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Abstract. We develop a new class of positional numeral systems, namely the binomial ones, which form a subclass of
generalized positional numeral systems (GPNS). The binomial systems have wide range of applications in the infor-
mation transmission, processing, and storage due to their error-detection capabilities. In this paper, the binomial
numeral systems are well-defined, their prefix and compactness properties are established. Algorithms of generating
binomial coding words (non-uniform and uniform) are presented, as well as an enhanced procedure of construction
of constant weight Boolean combinations based upon the non-uniform binomial coding words. The correctness of this
procedure is established.
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1 Introduction

Positional numeral systems are widely used in computing. More complicated numeral systems,
in which the register's weight need not be equal to the power of the system's base (like, for example,
in the binary or decimal system), have not been thoroughly studied as yet. Such generalized posi-
tional numeral systems (GPNS) may have quite useful properties, like being noise-proof, easy in
generating permutations, etc. (see [1-3]). These properties allow one to exploit the GPNS to develop
specialized digital de-vices with high computational speed, reliability, and very low size and weight
parameters. Moreover, the GPNS may serve as a base for:

a) generation of codes and construction of coding devices for the thorough error-control when

processing, transmitting, and storing information;

b) development of algorithms and devices used when information is compressed and/or coded;

c) efficient solution of combinatorial optimization problems.

When combinatorial objects are generated and numerated, researchers use to develop special
methods for each individual problem, which can be characterized as a principal drawback of such
an approach [4,5]. Therefore, a universal algorithm solving these problems at both the theoretical
and practical levels would be very helpful. We propose a possible solution method based upon the
GPNS. In particular, in this paper, a binomial numeral system is considered, which generates com-
binatorial objects making use of constant weight codes [6]. The total number of coding words in
such codes is determined by binomial coefficients [7].

The generalized positional numeral systems (GPNS) allow one to develop efficient algorithms
and specialized digital devices (based upon these algorithms) due to the similarity of their struc-
tures. Thus the device cost is saved, and the high computational speed is attained (due to the hard-
ware implementation, up to ten times higher compared to the universal computers). Moreover, as
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the GPNS are noise-proof, their digital devices use to be much more reliable and easy in trouble-
shooting.

It is worthwhile to develop digital devices using a GPNS and completing mainly logical and the
simplest arithmetical operations with integer numbers, because these operations are realized by the
GPNS in the most efficient way.

Certain parts of such specialized devices, e.g. noise-proof counters, registers, etc., are of interest
for the universal computers as well [8,9].

To cope with the problem of noise-proof storage and transmission of information, a lot of vari-
ous codes, both error-detecting and error-correcting, have been developed. Among those codes, it is
worthy to distinguish the codes that detect errors not only during the information transmission and
storage but also while it is processed. This class also includes the codes based upon the GPNS,
whose strong sides are: (i) the simplicity of algorithms and devices for detecting errors, (ii) the
structural regularity, (iii) the possibility to regulate the code's redundancy and hence its error-
detecting capability depending upon the channel's adaptability. Such codes are quite applicable in
specialized automatic controlling systems, as the information's downloading, processing, transmis-
sion, and development of controlling actions are all based upon the same GPNS code.

One of the important problems arising while storing and transmitting information is its com-
pression, like for example by the optimal coding based on the Shannon-Fano and Huffman
codes [10,11]. Nowadays, the coding theory can boast with a quite wide arsenal of other ways to
compress information, which however cannot exclude the development of new methods and/or im-
provement of the existing ones. One of those is the numeration of messages, which has the follow-
ing advantages: (a) an algorithmic coding structure allowing an easy implementation, and (b) no
need in a dictionary.

Application of a GPNS permits one to expand the class of numerated messages and thus improve
and simplify the algorithmic and technical realization of the information compression.

Both the numeration and de-numeration processes based upon the GPNS can be efficiently used
to code the information. Thus we can obtain noise proof codes of high stability and with simple
keys used for the information security.

Finally, problems of combinatorial optimization are of special importance. In the most general
form, these problems may even not have an objective function but stated in some preference terms.
Such problems are usually solved by an exhaustive search, or when it is impossible, by random
search procedures [2]. In both cases, the GPNS can provide many efficient ways of generating the
combinatorial objects in order to find a path to an optimal solution.

