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Abstract. We develop a new class of positional numeral systems, namely the binomial ones, which form a subclass of 

generalized positional numeral systems (GPNS). The binomial systems have wide range of applications in the infor-

mation transmission, processing, and storage due to their error-detection capabilities. In this paper, the binomial 

numeral systems are well-defined, their prefix and compactness properties are established. Algorithms of generating 

binomial coding words (non-uniform and uniform) are presented, as well as an enhanced procedure of construction 

of constant weight Boolean combinations based upon the non-uniform binomial coding words. The correctness of this 

procedure is established.  

 

Keywords: generalized positional numeral systems, binomial numeral systems, constant weight codes.  

 

1 Introduction 
 

Positional numeral systems are widely used in computing. More complicated numeral systems, 

in which the register's weight need not be equal to the power of the system's base (like, for example, 

in the binary or decimal system), have not been thoroughly studied as yet. Such generalized posi-

tional numeral systems (GPNS) may have quite useful properties, like being noise-proof, easy in 

generating permutations, etc. (see [1-3]). These properties allow one to exploit the GPNS to develop 

specialized digital de-vices with high computational speed, reliability, and very low size and weight 

parameters. Moreover, the GPNS may serve as a base for:  

a) generation of codes and construction of coding devices for the thorough error-control when 

processing, transmitting, and storing information;  

b) development of algorithms and devices used when information is compressed and/or coded;  

c) efficient solution of combinatorial optimization problems.  

When combinatorial objects are generated and numerated, researchers use to develop special 

methods for each individual problem, which can be characterized as a principal drawback of such 

an approach [4,5]. Therefore, a universal algorithm solving these problems at both the theoretical 

and practical levels would be very helpful. We propose a possible solution method based upon the 

GPNS. In particular, in this paper, a binomial numeral system is considered, which generates com-

binatorial objects making use of constant weight codes [6]. The total number of coding words in 

such codes is determined by binomial coefficients [7]. 

The generalized positional numeral systems (GPNS) allow one to develop efficient algorithms 

and specialized digital devices (based upon these algorithms) due to the similarity of their struc-

tures. Thus the device cost is saved, and the high computational speed is attained (due to the hard-

ware implementation, up to ten times higher compared to the universal computers). Moreover, as 
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the GPNS are noise-proof, their digital devices use to be much more reliable and easy in trouble-

shooting.  

It is worthwhile to develop digital devices using a GPNS and completing mainly logical and the 

simplest arithmetical operations with integer numbers, because these operations are realized by the 

GPNS in the most efficient way.  

Certain parts of such specialized devices, e.g. noise-proof counters, registers, etc., are of interest 

for the universal computers as well [8,9].  

To cope with the problem of noise-proof storage and transmission of information, a lot of vari-

ous codes, both error-detecting and error-correcting, have been developed. Among those codes, it is 

worthy to distinguish the codes that detect errors not only during the information transmission and 

storage but also while it is processed. This class also includes the codes based upon the GPNS, 

whose strong sides are: (i) the simplicity of algorithms and devices for detecting errors, (ii) the 

structural regularity, (iii) the possibility to regulate the code's redundancy and hence its error-

detecting capability depending upon the channel's adaptability. Such codes are quite applicable in 

specialized automatic controlling systems, as the information's downloading, processing, transmis-

sion, and development of controlling actions are all based upon the same GPNS code.  

One of the  important  problems arising while storing  and  transmitting  information is its  com-

pression,  like  for example  by  the  optimal  coding  based  on  the  Shannon-Fano  and  Huffman  

codes [10,11]. Nowadays, the coding theory can boast with a quite wide arsenal of other ways to 

compress information, which however cannot exclude the development of new methods and/or im-

provement of the existing ones. One of those is the numeration of messages, which has the follow-

ing advantages: (a) an algorithmic coding structure allowing an easy implementation, and (b) no 

need in a dictionary.  

Application of a GPNS permits one to expand the class of numerated messages and thus improve 

and simplify the algorithmic and technical realization of the information compression.  

Both the numeration and de-numeration processes based upon the GPNS can be efficiently used 

to code the information. Thus we can obtain noise proof codes of high stability and with simple 

keys used for the information security.   

Finally, problems of combinatorial optimization are of special importance. In the most general 

form, these problems may even not have an objective function but stated in some preference terms. 

