci computer field are presented in [60-63].  

It is important to note the recent applications of the Fibonacci p-codes (70) to digital signal pro-

cessing [64,65]. In the Russian science the idea of the use of Fibonacci p-numbers for the design of 

super-fast algorithms for digital signal processing were actively developed by the Professor Vladi-

mir Chernov, Doctor in Physics and Mathematics at Samara the Images Processing Institute of the 

Russian Academy of Science [64]. Also Fibonacci p-numbers for the development of super-fast al-

gorithms for digital signal  processing are widely used by  the research  group from the  Tampere  
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International Center for Signal Processing (Finland). As is shown in the book [65], the super fast 

algorithms for digital signal processing requires a processing of numerical data represented in the 

Fibonacci p-codes (70). This means that for the realization of such super-fast transformations re-

quires for the specialized Fibonacci signal processors! This is why the problem of Fibonacci pro-

cessor development is of vital concern today!  

 

9.2. The “golden” ternary mirror-symmetrical arithmetic. In 1958 the ternary Setun computer 

was designed in Moscow University under supervision of Nikolay Brousentsov. Its peculiarity was 

the use of ternary numeral system: 

3i

i

i

A c ,      (86) 

where  1,0,1ic    is a ternary numeral of the i-th digit, 3
i
 is the weight of  the i-th digit.   

Many modern computer experts have come to the conclusion that the ternary computer design 

principle may bec ome an alternative in the future of computer progress. In this connection, it is im-

portant to recall the opinion of well-known Russian scientist, Prof. Dmitry Pospelov, on the ter-

nary-symmetrical numeral system (86). In his book [66] he wrote: “The barriers, which stand in the 

way of application of ternary-symmetric number systems in computers, are of a technical character. 

Until now, economical and effective elements with three stable states have not been developed. As 

soon as such elements will be designed, a majority of computers of the universal kind and many 

special computers will most likely be re-designed so that they will operate on the ternary-symmetric 

number system.” Also, American scientist Donald Knuth expressed the opinion [67] that one day 

the replacement of “flip-flop” by “flip-flap-flop” will occur.  

Alexey Stakhov in [16] has developed a new ternary arithmetic, which is original synthesis of 

the ternary number system (86), used by Nikolay Brousentsov (Fig. 3) in the Setun computer, and 

Bergman’s system (76). With purpose to explain new ternary representation of numbers, based on 

the golden mean, let us consider infinite sequence of the even powers of the golden mean: 

 2 , 0, 1, 2, 3,...i i     ,     (87) 

where  1 5 / 2    is the golden mean.  

It is proved in [16] that we can represent all integers (positive and negative) as the following 

sum called ternary Ф-code of integer N:  

 2 ,
i

i
i

N c




                                                            (88) 

where  1,0,1ic   is a ternary numeral of the i-th digit, (Ф
2
)
i
 is the weight of the i-th  digit of  the  

positional representation (88), and  2 3 5 / 2 2.618     is a radix of numeral system (88).  

Fig. 3 - Donald Knuth (born 1938) and Nikolay Brousentsov  (1925-2014) 
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The article Brousentsov’s Ternary Principle, Bergman’s Number System and Ternary Mirror-

Symmetrical Arithmetic [16] published in The Computer Journal (England) got a high approval of 

the two outstanding computer specialists - Donald Knuth (Fig. 3), Professor-Emeritus of Stanford 

University and the author of the famous book The Art of Computer Programming [67], and Nikolay 

Brousentsov, Professor of Moscow University, a principal designer of the fist ternary Setun com-

puter. And this fact gives a hope that the ternary mirror-symmetrical arithmetic [16] can become a 

source of new computer projects in the nearest time.   

 

10  The important “golden” discoveries in botany, biology and genetics 
 

10.1. Bodnar’s geometry. The phyllotaxis phenomenon shows itself in inflorescences and 

densely packed botanical structures, such as, pinecones, pineapples, cacti, sunflowers, cauliflowers 

and many other structures. As is well known, according to phyllotaxis law the numbers of the left-

hand and right-hand spirals on the surface of phyllotaxis objects (Fig. 4) are always the adjacent 

Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... . Their ratios  

1 2 3 5 8 13 21
, , , , , , ,...

1 1 2 3 5 8 13
,    (89) 

are called a symmetry order of phyllotaxis objects. The phyllotaxis phenomenon is exciting the best 

minds of humanity during many centuries (Johannes Kepler, André Weil, Allan Turing and oth-

ers).   

The puzzle of phyllotaxis consists of the fact that a majority of bio-forms changes their phyllo-

taxis orders (95) during their growth. It is known, for example, that sunflower disks that are located 

on the different levels of the same stalk have different phyllotaxis orders; moreover, the more the 

age of the disk, the more its phyllotaxis order. This means that during the growth of the phyllotaxis 

object, a natural modification (an increase) of symmetry happens and this modification of symmetry 

obeys the law:  

...
13

21

8

13

5

8

3

5

2

3

1

2
 .    (90) 

The law (90) is called dynamic symmetry.  

