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1 Introduction

The keys management tools are important components of cryptography systems, which charac-
teristics and properties on, depend their resistance and the level of security in whole. At the differ-
ent stages of key management it is needed to generate key data, key information and different op-
tions, having quite complex properties requirements. In practice, depending on the requirements,
two methods are applied for key generation, based on random and pseudorandom sequences (PRS),
which are brought about in the form of corresponding cryptographic tools.

As main demands to such generators are set out requirements of direct and reverse unpredictabil-
ity (structural security), irreversibility concerning the used key, distinguishing of sequences, promp-
titude and repetition period difficulties for pseudorandom sequences are set out [1]. Wherein the
level of key generators warranty depends to a considerable extent on the key source entropy, which
should be from 128 to 512 bits for now.

Nowadays was developed a range of methods and PRS generation means on its basis. Their pe-
culiarity is that they are built, well researched and applied as a rule for alphabet with m =2 basis.
At the same time a range of updates needs PRS generation means that can be resumed in space and
time with acceptable complexity and random basis beginning with m= 2. The studies have shown
that this problem can be solved through the transformations known as multimodulo.

Some regulations of multimodulo transformations for prime field GF(p) are published in the

work [2]. PRS generation on basis of multimodulo transformation in Galois field GF(p) is offered
in the work [2]. Such a method really allows generating PRS with random alphabet m, specified pe-
riod of repetition and certain but not researched enough distinguishing properties. The elaboration
of PRS generation method with certain alphabet of m symbols on basis of multimodulo transfor-
mations using Galois field GF(p) elements, besides results of irreversibility and distinguishing
properties research are published in the work [3]. The work [3] consists of definition of the condi-
tions of pseudorandom sequences existence with equally possible letter distribution of m alphabet in
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the class of multimodulo transformations and valuating of lower limit of irreversibility.

But in the mentioned works [2,3] a range of theoretical grounds of properties doesn’t have gen-
eralized character of unified theory, in addition to that there wasn't undertaken enough field re-
search, which would verify theoretical results as regard to distinguishing, irreversibility, unpredict-
ability, repetition period and complexity. The results of studies in works [2,3] also have constrained
character, as they were undertaken only for multimodulo transformations over prime Galois field

GF(p).

The aim of the work is development of theoretical basis of PRS generation method with arbi-
trary alphabet of m symbols based on multimodulo transformations using elements of arbitrary Gal-
ois field, which at the theoretical stage would allow providing properties of distinguishing, irrevers-
ibility, unpredictability, repletion period and complexity for the finite field GF(p”) [1,4-6]. As a
regard to this method it is needed to undertake a range of theoretical and field studies concerning
definition of necessary and sufficient conditions of providing of predetermined repetition period,
alphabet basis, probability of appearance of alphabet symbols at repetition period, features of irre-
versibility, unpredictability and distinguishing considering guarantees [4-7].

2 Method of multimodulo transformation in the finite field

Let us consider PRS generation method with certain symbols alphabet, for example m, on based
on arbitrary Galois field GF(p”). For general case we will think that there is made up k transfor-

mations of units of Galois field GF(p”) extension, corresponding to modules
(£ (X), £,(X)), (£,(X), F,(X)),....(f_,(X), f,(X)) and the last module m. General options which
are enough to generate elements a, of GF(p”) field is tuple (f(X), p,n,ej), where f(X) — irre-
ducible polynomial of degree n over finite field GF(p), and @, — primary element chosen from

magnitude {6} of division o(p" —1), where o ) — Euler’s function [8]. In such a case generation
of field elements is carried out according to the rule:

a, =(0,) (mod(f (), p,n)). (1)

It is shown [9], that if the above-said requirements to tuple (f(X ) p, n,Hj) have been fulfilled,

(1) would generate finite Galois field with repetition period p" —1. Let us denote that above-said is

true for p=2,35,7 and subsequent prime numbers. When p =2, there will be extension of Galois
field F(2).