Therefore, the generalized positional numeral systems (GPNS) propose a unified approach al-
lowing one to solve efficiently a series of practical problems of various natures. As an example of
such a GPNS, our paper presents a binary binomial numeral system. The latter is characterized with
the use of binomial coefficients as weights of the binary digits [12-14].

The rest of the paper is arranged as follows. In Section 2, we define the principal structure of the
binomial calculus system. Section 3 presents the mains results establishing the key properties of the
binomial systems, namely, the prefix and the compactness properties. Finally, Section 4 deals with
the algorithms to generate and numerate binomial combinations of various lengths (non-uniform
codes), the constant length (uniform codes), and the constant weight combinations. Conclusion,
acknowledgement and the reference list complete the paper.

2 Binomial Systems

Now we describe one of the GPNS, namely the binomial system with the binomial weights and
the binary alphabet {0,1} [12-14].

In a k-binomial system with n registers (k < n), the quantitative equivalent QAi of a code combi-
nation Ai = (aj.1, &2, ..., ao), i = 0,1,..., P-1, with p=c’, where j = j(i) is the combination's length,
is defined as follows:

QA =a, Cif' +..+aC il +..+a,C (1)

n—-j
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where the following conditions must hold: either

qo:kv
j<nm )
a,=1,
or
n-k= j_qo,
Go <k; @)
a, =0,

Here qo is the quantity of units (ones) in the binomial number, P is the range of the system, j is
the quantity of registers (positions) in the binomial number (or, its length), ¢ = 0,1,..., j-1 is the reg-
ister's ordinal number, g, is the sum of the digits occupying the registers (j-1) through ¢, inclusively,
ie.

j-1
q, = Zai ' (3)
i=0
with g; = 0.

A positional numeral system must be finite, effective, and well-defined.

However, it is not enough for a generalized positional system. In addition, it has to be a prefix code
system, i.e. with the "prefix property": there is no valid code word in the system that is a prefix
(start) of any other valid code word in the set. With a prefix code, a receiver can identify each word
without requiring a special marker between words. The generalized positional numeral system
should be also continuous, which means that for any number s from the system's range (except for
the maximal number), there exists a combination, whose quantitative equivalent is equal to (s + 1).
All these properties of the binomial numeral systems will be established in the next section.

3 The Binomial System is Finite, Effective, Prefix, and Well-Defined

Formula (1) shows that the binomial numeral system is finite and effective, because there exists a
numeration algorithm, which, after a finite of number of steps, converts the coding combination Ai
into its quantitative equivalent QAi. Now the following theorem establishes the prefix property of
the binomial numeral system. Although its proof was first given in [12], we repeat it here to make
the paper self-contained.

Theorem 3.1. [12]. The k-binomial numeral system with n registers (where k < n) is a prefix
code system.

Proof. Let a coding combination Ai satisfy conditions (2), i.e., let it contain exactly k units
(ones). As the condition j <n in constraint (2) implies that the length of such combinations can-
not exceed (n-1), then we conclude that the length j of Ai lies between kand n-1, that is,
k<j<n-1.

Therefore, the number of zeros z in Aican be equal to z = 0,1,..., n-k-1, while the combinations
length equals j = k+z. The total number of distinct combinations of the same length containing k
ones and z zeros coincides with the number of combinations of z (zeros) among the total quantity of
(J - 1) elements, namely, P=c;,,, . The distinct combinations cannot evidently be prefixes of the

others having the same length, hence in this case, the desired property holds. As for the combina-
tions of different lengths, their values of z are also different. However, as the combinations in ques-
tion always have 1 at the extreme right position (i.e., a, = 1), and the total number of 1's is equal to
the same number Kk, it is clear that the longer combination, in its prefix part of the length equal to
the total length of the shorter combination, contains at least one 1 (unit) less than the shorter combi-
nation. Therefore, the prefix property is valid for all coding combinations satisfying conditions (2).
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Now consider the coding combinations satisfying (3). As the constraint n-k=j-q, clearly implies
that the total number of zeros in these combinations is constant and equal to n-k, then the combina-
tion's generation process stops when the last, the (n-k) -th zero appears at the right end position (i.e.,
a, = 0). The number of zeros (n-k) summed with the number ¢, = 0,1, ...,k-1 of 1's defines the com-
bination's total length as j=n-k+q,. Therefore, the number of distinct combinations with qo units and
(n-k) zeros (including the zero in the right end position) coincides with the number of all possible