Note that the change of orders of phyllotaxis (90) carried out in strict accordance with the Prin-

ciple of self-similarity, that is, all phyllotaxis structures are self-similar structures.  

Recently the Ukrainian researcher Oleg Bodnar had developed very interesting geometric theory 

of phyllotaxis [45]. He proved that phyllotaxis geometry is a special kind of hyperbolic  geometry 

based on the “golden” hyperbolic functions similar to the recursive hyperbolic Fibonacci and Lucas 

functions (29). Such approach allows explaining geometrically how the “Fibonacci spirals” appear 

a)                                                b)                                              c)  

Fig. 4 - Pyllotaxis structures: - pine cone (a); - pineapple (b); - Romanesque cauliflower (c) 
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on the surface of phyllotaxis objects in process of their growth. Bodnar’s geometry [45] is of fun-

damental importance because it touches on fundamentals of theoretical natural sciences, in 

particular, this discovery gives a strict geometrical explanation of the phyllotaxis law and dy-

namic symmetry based on Fibonacci numbers.  

10.2. The Golden Section and a heart. During many years the Russian biologist Vladimir 

Tsvetkov had fulfilled fundamental scientific researches on the theme The Golden Section and a 

Heart [68,69]. This led to the following conclusions. The golden mean is displayed very widely in 

the work of the heart and all its systems. The main purpose of this work is a creation of stable and 

energy-optimal system.  The mode of the golden section brings to maximum economy of energy 

and building material. The golden harmony of the heart activity corresponds to physiological calm 

of human body. In this state the heart works in economic, “golden” mode. After stopping any phys-

ical load, a blood circulation of the body and heart after some time returns back to the “golden” 

mode as the most economical one. The state of calm is prevailing over the life for even a very active 

animal. Therefore we can say that the heart and body aim for the golden harmony of “opposites”! 

The availability of the golden mean in a wide variety of different heart systems confirms the univer-

sality of the golden mean for the heart work. The golden harmony is a “sign of quality” of a car-

diac system and the heart in the whole.  

10.3. Fibonacci’s resonances of genetic code. Among the biological concepts [70] that are well 

formalized and have a level of general scientific significance, the genetic code takes special prec-

edence. Discovery of the striking simplicity of the basic principles of the genetic code places it 

amongst the major modern discoveries of mankind. This simplicity consists of the fact that inher-

itable information is encoded in the texts from three-lettered words - triplets or codonums com-

pounded on the basis of the alphabet that consists of the four characters or nitrogen bases: A 

(adenine), C (cytosine), G (guanine), T (thiamine). The given system of the genetic information 

represents a unique and boundless set of diverse living organisms and is called  genetic code. 

In 1990 Jean-Claude Perez, an employee of IBM, made a rather unexpected discovery in the 

field of the genetic code. He discovered the mathematical law that controls the self-organization of 

bases A, C, G and Т inside of the DNA. He found that the consecutive sets of the DNA nucleotides 

are organized in frames of remote order called RESONANCES. Here, the resonance means a special 

proportion that divides the DNA sequence according to Fibonacci numbers (1, 2, 3, 5, 8, 13, 21, 34, 

55, 89, 144 …).  

The key idea of Perez’s discovery, called the DNA SUPRA-code, consists of the following. Let 

us consider some fragment of the genetic code that consists of the A, C, G and Т bases. Suppose that 

the length of this fragment is equal to some Fibonacci number, for example, 144. If a number of the 

T-bases in the DNA fragment is equal to 55 (Fibonacci number), and a total number of the С, А and 

G bases is equal to 89 (Fibonacci number), then this fragment of the genetic code forms is a RESO-

NANCE, that is, a proportion between three adjacent Fibonacci numbers (55:89:144). Here it is 

permissible to consider any combinations of the bases, that is, C against АGT, A against ТСG, or G 

against ТСА. The discovery consists of the fact that the arbitrary DNA-chain forms some set of the 

RESONANCES. As a rule, the fragments of the genetic code of the length equal to the Fibonacci 

number Fn are divided into the subset of the T-bases, and the subset of the remaining A, C, G bases; 

here the number of T-bases is equal to the Fibonacci number Fn-2 and the total number of the re-

maining A,C, G bases is equal to the Fibonacci number Fn-1, where Fn=Fn-1+Fn-2. If we make a sys-

tematic study of all the Fibonacci fragments of the genetic code, we can obtain a set of the reso-

nances that is called the SUPRA-code of DNA.  