In the following, let (f,(X), p,,n,) be tuple of general options, for example of polynomials

(among them irreducible) f (X),s =(1, k —1), and n, — their degrees, from this point on we need

irreducibility of polynomials to provide their coprimality when necessary [9].
Also let degrees of polynomials (among them irreducible) n, fulfill requirements:

n>n,, N,>n, ..., N_,>n, 4, (2)
wherein basis of m alphabet is any number, besides ineqautions are fulfilled:
pt >>p™, p >>p™,.,pT? >>pht, p™t >>m. 3)

The statement 1 is fair.

Statement 1.

Deterministic PRS generator, which is functioning according to algorithm of multimodulo trans-
formations:

b, =((6,) '(mod(f (X), p,n), (£,(X), Py, ) (£(X), P11 ). ... @)

(B (X P ) (£, (X ) m),

where (fS(X), ps,ns) — tuple of general options, m — certain integer, k — degree of multi modulari-
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ty, p,, —number (not necessarily prime), m — positive integer, provides generation of PRS (sym-

bols) with repetition period p" —1, equally possible with a certain basis of m alphabet, under condi-
tion that:

1) (1)—(3) requirements are fulfilled,;

2) modules (couple of polynomials)

(F O 10O (B(X), B0 (Fio (X)), £y (X)) 5)

are coprime and tuple (f,(x),m) is undefined.
In (4) (f,,(x),m) means that module m is given as a polynomial.

Under fulfillment of (4)—(5) conditions PRS (symbols) generation is provided with following
properties and characteristics:
— arbitrary alphabet m basis;

— p" —1 repetition period,;

— symbols are generated equally possible or “almost” equally possible;
— by ensemble of isomorphism’s (p(p" —1).

The statement 2 is fair too.

Statement 2.

Deterministic PRS generator, which is functioning according to algorithm of multimodulo trans-
formations:

b, = ((91 )K0+i (mOd(f (X )! P, n)’(fl(x ), P1s nl)’(fZ(X ), P2, nz)f--- (6)

Y (fk—l(x )v Py nkl)v[ f (X )v FHJ] ,

where K, +1i — current generator key, wherein K, is primary key and i is session key, which is

noninvertible with complexity not less than O(n) [10].

Let us further observe isolated case of statements 1 and 2 for three modulo transformation, when
elements of Galois field extension are also generated according to (1), but (2)—(6) take the form of

(7)—(10):

n,>m. (7)

p™ >>p". (8)

b, = (&-)‘[mod(f(x), p).(f:(X), pl,nl),[fm(x)ﬁ} - ©)

b, =| (6, )K"”[mod(f(x). p). (£,(X), |01,nl),(fm(><),m - (10)

For conditions (7)—(10) let us present statement 1 for three modulo transformation in form of
theorem 1.

Theorem 1. Deterministic PRS generator, which is functioning according to algorithm of multi-
modulo transformations on the basis (1) according to the rules:

b, = (@)'[mod(f(x), p.n).(f,(X), pl.nl){fm(x), EB (11)
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b, = (6,)"| mod(f (x), p,n).(£,(x), pl,nl),[fm(x)ﬁﬂ , (12)

under fulfillment of conditions (2)—(8) provides generation of PRS (symbols) numbers with unde-
fined basis of m alphabet, with repetition period p" —1, with equally possible appearance of sym-

bols at the repetition period p" —1 and with ensemble of isomorphism (o(p" —1).

Theorem 1 for three modulo transformation proving.
Regarding the last module m it can take arbitrary value and it will be presented as polynomial.

Let us mark that f(x) and f,(x) in (11) are irreducible polynomials, which can be presented over
the field F(2), i.e. as polynomial of n degree over F(2).

In regard to repetition period, since {6,} — primary elements, for providing maximum period
p" —1 it is necessary and enough for f(x) to be irreducible over the field GF(p”) [9]. Since f(x)
is irreducible over the field GF(p”), according to (1) elements of Galois field are generated with

period p"—1 and each element appears only one time.