Such problems are usually solved by an exhaustive search, or when it is impossible, by random 

search procedures [2]. In both cases, the GPNS can provide many efficient ways of generating the 

combinatorial objects in order to find a path to an optimal solution.  

Therefore, the generalized positional numeral systems (GPNS) propose a unified approach al-

lowing one to solve efficiently a series of practical problems of various natures. As an example of 

such a GPNS, our paper presents a binary binomial numeral system. The latter is characterized with 

the use of binomial coefficients as weights of the binary digits [12-14]. 

The rest of the paper is arranged as follows. In Section 2, we define the principal structure of the 

binomial calculus system. Section 3 presents the mains results establishing the key properties of the 

binomial systems, namely, the prefix and the compactness properties. Finally, Section 4 deals with 

the algorithms to generate and numerate binomial combinations of various lengths (non-uniform 

codes), the constant length (uniform codes), and the constant weight combinations. Conclusion, 

acknowledgement and the reference list complete the paper.  

 

2  Binomial Systems  
 

Now we describe one of the GPNS, namely the binomial system with the binomial weights and 

the binary alphabet {0,1 [12-14].  

In a k-binomial system with n registers (k < n), the quantitative equivalent QAi of a code combi-

nation Ai = (aj-1, aj-2, … , a0), i = 0,1,…, P-1, with k

nP C , where j = j(i) is the combination's length, 

is defined as follows:  
11

1 1 0... ... ,ik q k q k q

i j n n j n jQA a C a C a C
   

                                            (1) 
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where the following conditions must hold: either   
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Here q0 is the quantity of units (ones) in the binomial number, P is the range of the system, j is 

the quantity of registers (positions) in the binomial number (or, its length), ℓ = 0,1,…, j-1 is the reg-

ister's ordinal number, qℓ is the sum of the digits occupying the registers (j-1) through ℓ, inclusively, 

i.e.  







1

,
j

i

iaq


                                                                  (3) 

with qj = 0.  

A positional numeral system must be finite, effective, and well-defined.  

However, it is not enough for a generalized positional system. In addition, it has to be a prefix code 

system, i.e. with the "prefix property": there is no valid code word in the system that is a prefix 

(start) of any other valid code word in the set. With a prefix code, a receiver can identify each word 

without requiring a special marker between words. The generalized positional numeral system 

should be also continuous, which means that for any number s from the system's range (except for 

the maximal number), there exists a combination, whose quantitative equivalent is equal to (s + 1).  

All these properties of the binomial numeral systems will be established in the next section.  

 

3 The Binomial System is Finite, Effective, Prefix, and Well-Defined 
 

Formula (1) shows that the binomial numeral system is finite and effective, because there exists a 

numeration algorithm, which, after a finite of number of steps, converts the coding combination Ai 

into its quantitative equivalent QAi. Now the following theorem establishes the prefix property of 

the binomial numeral system. Although its proof was first given in [12], we repeat it here to make 

the paper self-contained.  
 

Theorem 3.1. [12]. The k-binomial numeral system with n registers (where k < n) is a prefix 

code system.  
 

Proof. Let a coding combination Ai satisfy conditions (2), i.e., let it contain exactly k units 

(ones).  As  the condition  j < n  in constraint (2) implies that the length of such combinations can-

not  exceed  (n-1), then  we  conclude  that  the  length  j  of  Ai   lies  between  k and  n - 1,  that  is,  

k ≤ j ≤ n - 1.  

Therefore, the number of zeros z  in  Ai can be equal to  z = 0,1,…, n-k-1, while the combinations 

length equals j = k+z.  The total number of distinct combinations of the same length containing k 

ones and z zeros coincides with the number of combinations of z (zeros) among the total quantity of 

(j - 1) elements, namely, 
1

z

k zP C   . The distinct combinations cannot evidently be prefixes of the 

others having the same length, hence in this case, the desired property holds. As for the combina-

tions of different lengths, their values of z are also different. However, as the combinations in ques-

tion always have 1 at the extreme right position (i.e., a0 = 1), and the total number of 1's is equal to 

the same number  k, it is clear that the longer combination, in its prefix part of the length equal to 

the total length of the shorter combination, contains at least one 1 (unit) less than the shorter combi-

nation. Therefore, the prefix property is valid for all coding combinations satisfying conditions (2).  
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Now consider the coding combinations satisfying (3). As the constraint n-k=j-q0  clearly implies 

that the total number of zeros in these combinations is constant and equal to n-k, then the combina-

tion's generation process stops when the last, the (n-k) -th zero appears at the right end position (i.e., 

a0 = 0). The number of zeros (n-k) summed with the number q0 = 0,1,…,k-1 of 1's defines the com-

bination's total length as j=n-k+q0. Therefore, the number of distinct combinations with q0 units and 