10.4. “Golden” genomatrices. Recently the Russian researcher Sergey Petoukhov made an 

original discovery in genetics [70].  Petoukhov’s discovery [70] shows a fundamental role of the 

golden mean in genetic code. This discovery gives further evidence that the golden mean underlies 

all Organic Nature!  It is difficult to estimate the full impact of Petoukhov’s discovery for the de-

velopment of modern science.  It is clear that this scientific discovery is of revolutionary discovery 

in this field.   
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11  The revolutionary “golden” discoveries in crystallography, chemistry, theoretical  

physics and cosmology  
 

11.1. Quasi-crystals: revolutionary discovery in crystallography. According to the main law of 

crystallography, there are strict restrictions imposed on the structure of a crystal.  According to 

classical ideas, the crystal is constructed from one single cell.  The identical cells should cover a 

plane densely without any gaps. As we know, the dense filling of a plane can be carried out by 

means of equilateral triangles, squares and hexagons. A dense filling of the plane by means of pen-

tagons is impossible, that is, according to the main law of crystallography pentagonal symmetry is 

prohibited for mineral world.    

On November 12, 1984 in a small article, published in the authoritative journal Physical Review 

Letters, the experimental proof of the existence of a metal alloy with exclusive physical properties 

was presented.  The Israeli physicist Dan Shechtman was one of the authors of this article. A spe-

cial alloy, discovered by Professor Shechtman in 1982 and called quasi-crystal, is the focus of his 

research. By using methods of electronic diffraction, Shechtman found new metallic alloys having 

all the symptoms of crystals. Their diffraction pictures were composed from the bright and regularly 

located points similar to crystals.  However, this picture is characterized by the so-called icosahe-

dral or pentagonal symmetry, strictly prohibited according to geometric reasons.  Such unusual al-

loys are called quasi-crystals.  

Quasi-crystals are revolutionary discovery in crystallography. The concept of quasi-crystals gen-

eralizes and completes the definition of a crystal. Gratia wrote in the article [71]: “A concept of the 

quasi-crystals is of fundamental interest, because it extends and completes the definition of the crys-

tal. A theory, based on this concept, replaces the traditional idea about the ‘structural unit,’ repeat-

ed periodically, with the key concept of the distant order. This concept resulted in a widening of 

crystallography and we are only beginning to study the newly uncovered wealth.  Its significance in 

the world of crystals can be put at the same level with the introduction of the irrational numbers to 

the rational numbers in mathematics.”  

What is the practical significance of the discovery of quasi-crystals?  Gratia writes in [71] that 

“the mechanical strength of the quasi-crystals increased sharply; here the absence of periodicity 

resulted in slowing down the distribution of dislocations in comparison to the traditional metals. 

This property is of great practical significance: the use of the “icosahedral” phase allows for light 

and very stable alloys by means of the inclusion of small-sized fragments of quasi-crystals into the 

aluminum matrix.” 

Note that Dan Shechtman published his first article on the quasi-crystals in 1984, that is, exactly 

100 years after the publication of Felix Klein’s Lectures on the Icosahedron in 1884 [72]. This 

means that this discovery is a worthy gift to the centennial anniversary of Klein’s book, in which 

the famous German mathematician predicted an outstanding role for the icosahedron in future sci-

entific development.  

In 2011 Dan Shechtman won the Nobel Prize in chemistry for this discovery.  
 

11.2. Fullerenes: revolutionary discovery in chemistry. Fullerenes are an important modern 

discovery in chemistry.  This discovery was made in 1985, several years after the quasi-crystal dis-

covery. The “fullerene” is named after Buckminster Fuller (1895 -1983), the American designer, 

architect, poet, and inventor.  Fuller created a large number of inventions, primarily in the fields of 

design and architecture.  

The title of fullerenes refers to the carbon molecules С60, С70, С76, and С84.  We start from a brief 

description of the C60 molecule. This molecule plays a special role among the fullerenes. It is char-

acterized by the greatest symmetry and as a consequence is highly stable.  By its shape, the mole-

cule С60 (Fig. 4, on the right) has the structure of Archimedean truncated regular icosahedron 

(Fig. 4, on the left).   

The atoms of carbon in the molecule C60 are located on the spherical surface at the vertices of 20 

regular hexagons and 12 regular pentagons; here each hexagon is surrounded by three hexagons and 
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three pentagons, and each pentagon is surrounded by five hexagons. The most striking property of 

the C60 molecule is its high degree of symmetry.  There are 120 symmetry operations that convert 

the molecule into itself making it the most symmetric molecule.  

It is not surprising that the shape of the C60 molecule has attracted the attention of many artists 

and mathematicians over the centuries. As mentioned earlier, the truncated icosahedron was al-

ready known to Archimedes.  The oldest known image of the truncated icosahedron was found in 

the Vatican library. This picture was from a book by the painter and mathematician Piero della 

Francesca.  We can find the truncated icosahedron in Luca Pacioli’s Divina Proportione (1509).  

Also Johannes Kepler studied the Platonic and Archimedean Solids actually introducing the name 

truncated icosahedron for this shape.  

The fullerenes, in essence, are "man-made" structures following from fundamental physical re-

search. They were discovered in 1985 by Robert F. Curl, Harold W. Kroto and Richard E. 