combinations of o elements among the total of (j-1) positions, thatis, P=C, ., , . Again, the pre-

fix property for the combinations of the same length is evident. As for the combinations of the con-
sidered subclass having different length values, they also have different numbers of 0's. Consider
two such coding combinations of length values equal to p and g, respectively, with, say, p < g. The
shorter combination with the length p, which could be a prefix of the longer one, contains exactly
(n-k) zeros, the same as the longer combination has. However, the right end position of the longer
combination is occupied by zero, hence the number of zeros in the longer combination's prefix of
length p cannot exceed (n-k-1), which clearly excludes the possibility for the shorter coding combi-
nation to be the prefix of the longer one.

Finally, it is straightforward that no coding combination satisfying (2) can be the prefix of a
combination satisfying (3), and vice versa. This is due to the fact that the maximum number of 1's
in any combination of the latter class is strictly less than that in every combination of the former
class. Therefore, no combination of class (2) can be a prefix of a combination of class (3). In an
analogous manner, it is easy to see that the maximum possible number of zeros in an arbitrary cod-
ing combination of subset (2) is strictly less than that in any combination of class (3), hence, no
combination of subclass (3) can form a prefix of a combination from (2). Therefore, the prefix
property is evidently valid for the whole set of combinations satisfying (2) or (3), which completes
the proof of the theorem.

To show that the binomial system is well-defined, that is, two distinct coding combinations can-
not be equivalent to the same numerical value, we prove the following result (again, see [12]).

Theorem 3.2. [12] The k-binomial system with n registers (where k < n) is well-defined.

Proof. The previous result (Theorem 3.1 with the prefix property) implies that any two distinct
coding combinations have different digits (0 and 1) at least in one of the registers (counted from left
to right). The digits in the registers (if any) preceding the first such register are common for both
combinations, whereas the remaining (succeeding) part is called the proper part of each combina-
tion in this pair. If we prove that the proper parts of these two coding combinations cannot represent
the same number, the binomial system is well-defined. Consider the proper parts of two coding
combinations (without affecting generality, assume that the combinations have no coinciding pre-
ceding parts):

Aw = (@, ..., ag) and As = (bg, ..., bo);
where
a,=0;bs=1; 0<a,<n-1;0 <w;s <P-1;and w#s.

It is not difficult to demonstrate (see the decription of the algorithm generating non-uniform bino-
mial numbers in Section 4) that if in the coding combination A, all the digits to the right from a_
were 1's (i.e., an =1 form =0, 1, ..., a -1), whereas in A, vice versa, all the entries to the right
from by were zero, that is, by =0 fort =0, 1;... , p-1, then the distance

between the numbers QA,, and QA represented by the combinations A,, and As, respectively, would
be the minimum possible one. Now we establish that this minimum distance is not zero. Indeed, by
definition (1) and by the above assumptions, one has:

QA,=0-Cory, +1-Corly, y +1-Crftly oo 1 oGl 00,

and

_ k=0 k=011 k=011 kK=Qp.q 1
QA =L Gy +0-CL +0-CL i 40 CL
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Now since
a
k- a+l ™ i — k— a+
QAm = Z(:n—qu:ij+I - Cn—i:a -1
i=1
and hence
_ k_q -+ _ k_qa+ —
QA =C, )\ =Co i, =QA, +1,

the latter relationships make it possible to conclude that QA,, # OA4s and thus the minimum distance
between them is 1, which completes the proof.

Theorems 3.1 and 3.2 have the following important corollary, which proves the compactness of
the binomial numeral systems.

Corollary 3.1. The k-binomial system with n registers (k < n) is compact, that is, its range is
complete and covers all the integers between 0 and (C* —1).