(n-k) zeros (including the zero in the right end position) coincides with the number of all possible 

combinations of q0 elements among the total of (j-1) positions, that is, 
1

o

o

q

n k qP C    . Again, the pre-

fix property for the combinations of the same length is evident. As for the combinations of the con-

sidered subclass having different length values, they also have different numbers of 0's.  Consider 

two such coding combinations of length values equal to p and q, respectively, with, say, p < q. The 

shorter combination with the length p, which could be a prefix of the longer one, contains exactly 

(n-k) zeros, the same as the longer combination has. However, the right end position of the longer 

combination is occupied by zero, hence the number of zeros in the longer combination's prefix of 

length p cannot exceed (n-k-1), which clearly excludes the possibility for the shorter coding combi-

nation to be the prefix of the longer one.    

Finally, it is straightforward that no coding combination satisfying (2) can be the prefix of a 

combination satisfying (3), and vice versa. This is due to the fact that the maximum number of 1's 

in any combination of the latter class is strictly less than that in every combination of the former 

class. Therefore, no combination of class (2) can be a prefix of a combination of class (3). In an 

analogous manner, it is easy to see that the maximum possible number of zeros in an arbitrary cod-

ing combination of subset (2) is strictly less than that in any combination of class (3), hence, no 

combination of subclass (3) can form a prefix of a combination from (2). Therefore, the prefix 

property is evidently valid for the whole set of combinations satisfying (2) or (3), which completes 

the proof of the theorem.  

To show that the binomial system is well-defined, that is, two distinct coding combinations can-

not be equivalent to the same numerical value, we prove the following result (again, see [12]).  

 

Theorem 3.2. [12] The k-binomial system with n registers (where k < n) is well-defined.  
 

Proof. The previous result (Theorem 3.1 with the prefix property) implies that any two distinct 

coding combinations have different digits (0 and 1) at least in one of the registers (counted from left 

to right). The digits in the registers (if any) preceding the first such register are common for both 

combinations, whereas the remaining (succeeding) part is called the proper part of each combina-

tion in this pair. If we prove that the proper parts of these two coding combinations cannot represent 

the same number, the binomial system is well-defined. Consider the proper parts of two coding 

combinations (without affecting generality, assume that the combinations have no coinciding pre-

ceding parts):  

Aw = (aα ,…, a0)  and  As = (bβ ,…, b0); 

where    

aα = 0; bβ = 1;   0 ≤ α , ≤ n - 1; 0  ≤ w; s  ≤ P - 1; and  w ≠ s.  
 

It is not difficult to demonstrate (see the decription of the algorithm generating non-uniform bino-

mial numbers in Section 4) that if in the coding combination Aw all the digits to the right from a_ 

were 1's (i.e., am = 1 for m = 0, 1, …, a -1), whereas in As, vice versa, all the entries to the right 

from bβ were zero, that is, bt = 0 for t = 0, 1;… , β-1, then the distance 

between the numbers QAw and QAs represented by the combinations Aw and As, respectively, would 

be the minimum possible one. Now we establish that this minimum distance is not zero. Indeed, by 

definition (1) and by the above assumptions, one has:  
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Now since   
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the latter relationships make it possible to conclude that QA ≠ QAs  and thus the minimum distance 

between them is 1, which completes the proof.   

Theorems 3.1 and 3.2 have the following important corollary, which proves the compactness of 

the binomial numeral systems.  
 

Corollary 3.1. The k-binomial system with n registers (k < n) is compact, that is, its range is 

complete and covers all the integers between  0 and ( 1k

nC ).  
 

Proof. According to formula (1), the maximal number represented in the k-binomial system with 

n  registers is as follows:  

.1111 1
1

211 
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n

qk

nP CCCCQA jj   

The minimal represented value is zero, hence the total number of the integers between the lower 

and upper bounds of the range is k

nC . Meanwhile, it is not difficult to establish that the total number 

of coding combinations constructed by formula (1) and ending with 1 (i.e. satisfying (2)) is equal to  
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Similarly, it can be proved that the total number of combinations generated by (1) and ending 

with 0, i.e. with condition (3), is:  
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Therefore, the total number of distinct coding combinations in the k-binomial system equals  
 

.1

1101

k

n

k

n

k

n CCCNNN  

  
 

By Theorem 3.2, the correspondence between the coding combinations and the represented inte-

gers is one-to-one, and the compactness of the k-binomial system with n registers is proved.  