Smalley. The researchers named the newly-discovered chemical structure of carbon C60 the buck-

minsterfullerene in honor of Buckminster Fuller. In 1996 they won the Nobel Prize in chemistry 

for this discovery.  

Fullerenes possess unusual chemical and physical properties.  At high pressure the carbon С60 

becomes firm, like diamond. Its molecules form a crystal structure as though consisting of ideally 

smooth spheres, freely rotating in a cubic lattice.  Owing to this property, С60 can be used as firm 

greasing (dry lubricant).  The fullerenes also possess unique magnetic and superconducting proper-

ties.  
 

11.3. Fibonacci’s interpretation of Mendeleev’s Periodical Table. Recently the Russian re-

searchers Shilo and Dinkov have suggested in the work [73] very interesting interpretation of Men-

deleev’s Periodical Law of chemical elements. The essence of this suggestion consists of the follow-

ing.  The Great Russian scientist Dmitry Mendeleev suggested the Periodical Law 137 years ago. 

During this time, Mendeleev’s Periodical Law played a huge role in the development of not only 

chemistry, but also of physics, biology, geochemistry, mineralogy, petrology, crystallography, and 

other sciences. In other words, it has stimulated scientific progress in all areas, where chemical ele-

ments are the basis of natural or artificial processes. But during this time scientists of different spe-

cialties in one or another form expressed dissatisfaction concerning Mendeleev’s Periodical Law, 

despite the acclaim of its brilliant fundamental properties.  

As it is emphasized in [73], Dmitry Mendeleev suggested a spiral form of the Periodical System 

yet in his first article on this topic. This was his brilliant prediction. Later in his total article Period-

ical regularity of chemical elements Mendeleev wrote: «In fact, all the distribution of elements is 

uninterrupted and corresponds, in some degree, to spiral function». It is asserted in [73] that, in the 

first days of the Periodical Law discovery, Mendeleev had used a dual form of the Periodic Law. 

Now it is clear that all Mendeleev’s intuitive and prophetic ideas can be combined in the spatial 

helical form of the Periodic Law.   

                               a)                                                b) 

Fig.4 - Archimedean truncated icosahedron (a)  

and the molecule C60 (b) 
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By studying Mendleev’s Peridical System from this point of view, Shilo and Dinkov came in 

[73] to the important conclusion: "Thus, the spatial curve (spiral), where chemical elements are 

placed, are located inside the cone or Lobachevski’s pseudo-sphere.  The chemical elements are 

presented of this spiral in discrete points (or «balls»). Projection of the elements on the horizontal 

plane, that is, on the cone base, presents Fibonacci’s spiral, that is, such a spiral, where difference 

between atomic numbers of any two consecutive chemical  elements is equal to Fibonacci num-

bers.”  

Shilo and Dinkov pointed in [73] different relations, which determine a connection of the Peri-

odical System with the golden mean and Fibonacci numbers:  

1. A ratio of the number of the even mass nuclides of to the number of the even mass nuclides is 

equal to 2×89 / 2×55 ≈ Ф, where   is the golden mean.  

2. A ratio the number of the even charge nuclides to the number of the odd charge nuclides is 

equal to  220/68 ≈ Ф, where   is the golden mean. 

3. If we arrange in the increase order  the 165 even-even nuclides, we get that the well-known 

“magic” neutron numbers 2, 8, 14, 20, 28, 50, 82, 126 correspond to the following nuclide numbers 

of our arrangement: 1, 3, 8. 13, 21, 55, 110=255, 165=355.   

It seems that Shilo and Dinkin’s distribution of the chemical elements, based on Fibonacci num-

bers, offers great opportunities to predict new properties of chemical elements what plays some-

times a decisive role in their use. And we can agree with the following Shilo and Dinkin’s asser-

tion: “If we move in this way, we inevitably will come to a completely new understanding of many 

processes and phenomena; perhaps, we even will change our ideas on the Universe.”  
 

11.4. El Nashie’s E-infinity theory. Prominent theoretical physicist and engineering scientist 

Mohammed S. El Nashie is a world leader in the field of the golden mean applications to theoreti-

cal physics, in particular, quantum physics [74–76]. El Nashie’s discovery of the golden mean in 

the famous physical two-slit experiment-which underlies quantum physics–became a source for 

many important discoveries in this area, in particular, the E-infinity theory. It is also necessary to 

note the contribution of Slavic researchers to this important area. The book [77], written by the 

Byelorussian physicist Vasyl Pertrunenko, is devoted to the applications of the golden mean in 

quantum physics and astronomy.  
 

11.5. Fibonacci-Lorentz transformations and the “golden” cosmological interpretation of the 

Universe evolution. As is known, Lorentz’s transformations used in special relativity theory (SRT) 

are the transformations of the coordinates of the events (x, y, z, t) at the transition from one inertial 

coordinate system (ICS) K to another ICS K  , which is moving relatively to ICS K with a constant 

velocity V.  