Proof. According to formula (1), the maximal number represented in the k-binomial system with
n registers is as follows:

QA =1.C,V +1.Co ' +---+1.Cm =Cf - 1.
The minimal represented value is zero, hence the total number of the integers between the lower
and upper bounds of the range is C*. Meanwhile, it is not difficult to establish that the total number
of coding combinations constructed by formula (1) and ending with 1 (i.e. satisfying (2)) is equal to

n—k-1 .
N, = ZC:—_;—_il_l = C:—_lk_l = C:—1 .
i=0
Similarly, it can be proved that the total number of combinations generated by (1) and ending

with 0, i.e. with condition (3), is:
k-1 )
N,=>Ci3i=C7.
i=0
Therefore, the total number of distinct coding combinations in the k-binomial system equals

N=N,+N,=C* +C=CFK.

By Theorem 3.2, the correspondence between the coding combinations and the represented inte-
gers is one-to-one, and the compactness of the k-binomial system with n registers is proved.
Remark 3.1. It is straightforward that for the k-binomial calculus system with n registers, the

range parameter P is equal to C¥.

4 Algorithms Generating Binomial Combinations

Table 4.1 contains the binomial combinations and their quantitative equivalents for the
k-binomial system with n registers, where n = 6 and k = 4.

They are generated by the following algorithm:

Step 1. An initial combination Ag consisting of (n-k) zeros is composed and referred to as a key-
word.

Step 2. The digit 1 is put into the right end register, and zero is added to the right side of it.

Step 3. Step 2 is repeated while the number of 1's in the coding word is less than k-1. If the
number of 1's is equal to k-1, then go to Step 4.

Step 4. If the right end position contains zero, we replace it with 1. Go to Step 5.

Step 5. Check the number of 1's in the coding combination: if it equals k but the 1's do not occu-
py the first k registers counted from left to right, go to Step 6. Otherwise, i.e. if the 1's occupy the
first k registers counted from left to right, then STOP: all the combination have been generated.
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Table 4.1 Binomial coding combinations of non-constant length (non-uniform code)

Bivr\llc(;rrrgal Its quantitative equivalent
00 0C! +0C; =0

010 0C; +1C; +0C; =1

0110 0C! +1C; +1CJ +0C} =2

01110 0C! +1C; +1C} +1C2 +0C; =3
01111 0C! +1C; +1CJ +1C2 +1C, =4
100 1C? +1C; +0C? =5

1010 1C; +0C; +1C? +0C; =6

10110 1C! +0C; +1C3J +1C2 +0C| =7
10111 1C? +0C; +1CJ +1C> +1C; =8
1100 1C; +1C; +0CZ +0C; =9

11010 1C¢ +1C2 +0CZ +1C? +0C; =10
11011 1C¢ +1C; +0CZ +1C2 +1C; =11
11100 1C +1C? +1CZ +0C; +0C; =12
11101 1C? +1C} +1C2 +0C; +1C; =13
1111 1C¢ +1C; +1C2 +1C; =14

Step 6. Update the keyword Ag by putting 1 as a prefix before the beginning of the keyword (i.e.,

its left end). If the total number of 1's in the keyword is less than k, go to Step 2.

The binomial systems find various important applications, in which the following useful features
are exploited: (i) the binomial systems are noise-proof in the information transmission, processing,
and storage; (ii) they are able to search, generate and numerate coding combinations with a constant
weight; (iii) they can be used to construct noise-proof digital devices. To detect errors with the aid
of binomial coding combinations, they should be completed with zeros to obtain uniform (n - 1)-
digital binomial coding words given in Table 4.2.

Table 4.2 Binomial coding combinations of a constant length (uniform code)

NN Binomial word Binomial uniform word
0 00 00000
1 010 01000
2 0110 01100
3 01110 01110
4 01111 01111
5 100 10000
6 1010 10100
7 10110 10110
8 10111 10111
9 1100 11000
10 11010 11010
11 11011 11011
12 11100 11100
13 11101 11101
14 1111 11110
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The main tokens of errors in a binomial coding combination are either the number of 1's being
greater than k, or the number of zeros exceeding (n-k). The principal feature of the binomial noise-
proof code is its ability to detect errors while processing information. This feature allows one to ar-
range the throughout control in the information processing channels involving the digital devices.

4.1. Generation of binomial coding combinations with a constant weight

Next, Table 4.3 shows a transformation of binomial coding combinations to coding words with a
constant weight: this is done by adding (to the right end) either 1's if the binomial combination con-
tains (n-k) zeros, or adding zeros if the combination comprises k digits 1, until the combination's
length reaches n.