Remark 3.1. It is straightforward that for the k-binomial calculus system with n registers, the 

range parameter P is equal to k

nC . 

 

4 Algorithms Generating Binomial Combinations 
 

Table 4.1 contains  the  binomial  combinations  and  their  quantitative  equivalents  for  the     

k-binomial  system  with n registers, where n = 6 and k = 4.   

They are generated by the following algorithm:  

Step 1. An initial combination A0 consisting of (n-k) zeros is composed and referred to as a key-

word.  

Step 2. The digit 1 is put into the right end register, and zero is added to the right side of it. 

Step 3. Step 2 is repeated while the number of 1's in the coding word is less than k-1. If the 

number of 1's is equal to k-1, then go to Step 4. 

Step 4. If the right end position contains zero, we replace it with 1. Go to Step 5.  

Step 5. Check the number of 1's in the coding combination: if it equals k but the 1's do not occu-

py the first k registers counted from left to right, go to Step 6. Otherwise, i.e. if the 1's occupy the 

first k registers counted from left to right, then STOP: all the combination have been generated.  
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Table 4.1 Binomial coding combinations of non-constant length (non-uniform code)  

Binomial 

word 
Its quantitative equivalent 

00 000 4

4

4

5  CC  

010 1010 3

3

4

4

4

5  CCC  

0110 20110 2

2

3

3

4

4

4

5  CCCC  

01110 301110 1

1

2

2

3

3

4

4

4

5  CCCCC  

01111 411110 1

1

2

2

3

3

4

4

4

5  CCCCC  

100 5011 3

3

3

4

4

5  CCC  

1010 60101 2

2

3

3

3

4

4

5  CCCC  

10110 701101 1

1

2

2

3

3

3

4

4

5  CCCCC  

10111 811101 1

1

2

2

3

3

3

4

4

5  CCCCC  

1100 90011 2

2

2

3

3

4

4

5  CCCC  

11010 1001011 1

1

2

2

2

3

3

4

4

5  CCCCC  

11011 1111011 1

1

2

2

2

3

3

4

4

5  CCCCC  

11100 1200111 1

1

1

2

2

3

3

4

4

5  CCCCC  

11101 1310111 1

1

1

2

2

3

3

4

4

5  CCCCC  

1111 141111 1

2

2

3

3

4

4

5  CCCC  

 

Step 6. Update the keyword A0 by putting 1 as a prefix before the beginning of the keyword (i.e., 

its left end). If the total number of 1's in the keyword is less than k, go to Step 2.  

The binomial systems find various important applications, in which the following useful features 

are exploited: (i) the binomial systems are noise-proof in the information transmission, processing, 

and storage; (ii) they are able to search, generate and numerate coding combinations with a constant 

weight; (iii)  they can be used to construct noise-proof digital devices.  To detect errors with the aid 

of binomial coding combinations, they should be completed with zeros to obtain uniform (n - 1)-

digital binomial coding words given in  Table 4.2.  
 

Table 4.2  Binomial coding combinations of a constant length (uniform code) 

NN Binomial word Binomial uniform word 

0 00 00000 

1 010 01000 

2 0110 01100 

3 01110 01110 

4 01111 01111 

5 100 10000 

6 1010 10100 

7 10110 10110 

8 10111 10111 

9 1100 11000 

10 11010 11010 

11 11011 11011 

12 11100 11100 

13 11101 11101 

14 1111 11110 
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The main tokens of errors in a binomial coding combination are either the number of 1's being 

greater than k, or the number of zeros exceeding (n-k). The principal feature of the binomial noise-

proof code is its ability to detect errors while processing information. This feature allows one to ar-

range the throughout control in the information processing channels involving the digital devices.  
 

4.1. Generation of binomial coding combinations with a constant weight  

Next, Table 4.3 shows a transformation of binomial coding combinations to coding words with a 

constant weight: this is done by adding (to the right end) either 1's if the binomial combination con-

tains (n-k) zeros, or adding zeros if the combination comprises k digits 1, until the combination's 

length reaches n.   