The transformations were named in honor of Dutch physicist Hendrik Antoon Lorentz (1853-

1928), who introduced them in order to eliminate the contradictions between Maxwell’s electrody-

namics and Newton's mechanics. Lorentz’s transformations were first published in 1904, but at that 

time their form was not perfect. The French mathematician Jules Henri Poincaré  (1854-1912) 

brought them to modern form.   

In 1908, that is, three years after the promulgation of SRT, the German mathematician Hermann 

Minkowski (1864-1909) gave the original geometrical interpretation of Lorentz’s transformations. 

In Minkowski’s space, a geometrical link between two ICS K and K   are established with the help 

of hyperbolic rotation, a motion similar to a normal turn of the Cartesian system in Euclidean 

space. However, the coordinates of x and t in the ICS K are connected with the coordinates of x 

and t of the ICS K by using classical hyperbolic functions.  Thus, Lorentz’s transformations in  

Minkowski’s geometry are nothing as the relations of hyperbolic trigonometry expressed in physics 

terms. This means that Minkowski’s geometry is hyperbolic interpretation of SRT and therefore it is 

a revolutionary breakthrough in geometric representations of physics, a way out on a qualitatively 

new level of relations between physics and geometry.  

Alexey Stakhov and Samuil Aranson put forward in [37] the following hypotheses concerning 

the “golden”  SRT:  
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1. The first hypothesis concerns the light velocity in vacuum.  As is well known, the main dispute 

concerning the SRT, basically, is about the principle of the constancy of the light velocity in vacu-

um. In recent years a lot of scientists in the field of cosmology put forward a hypothesis, which puts 

doubt the permanence of the light velocity in vacuum - a fundamental physical constant, on which 

the basic laws of modern physics are based. Thus, the first hypothesis is that the light velocity in 

vacuum was changed in process of the Universe evolution.  
2. Another fundamental idea involves with the factor of the Universe self-organization in the 

process of its evolution. According to modern view [82], a few stages of self-organization and deg-

radation can be identified in process of the Universe development: initial vacuum, the emergence of 

superstrings, the birth of particles, the separation of matter and radiation, the birth of the Sun, 

stars, and galaxies, the emergence of civilization, the death of Sun, the death of the Universe. The 

main idea of the article [37] is to unite the fact of the light velocity change during the Universe evo-

lution with the factor of its self-organization, that is, to introduce a dependence of the light velocity 

in vacuum from some self-organization parameter , which does not have dimension and is chang-

ing within:     . The light velocity in vacuum c is depending on the “self-organization” 

parameter     and this dependence has the following form:  

0
( ) ( )c c c c    .                                                       (91) 

As follows from (91), the light velocity in vacuum is a product of the two parameters:  c0  and  

( )c  . The parameter c0 = const, having dimension [m.sec
-1

], is called normalizing factor. It is as-

sumed in [37] that the constant parameter c0 is equal to Einstein’s light velocity in vacuum 

(2.99810
8 

msec
-1

) divided by the golden mean  1 5 / 2 1,61803    . The dimensionless parame-

ter ( )c  is called non-singular normalized Fibonacci velocity of light in vacuum.  

3. The “golden” Fibonacci goniometry is used for the introduction of the Fibonacci-Lorentz 

transformations, which are a generalization of the classical Lorentz transformations. We are talking 

about  the matrix  

  ( 1) ( 2)
( ) ( 1)

cFs sFs
sFs cFs

 
 
 

 
  

 
,                                            (92) 

whose elements are symmetric hyperbolic Fibonacci functions  (29). The matrix ()  of the kind 

(92) is called non-singular two-dimensional Fibonacci-Lorentz matrix and the transformation  

1 1

( 1) ( 2)

( ) ( 1)

cFs sFs

sFs cFsx x
    
        

    

  


 
                                     (93) 

is called non-singular two-dimensional Fibonacci-Lorentz transformations. The above approach to 

the SRT led to the new (“golden”) cosmological interpretation of the Universe evolution and to the 

change of the light velocity before,  in the  moment,  and  after the  bifurcation, called Big Bang.  

Based on this approach, Alexey Stakhov and Samuil Aranson have obtained in [37] new cos-

mological results in the Universe evolution, beginning with the «Big Bang». In particular, they put 

forward a hypothesis that there are two “bifurcation points” in the Universe evolution. The first one 

corresponds to the “Big Bang”, and the second one corresponds to the transition of the Universe 

from the Dark Ages to the Shining Period, where light and first stars have arisen. The speed of light 

immediately after the second “Bifurcation point” is very high, but as far as the evolution of the Uni-

verse the speed of light starts to drop and reaches the limit value C300000 km/sec
-1

.  