Let us define m-symbols (finite alphabet) appearance equiprobability degree, i.e. define condi-
tions, under which symbols of m alphabet appear equally possible. Symbols will be determined
with the help of polynomials f_(x) not higher than n_ degree.

Let us present all elements of field GF(p”) as positive integers from ¢° =1 to p" —1.
Then let us sort numbers 1+ p" —1 according to the ascending order

1,2, 3., [f(x), [F(x)+1,..., 2F(x), 2 F(x)+L..., 3F(x), JF(x|+L...  (13)

P =1- (%), p" = F(X),..., p" 1,
where |f(x) is element value of field f(x).

Let us bring the row (13) according to module | fl(x)| , as a result we will get:
1,2,3,...,[f(x}10,123,...,|f(x)-L, 0,1, 2,3,... f,(x)L 0,1...V, (14)

where 0<V <|f,(x)]-1.
Let us present the array (14) as:

1 2

123,....|f.(x)-10; 123,...,|f,(x)-10:... (15)

z-1

e
02,30 [R(x)-10; 1,2, 3., V,

where V <|f,(x) 1.

On the whole there will be sequence elements ((z —l)| fl(x]+V in the PRS (15). Besides in the
last unit there will be no sequence elements beginning with (V +1) to |f1(x)| —1 and 0.

Farther on symbols 1, 2, 3,...,V appear z timesV +1V +2,...,|f,(x]-10 - (z-1) times,

Probabilities of elements 1, 2, 3,..., V appearance will be correspondingly:
z

n

pr-1’

R, = (16)

and V+1V +2,...,|f,(x]-10
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z-1
p"-1
Thus symbols 1,2,3, ...,|f1(x) —1,0 appear almost with almost equal probability, i.e. equally pos-

R, = (17)

sible at the period p" —1 as a result of conversion according to the second |f1(x)| module.
Let us observe the stage of conversion according to the third module, which is according to the
theorem 1, can be undefined number |f, (x).

While analyzing for frequency let us define an array 0,1,2,3, ...,|f1(x] —las

123,...,|f,(x). (18)
We will bring (18) together according to module |f, (x)] and get the row:
123,...|f,(x)-10123,...,|f, (x| -10123,...,|f,(x]-10123,...,V, (19)

where 0<V <|f, (x)-1.

Analyzing in (19) 0123,...,|f,(x)—1 symbols appearance probability we will get the same

assed values as in (16) and (17).
It is also should be pointed out that in (16) V symbols appearance unequiprobability is no more
than 1 in number of appearance of symbols 0,1,2,3,...,V, and also as an assessed value of proba-

bility for each symbol Ap =

p"-1
Thus theorem 1 for three modulo transformation is proved. Also it should be mentioned that
above-described theorem 1 proving can be applied to k-modulo transformation, of course under

condition when couples of polynomials (f(X), f,(X)),(f,(X), f,(X))....(f, ,(X), f, ,(X)) are
coprime and tuple f_(X),m is undefined, module m value is meant.

On the whole the procedure of PRS generation based on multimodulo transformation can be
brought to the following.
1. To set or generate system options — general options tuples (fS(X), P, ns) according to the re-

quirement of statement 1.
2. To set or install secret key of generator kK, k =1+ p" —1.

3. Determine initial value of generator % using the rule:
a, = 0" (mod(f (x).n)).
where (f (x),n) — basic transformation module.
4. Determine element a, of generator using the rule:
8 = ai_lé’(mod(f (x), n)): R(f(x),nl)(aoei)’
where 1>1 — number of PRS generating element, a,, — (i —1) element of an array over a field of

extension p".
5. Determine element b, of PRSG using the rule:

by =& (mod(f,(x),ny )) = Rg (@) = R(fl(x),nl)(R(f (x),n)(aoei ).
where 1< (f,(x),n)<(f (x)n ).
6. Determine element ¢, of PRSG using the rule:

& = Ry Rty a0m )+ Recgirm Regmy (@6 ))- S 0 < < (p),
where i>1 — the number of PRS generating element, (f,(x),n,),...,(f,(x),n,) — intermediate mod-
ules.
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7. If necessary determine hash-value number i from b, and accept it as random word number i,
I.e.
Y = H(bi)'
The scheme of algorithm (variant) that implements above-described method of determined ran-
dom number generator (DRNG) is illustrated on fig. 1.

mll mzl
_k, 0*mod(f.().m) 12| aiiemod(fi0),my) L3l amod(,(x),my) b

m3,...,mnl l

0 | b(mod(,0.m. .. 0me) |
QT H(bs)
A Y
pseudorandom pseudorandom
numbers numbers

Fig.1 — The scheme of algorithm of determined random sequences generation in the finite
field of p" —1 division by method of multimodulo transformation

3 Properties of PRS of multimodulo transformations

Let us farther observe the method of PRS generation with certain alphabet of symbols, e.g. m,
based on multimodulo transformations in finite Galois field GF(p“), n>1. It is considered that k

transformations of Galois field GF(p“) extension elements are carried out according to modules
(F(X), £,(X)) (£,(X), £,(X)),...,(f_,(X), f, (X)) and the last module m . General options is tuple
(f(x) p,n,Hj), where f(X) — irreducible polynomial of n degree over field GF(p), and 6, —

primary element chosen from magnitude {0} of division (p(p" —1).

We will also observe special case of theorem 1 for three modulo transformation. In this case
Galois field extension elements are also generated according to (1). And in such a case (2)—(6) look
like:

n>mip">>p";
b, = (HJ-)KO+i mOd(f(X)’ p)’(fl(x)’ plinl)’[fm(x)';ﬁJ] J

where K, +1 is current generator key, K, +1i is primary key and i is session key as above,

Complexity assessment of PRS generator inversion.
Let us make complexity assessment of discrete logging for three modulo and multimodulo trans-
formations.

In a case of finite Galois field GF(p) we have:

b, =((6, " (mod(P), (P,), () (20)
where X =K, +i belongs to definition, under condition, that some array of symbols b; is known,
primary element &; and tuple of options (P, £;,m).

While using «brute force» attack can be applied the following main methods: keys search, table
attack and attack with dictionary [11,12].

While applying «brute force» attack it is considered that the length of key k is not more than the
one of generated PRS and counterfeiter while searching key X , make an attempt to get a value

10
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b =b,. (21)

Under condition fulfillment (21) generator key will be determined.
For assessment of possibility of applying «brute force» attack can be used such data as N, —
number of keys, safe time t;, P, — probability of successful cryptanalysis, etc [11,12,13]. Value t;

can be determined according to the formula [13]:

g:%fa,
where vy — capacity of cryptanalytic system, K =3.15-10" — the number of seconds in a year.
Table attack and attack with dictionary based on using mathematical tool called «birthday prob-

lem»: method of collisions creation [14]. For this method options: collisions probability P, , crypt-

analyst’s attempts number k and exhaustive set of possible output values n are bounded with each
other with parametric equation [14,15]:
1— Pk _ e—(k(k—l))/Zn
or of closed form :
k?-k+2nIn(l-R)=0. (22)

Correlation (22) allows assessing a number of experiments needed to carry out to implement col-
lision with applying mathematical tool «birthday problemp».

In some cases couple «generator key — PRS output unit» can be received with the help of a dic-
tionary. In such a case couples «generator key — PRS output unit» are generated or collected in the
special dictionary. And key search is implemented by method of PRS embedding searching that
corresponds to generator output according to the dictionary.

Let us carry out an analysis of possibilities and conditions of implementation of attack like

«brute force», which is carried out in regard to (20) with an aim of field (Hj )X(mod p) element de-

termining. In a case of (20) for achieving (21) let us observe model of transformation of m-ary
symbol into p-ary one.