Table 4.3 Binomial coding combinations of a constant weight

NN Binomial word Binorr_lial constant
weight word
0 00 001111
1 010 010111
2 0110 011011
3 01110 011101
4 01111 011110
5 100 100111
6 1010 101011
7 10110 101101
8 10111 101110
9 1100 110011
10 11010 110101
11 11011 110110
12 11100 111001
13 11101 111010
14 1111 111100

Each binomial combination (column 2 of Table 4.3) has the corresponding combination with the
constant weight (column 3 of Table 4.3), hence the former is a compressed image of the latter. If
one needs to label a combination with the constant weight by some traditional numeral system
number (e.g., decimals of column 1 in Table 4.3), formula (1) has to be used. In the latter case, a
compression of binomial numbers is completed.

Algorithms of search and generation of binomial combinations and those with constant weights
can be also found in [14]. Now we describe one of modifications of such algorithms and prove its
efficiency as follows. This method is based upon the fact that the range of binomial numbers of
length n and with parameter k (k < n) coincides with the range of the constant weight coding com-
binations with k units among n registers. Therefore, the formal description of the algorithm is as
follows:

Step 1. Select an arbitrary non-uniform binomial coding combination.

Step 2. If the coding combination ends with the digit 1, then put zeros into all registers up to the
right end (register n), which is considered as auxiliary. The thus obtained combination ending with
0 will be the combination with the constant weight.

Step 3. If the coding combination ends with the digit 0, then set units (ones) into all registers up
to the right end (register n, or the auxiliary register). The thus created combination ending with 1
will be the combination with the constant weight.

Step 4. Verify that the thus obtained combination is indeed with the constant weight by counting
the total number of ones (units). If this number is k then the combination is indeed a desired one.
Select another non-uniform binomial coding combination and go to Step 2. If all the non-uniform
binomial coding combinations have been already selected, then STOP: all the constant weight
combinations of this range have been generated.
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The above algorithm generates the complete range of the corresponding combinations of the
constant weight, which is confirmed by the following theorem.

Theorem 4.1. With the aid of the above algorithm, for every non-uniform binomial combination
of length n with parameter k (k < n), one obtains the unique corresponding coding combination
with (the constant) weight k and length n.

Proof. First, consider the case when the selected non-uniform binomial coding combination ends
with the unit (i.e., with digit 1). According to the definition of the non-uniform binomial coding
words, it implies that this combination has already had k units (digits 1). Making use of the above-
described algorithm (Step 2), we need only to add several zeros into the registers to the right from
the rightest 1 till the auxiliary register is filled, thus having obtained the combination with (the con-
stant) weight k. It is clear that two different non-uniform binomial coding words cannot generate
(with the aid of the above algorithm) the same constant weight combination: indeed, if otherwise, it
would imply that one (the shorter) of these non-uniform binomial coding words is the prefix of the
second (the longer) one, which would contradict Theorem 3.1.

Next, if the selected non-unifom binomial coding combination ends with 0, then, due to the de-
scription of the verified algorithm (see Step 3), we will insert 1's into all the registers to the right
from the rightest zero, including the auxiliary register. According to the definition of the non-
uniform binomial combination ending with zero, the total number of zeros in it is equal to (n-k);
therefore, the constructed new combination will contain n-(n-k)=k digits 1, i.e. it will have the
(constant) weight k. Repeating exactly the proof for the first case (Step 2) given above, we conclude
that different non-uniform binomial combinations ending with 0 will produce different combina-
tions of (the constant) weight k. Finally, two constant weight combinations produced by different
steps (Step 2 and Step 3) of the above algorithms cannot coincide due to the different digits in their
auxiliary registers (0 for Step 2 and 1 for Step 3). The proof is complete.

5 Conclusion

In this paper, we have described the error-detecting binomial numeral systems capable of trans-
mitting, processing and storing information. The systems can also generate and numerate combina-
torial configurations, like, for example, coding words with a constant weight, as well as composi-
tions, combinations with repetitions, etc. Moreover, the binomial systems can be applied to produce
efficient information compression and defense. The latter is the goal of our further research.
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Onuc Ta 3acTocyBaHHs 0iHOMiaJbHUX CHCTEM YHC/ICHHS.