 

12 The latest results and publications in the field of Mathematics of Harmony 
 

The ancient Greeks raised the golden section at the level of “aesthetic canon” and “major ratio” 

of the Universe. For centuries or even millennia, starting from Pythagoras, Plato, Euclid, this ge-

ometric discovery has been the subject of admiration and worship of eminent minds of humanity - 

in the Renaissance,  Leonardo da Vinci,  Luca Pacioli,  Johannes Kepler, in the 19 century - 
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Zeizing, Lucas, Binet. In 20-th century, the interest in this unique irrational number increased in 

mathematics, thanks to the works of Russian mathematician Nikolay Vorobyov and American 

mathematician Verner Hoggatt. The development of this direction led to the appearance of the 

Mathematics of Harmony [36] as a new interdisciplinary theory of modern science.  

The Mathematics of Harmony is now the actively developing mathematical discipline, which ex-

pands the scope of its applications and already goes out to the level of mathematical and physical 

MILLENIUM  PROBLEMS  [80,81,83]. Let us consider new mathematical results, obtained in the 

works [49,79,80,81,83]:  

1. The article [49] is very important article for the mathematics history. It turns over our ideas 

about Euclid’s  Elements and  the history of mathematics, starting from Euclid. This article is espe-

cially important for mathematical education because it brings nearer mathematics to Nature and fine 

arts and makes mathematics more interesting discipline for learning. Introduction of the course 

"Mathematics of Harmony" into the educational programs of schools, colleges and universi-

ties can be a revolutionary idea in modern education. 

2. The article [79] is developing the concept of the "golden" number theory, described above. A 

discovery of new and unusual properties of natural numbers is a basic mathematical result of 

the article [79].  

3. The article [80] is devoted to original solution of the most complicated mathematical problem 

of 20
th

 century, the Hilbert Fourth Problem. The metallic means by Vera Spinadel [50] and follow-

ing from them hyperbolic -Fibonacci and Lucas functions underlie this solution. This solution puts 

forward a new challenge for theoretical natural sciences, a search of new hyperbolic worlds of Na-

ture similar to “Bodnar’s geometry” [45], based on the golden ratio. The basic idea of the article 

[80] is the fact that Hilbert Fourth Problem is MILLENNIUM PROBLEM in Geometry that 

is still not be understood by modern mathematicians. 

4. The article [81] is very interesting article from the point of view of theoretical physics. The ar-

ticle gives original solution of one of the important physics MILLENNIUM  PROBLEMS, the 

problem of FINE-STRUCTURE CONSTANT, formulated in 2000 by the prominent American 

physicist David Gross. The solution is based on the non-traditional version of the special theory of 

relativity, which follows from the Fibonacci-Lorentz transformations [37] arising from the theory of 

the "golden" matrices [26]. On the basis of this approach in the article [81] it is studied changing the 

FINE-STRUCTURE CONSTANT, depending on the age of the Universe since the Big Bang. It is 

shown that the FINE-STRUCTURE CONSTANT in fact is not a physical constant, but is 

physical dimensionless quantity whose value is dependent on the age of the Universe. 

5. The article [82] is a development of the well-known Stakhov’s work on Fibonacci p-codes and 

codes of the golden p-proportions [1-5] as new arithmetical and informational foundations of com-

puter science and digital metrology for mission-critical applications. Designing Fibonacci and 

"golden" computer and measurement systems for mission-critical applications can be revolu-

tionary idea for future informational technology.  

6. The book “The “Golden” Non-Euclidean Geometry” [83] summarizes the results of the latest 

applications of the “Mathematics of Harmony”, set out in the articles [49,79,80,81,83]. The book 

[83] is a further development of the book “The Mathematics of Harmony” [11]. The main goal of 

the book [83] is to show that the "Mathematics of Harmony" [11] is an actively developing direc-

tion of contemporary science and that the "Mathematics of Harmony" [11] is indeed a source for 

new and original scientific ideas and concepts.  

 

Instead Conclusion: 

New Challenge for Theoretical Natural Sciences 

Based on the Mathematics of Harmony and “Golden” Hyperbolic Geometry 
 

Although the "Mathematics of Harmony" contains in itself a large number of new scientific find-

ings concerning mathematics (Proclus hypothesis, “golden” number theory and new properties of 
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natural numbers, Hilbert’s Fourth Problem), computer science (numeral systems with irrational 

radices, conception of Fibonacci computers and ternary mirror-symmetrical arithmetic) and theo-

retical physics (Fibonacci-Lorenz transformations and Fibonacci special theory of relativity), how-

ever the main scientific result of the research, described in [80,83], is a  proof of the existence of 

an infinite  number  of  new  hyperbolic  functions,  Fibonacci hyperbolic -functions, based  

on  the "metallic  proportions”.   For  the  given  =1,2,3,.. each class  of  the  Fibonacci  hyper-

bolic  -functions, "generates" new hyperbolic geometry, which leads to the appearance in the 

"physical world" specific hyperbolic geometries with mathematical properties, based on the "metal-

lic proportions." The main peculiarity of these new hyperbolic functions, based on “metallic 

proportions” and Gazale’s formulas, is a recursive character of these hyperbolic functions. 