 

Table 4.3 Binomial coding combinations of a constant weight 
 

NN Binomial word 
Binomial constant 

weight word 

0 00 001111 

1 010 010111 

2 0110 011011 

3 01110 011101 

4 01111 011110 

5 100 100111 

6 1010 101011 

7 10110 101101 

8 10111 101110 

9 1100 110011 

10 11010 110101 

11 11011 110110 

12 11100 111001 

13 11101 111010 

14 1111 111100 
 

Each binomial combination (column 2 of Table 4.3) has the corresponding combination with the 

constant weight (column 3 of Table 4.3), hence the former is a compressed image of the latter. If 

one needs to label a combination with the constant weight by some traditional numeral system 

number (e.g., decimals of column 1 in Table 4.3), formula (1) has to be used. In the latter case, a 

compression of binomial numbers is completed.  

Algorithms of search and generation of binomial combinations and those with constant weights 

can be also found in [14]. Now we describe one of modifications of such algorithms and prove its 

efficiency as follows. This method is based upon the fact that the range of binomial numbers of 

length n and with parameter k (k < n) coincides with the range of the constant weight coding com-

binations with k units among n registers. Therefore, the formal description of the algorithm is as 

follows:  

Step 1. Select an arbitrary non-uniform binomial coding combination.  

Step 2. If the coding combination ends with the digit 1, then put zeros into all registers up to the 

right end (register n), which is considered as auxiliary. The thus obtained combination ending with 

0 will be the combination with the constant weight.  

Step 3. If the coding combination ends with the digit 0, then set units (ones) into all registers up 

to the right end (register n, or the auxiliary register). The thus created combination ending with 1 

will be the combination with the constant weight.  

Step 4. Verify that the thus obtained combination is indeed with the constant weight by counting 

the total number of ones (units). If this number is k then the combination is indeed a desired one. 

Select another non-uniform binomial coding combination and go to Step 2. If all the non-uniform 

binomial coding combinations have been already selected, then STOP: all the constant weight 

combinations of this range have been generated.  
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The above algorithm generates the complete range of the corresponding combinations of the 

constant weight, which is confirmed by the following theorem.  
 

Theorem 4.1. With the aid of the above algorithm, for every non-uniform binomial combination 

of length n with parameter k (k < n), one obtains the unique corresponding coding combination 

with (the constant) weight k and length n.  

Proof. First, consider the case when the selected non-uniform binomial coding combination ends 

with the unit (i.e., with digit 1). According to the definition of the non-uniform binomial coding 

words, it implies that this combination has already had k units (digits 1). Making use of the above-

described algorithm (Step 2), we need only to add several zeros into the registers to the right from 

the rightest 1 till the auxiliary register is filled, thus having obtained the combination with (the con-

stant) weight k. It is clear that two different non-uniform binomial coding words cannot generate 

(with the aid of the above algorithm) the same constant weight combination: indeed, if otherwise, it 

would imply that one (the shorter) of these non-uniform binomial coding words is the prefix of the 

second (the longer) one, which would contradict Theorem 3.1.  

Next, if the selected non-unifom binomial coding combination ends with 0, then, due to the de-

scription of the verified algorithm (see Step 3), we will insert 1's into all the registers to the right 

from the rightest zero, including the auxiliary register. According to the definition of the non-

uniform binomial combination ending with zero, the total number of zeros in it is equal to (n-k); 

therefore, the constructed new combination will contain n-(n-k)=k  digits 1, i.e. it will have the 

(constant) weight k. Repeating exactly the proof for the first case (Step 2) given above, we conclude 

that different non-uniform binomial combinations ending with 0 will produce different combina-

tions of (the constant) weight k.  Finally, two constant weight combinations produced by different 

steps (Step 2 and Step 3) of the above algorithms cannot coincide due to the different digits in their 

auxiliary registers (0 for Step 2 and 1 for Step 3). The proof is complete.  

 

5 Conclusion 
 

In this paper, we have described the error-detecting binomial numeral systems capable of trans-

mitting, processing and storing information. The systems can also generate and numerate combina-

torial configurations, like, for example, coding words with a constant weight, as well as composi-

tions, combinations with repetitions, etc. Moreover, the binomial systems can be applied to produce 

efficient information compression and defense. The latter is the goal of our further research.  
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Описание и применение биномиальных систем счисления. 

Аннотация. Разрабатывается новый вид позиционных систем счисления, называемых биномиальными, который образует 
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