AHoTanisi. Po3po0iiseTbess HOBUI BUJI MO3UIIIMHUX CUCTEM YHCIICHHS, 0 OTPUMANIU Ha3BY OiHOMIabHUX, SIKi YTBOPIOIOTH ITiIKIIAC
y3araibHeHUX Mo3umiitHux cucteM uncieHHs (YIICY). Bonn MaroTh IIMPOKY 001aCcTh 3aCTOCYBaHHS MPH nepeaadi, o6pooii ta 36e-
piranHi iH$opMamii 3aBIIKH 3a0€3MeYSHHIO MOXKIIMBOCTI BUSBJICHHS TIOMIJIOK 1 TeHEpYBaHHS Pi3HMX KOMOIHATOPHHUX KOHQITyparii.
Hagseneni anroputmu ¢popmyBaHHs OiHOMiaIbHUX KOJOBUX CIiB (pIBHOMIPHHUX 1 HEPIBHOMIPHHX) Ta OOYIOBH Ha IIiii OCHOBI PiBHO-
Ba)XKHUX KOJOBHX KOMOiHALiH 3 MOCTiiHOIO Baroto. [Toka3zaHo KOPEKTHICTH Li€l MPOLETyPH.

Ko4oBi ci1oBa: no3uiiifHi cucTeMy YUCICHHS, KOAYBaHHS, KOMOiHaTOprKa, OiHOMIialbHi YUCTa.

Penenzent: Anexcannp Kysueros, n.1.H., npod., XapbKkoBCKMH HalMOHANBHBIH yHHBepcuteT uMenn B.H. Kapasuna, Xapbkos,
Vxpauna. E-mail: kuznetsov@karazin.ua

[ocrynumna: anpens 2016.

ABTOpBI:

Aunekceit bopucenko, 1.7.H., mpo¢., CyMckoii rocyaapcrBennbiii yauBepcuter. Cymsl, Ykpauna. E-mail: electron@sumdu.edu.ua
BsiuecnaB Kanamunkos, 1.¢.-M.H., npod., 1enmapTaMeHT CHCTeM M IPOMBIIUICHHOTO IPOW3BOJCTBAa TEXHONIOTHYECKOro YHHUBEp-
curera MoHTteppes, MonTteppeii, Mekcuka. E-mail: kalash@itesm.mx

Haranpsa Kanamankosa, o1, K.T.H., aBTOHOMHBI yHUBepcuteT HysBo-Jleon, Can Huxomac ne Jloc I"'apca, MonTeppeii, Mekcuka.
E-mail: nkalash@einstein.fcfm.uanl.mx

Onucanue ¥ NpuMeHeHHe OUHOMHUANIBHBIX CHCTEM CUMCJIEHHUS.

AnHoTanms. Pa3pabarbiBacTCss HOBBIM BHJI MO3MIMOHHBIX CHCTEM CUHCIICHUS, HAa3bIBAEMBIX OHHOMHAIBLHBIMH, KOTOPBIA 00pasyeT
Ho/K1acc 0000IeHHBIX MO3UIHOHHBIX crucTteM cuncienust (OIIC). OHu UMEIOT MIMPOKYI0 00JacTh NMPUMEHEHUs NIpH Nepenade, 00-
paboTke 1 xpaHeHUM HMH(opMarMu Onaronapsi 0OECIEUCHUIO BOZMOXHOCTH OOHapyXeHHs OLIMOOK M FeHEePUPOBAHUS PA3IUYHBIX
KOMOHHATOPHBIX KoMOMHAIMi. [IpeacTaBieHbl anropuT™Mbl GOPMHUPOBAHUS OMHOMHAIBHBIX KOJOBBIX CIIOB (PaBHOMEPHBIX U HEpaB-
HOMEPHBIX) U TIOCTPOCHUS Ha UX OCHOBE PAaBHOBECHBIX KOJIOBBIX KOMOMHAIMIA C MMOCTOSTHHBIM BecoM. [loka3aHa KOPPEKTHOCTh 3TOU
MIPOTICYPHL.

KiroueBble ¢j10Ba: TO3HITHOHHBIC CHCTEMBI CUYHCIICHUS, KOAUPOBAHHUE, KOM6I/IHaT0pI/IKa, OMHOMHAJIBHBIE YHCIIA.
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