This means that the “golden” hyperbolic geometries are also recursive, and they embody in them-

selves the Principle of Self-similarity, which is the basis of self-organizing systems of Nature. 

This is the main difference between the "golden" hyperbolic geometries and classical hyperbolic 

geometry created by Lobachevski. 

The new geometric theory of phyllotaxis, created by Oleg Bodnar [45], is brilliant example of 

real existing of the “golden” geometry in Nature. Bodnar proved that "the world of phyllotaxis" is a 

specific "golden hyperbolic world," in which ”hyperbolicity" manifests itself in the "Fibonacci spi-

rals" on the surface of "phyllotaxis objects."  

Recall that "Bodnar's geometry" [45] is based on the recursive Fibonacci hyperbolic functions: 

( )
5

( )
5

x x

x x

sFs x

cFs x





  





  


     (94) 

which are connected with the “extended” Fibonacci numbers, given by Binet’s formulas (28), by the 

formulas (33):  

 

 

for 2

for 2 1
n

sF n n k
F

cF n n k

 
 

 
.                               (95) 

The property (95) defines a recursive character of the hyperbolic functions (94) and following 

from them “golden” hyperbolic geometry. Unfortunately, this fundamental property of the new hy-

perbolic functions, based on the metallic proportions Ф, in comparison with the classical hyperbol-

ic functions, based on Euler’s number e still not understood by many modern mathematicians, ex-

cepting mathematicians-thinkers such as Academician Yuri Mitropolsky, head of the Ukrainian 

School of Mathematics, Russian Professor Samuil Aranson, one of the leading mathematicians of 

Russia in the field of topology and geometry, awarded in 2016 by the GOLD MEDAL of Euro 

Chamber  for outstanding achievements in the field  of science, and also  Canadian  Professor  

M. W. Wong (York University), Editor-in-Chief of the Series on Analysis, Applications and Com-

putation (World Scientific), who recommended the book “The “Golden” Non-Euclidean Geometry” 

for publication in the World Scientific.  Also some philosophers-thinkers such as American Prof. 

Scott  Olsen, Russian Prof. Sergey Abachiev, and  Belarusian  philosopher  Eduard Soroko  

praised  the scientific direction of Alexey Stakhov.  We present  some  excerpts  from  reviews  of 

famous scientists.  

Academician Yuri Mitropolsky [84]:  

“One may wonder what place in the general theory of mathematics this work may have. It seems 

to me-that in the last few centuries-as Nikolay Lobachevsky said, “Mathematicians have turned all 

their attention to the advanced parts of analytics, and have neglected the origins of Mathematics 

and are not willing to dig the field that has already been harvested by them and left behind.” As a 

result, this has created a gap between “Elementary Mathematics” - the basis of modern mathemati-

cal education - and “Advanced Mathematics.” In my opinion, the Mathematics of Harmony devel-

oped by Professor Stakhov fills that gap. The Mathematics of Harmony is a huge theoretical contri-
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bution to the development of “Elementary Mathematics,” and as such should be considered of great 

importance for mathematical education”.  

Professor Scott Olsen [85]: “Now for the past two years I have worked very closely with Prof. 

Stakhov, editing his book, The Mathematics of Harmony: from Euclid to Contemporary Mathemat-

ics and Computer Science, scheduled for publication by World Scientific later this summer in 2009. 

Some of us are convinced that his insights in this work are so remarkable, that it may well change 

not only the way we view the history of mathematics, but the future development of mathematics 

in its applications to the natural sciences. In particular, I have found that Professor Stakhov’s 

knowledge of the Golden Section in both its intricacies and ramifications for the natural sciences is 

the actual state of the art in academia. I know this because I have researched the subject for over 

35 years, and in 2006 published the award winning book, The Golden Section: Nature’s Greatest 

Secret”.  

A conception of the “Golden” Non-Euclidean Geometries greatly expands the number of possi-

ble hyperbolic functions with recursive properties. It is proved in [83] that a number of the recursive 

hyperbolic geometries is equal infinity, because every =1,2,3,… “generates” its own “golden” re-

cursive hyperbolic geometry.   

In the book [83], the notion of the normalized distance between classical Lobachevski’s geome-

try with the base e (Euler number) and the “golden” hyperbolic geometries with the bases Ф (me-

tallic proportions) has been introduced.  

The famous irrational number 
1 5

1.618
2


    (the golden ratio) is the base of the hyperbolic 

functions (94). The normalized distance between Bodnar’s geometry and Lobachevski’s geometry is 

equal  12  0.7336.  

For the first time, the simplest example of the recursive hyperbolic functions has been  described 

in Stakhov & Rozin’s  2004 article [18] and later Alexey Stakhov generalized the result  of the 

article [18] in Stakhov’s 2006 article [30]. A detailed study of the recursive Fibonacci hyperbolic -

functions was done in Stakhov & Aranson’s 2016 article [80] and 2016 book [83]. Basing on the 

success of Bodnar’s geometry [45], one can put forward in front to theoretical physics, chemistry, 

crystallography, botany, biology, and other branches of theoretical natural sciences the challenge to 

search new (“harmonic”) hyperbolic worlds of Nature, based on other classes of the Fibonacci 

hyperbolic -functions (53), (54).  

However, the “golden” hyperbolic functions (94), which underlie the hyperbolic phyllotaxis 

world, are a special case of the hyperbolic Fibonacci  -functions (=1). In this regard, there is eve-

ry reason to suppose that other types of hyperbolic functions, the Fibonacci hyperbolic -functions, 

can be the basis for modeling of new  "hyperbolic worlds," which possibly can really exist in Na-

ture. Modern science did not find these special “hyperbolic worlds” until now, because the recursive 

hyperbolic Fibonacci functions were unknown until early 21th century [18,30].  In this case, per-

haps, the  next candidate for the new  "hyperbolic world"  of Nature may be, for example, “silver”  

hyperbolic functions:  

   

   

2 2
2

2 2
2

1
( ) 1 2 1 2

8 2 2

1
( ) 1 2 1 2

8 2 2

x x x x

x x x x

sF x

cF x

 

 

           


        
   

,   (96) 

which are connected with Pell numbers and are based on the "silver mean" 2 1 2 2.41    , 

called also Leonardo da Vinci’s constant.   

In this regard, we should draw a special attention to the fact that the new hyperbolic geometry, 

based on the "silver" hyperbolic functions (96), is the closest to Lobachevski’s geometry, based of 

the classical hyperbolic functions with the base 2.71e  . Its normalized distance to Lobachevski’s 

geometry is equal  12  0.1677  what is  the  smallest  among all  the  distances  between “golden”  

hyperbolic -forms (62)  and  Lobachevski’s metric  form (61).  It  allows from  here the assump-
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tion that  the  "silver"  hyperbolic functions  (96) and  the  generated by them "silver"  hyperbolic  

geometry  can  be soon be found  in  Nature  after  Bodnar’s geometry,  based  on  the  "golden"  

hyperbolic  functions  (94).   

Taking into consideration the above reasoning’s, we can conclude that the recursive hyper-

bolic geometries, based on the Principle of Self-similarity, is the new direction in the develop-

ment of Lobachevski’s hyperbolic geometry and therefore searching new hyperbolic worlds of 

Nature, based on recursive hyperbolic geometries, may lead to new scientific discoveries.  
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ставленій статті автор розвиває математику гармонії і 'золоту' неевклідову геометрію як новий меж-дисциплінарний напря-

мок сучасної науки, що засноване на золотому перетині, числах Фібоначчі та їх узагальненнях. Новітні відкриття в різних 

галузях сучасної науки, що засновані на математиці гармонії, а саме, математики (загальної теорії гіперболічних функцій і 

вирішенні четвертої проблеми Гільберта, алгоритмічної теорії вимірювання і 'золотий' теорії алгоритмів), комп'ютерних 

науках ('золота' інформаційна технологія), кристалографія (квазікристали), хімія (фулерени), теоретична фізика та космоло-

гія (перетворення Фібоначчі-Лоренца, 'золота' інтерпретація спеціальної теорії відносності і 'золота' еволюція Всесвіту), 

ботаніка (нова геометрична теорія філотаксису), генетика ('золоті' геноматриці) і т.д., створює загальну картину 'золотої' 

наукової революції, яка може фундаментально впливати на розвиток сучасної науки і освіти.   
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Аннотация. Издательский дом “World Scientific” недавно опубликовал две фундаментальные работы: "Математика гармо-

нии" (2009), автор Алексей Стахов, и "'Золотая' неевклидова геометрия" (2016), авторов Алексея Стахова и Самуила Аран-

сона. В представленной статье автор развивает математику гармонии и 'золотую' неевклидову геометрию как новое меж-

дисциплинарное направление современной науки, основанное на золотом сечении, числах Фибоначчи и их обобщениях. 

Новейшие открытия в разных областях современной науки, основанные на математике гармонии, а именно, математики 

(общей теории гиперболических функций и решении четвертой проблемы Гильберта, алгоритмической теории измерения и 

'золотой' теории алгоритмов), компьютерных науках ('золотая' информационная технология), кристаллография (квазикри-

сталлы), химия (фуллерены), теоретическая физика и космология (преобразования Фибоначчи-Лоренца, 'золотая' интерпре-

тация специальной теории относительности и 'золотая' эволюция Вселенной), ботаника (новая геометрическая теория фил-

лотаксиса), генетика ('золотые' геноматрицы) и т.д., создает общую картину 'золотой' научной революции, которая может 

фундаментально повлиять на развитие современной науки и образования.  
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