Let the lengths of symbols in binary representation be 1,1, and |, correspondingly to modules
p, pl and m. Let us define the possibility of guessing through b, symbol of p-ary symbol, in es-
sence definition of "',

Theorem 2. For conditions (20) possibility of correct (guessing) transformation of P.; m-ary b,
symbol into p-ary HjKO” is determined with correlation:

P, =2"", (23)

where | and |, —binary representation of lengths of symbols p and m.

Let us observe theorem 2 proving. When the length of m-ary b, symbol in binary representation
is |, the number of his possible modes is defined as 2" . During transformation according to mod-
ule p; the length of symbol in binary representation will be |, and the number of possible modes

will be defined as 2'n Where degree of alphabet extension can be assessed as
oln (.
ILIZ = 2|m = 2 .
During transformation according to module p the length of symbol in binary representation will
be 1., and the number of possible modes will be defined as 2" Degree of alphabet extension dur-
ing switching to transformation according to p will be:

' -l
w=2, =2""

11
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Correspondingly the possibility of guessing an alphabet symbol according to module p, is de-

fined as
P =1 =o', 24
n @)
The possibility of guessing an alphabet symbol according to module p is defined as
P =1 —2onb
P %’1 . (25)

Thus theorem is proved. The general possibility of guessing an alphabet P, symbol according to
module p during switching from m-ary source to p-ary will be defined with multiplication of
events p, (24) and P, (25), i.e:

P, =P, P, =2""n. 2 = ol (26)
Using (26) the one can define complexity |, of one alphabet symbol according to module p
during switching from m -ary source to p-ary as

|G Z}l/;) =2|p_|m.

Thus while applying of generator scheme without hashing the complexity |, of key reconstruc-
tion X =K, +1 is determined with a formula:

lg =g -1 =2°7 -exp(gln(p)” In In(p)(l‘”)). (27)
For a case of applying of generator schemes with guessing a field element, discrete logarithm so-
lution and hashing the complexity .., of key reconstruction X =K, +1i is determined with a for-

mula;

len =l " lo 1w = 2Ip7|m -exp(gln(p)“ In In(p)(liu))' 2% ' (28)
It is necessary to point out that formulae (27) and (28) received for a case, when PRS is produced
by mean of applying only one m -ary symbol. If for producing of PRS x of m-ary symbols is used

and value of i is getting bigger according to a known rule, then (27) and (28) can be applied to as-
sessment of cryptographic resistibility of offered PRS generator. If i is getting bigger according to
an unknown rule, then besides it is necessary to solve a task of determination of rule of its changing.
But as we consider that cryptanalyst knows the rule of i changing, (27) and (28) are recommended
for assessment of PRS generators inversion complexity of a type that is observed. In the Table 1
are given assessments of PRS generator inversion complexity according to (27) and (28). Data
analysis of Table 1 allows making a conclusion that PRS generator inversion complexity has an ex-
ponential character and it is bigger than complexity of «brutal force» method.

Table 1 — Complexity of generator inversion

P,P,m
Method
2256’ 2128’ 28 2256’ 2128’ 264 2512, 2256, 28 21024, 2512, 2256 22048, 21024, 2512
Ikr 5.0543-10% [ 7.0143-10°% | 2.1618:10"* | 1.4827-10®° | 1.1867-10°®
n
160 | 6.1103-10™2 | 8.4798:10°%° | 2.6135-10'*® | 1.7925-10%° | 1.4346:10°%
Ixrn | 256 | 1.7199-10™%° | 2.3868-10™" | 7.3562:10°° | 5.0453-10%" | 4.0381:10°®
384 | 3.1726:10"" | 4.4029-10™° | 1.3570-10°° [9.3071-10°° | 7.4490-10°"
512 | 5.8524-10"° | 8.1219-10™ | 2.5031-10°" [ 1.7168:10%° | 1.3741-10°"

12
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Let us observe one more way to solve a task of PRS generator inversion of the form (20), which
is based on residue classes. For this aim let us give (20) of the following form:

b, =©®* (mod P)(mod B,)(mod m),

©*(mod PYmod P)=q,-m+b, 0<q, -m+b <P, (29)
©%(mod P)=1I,-P +q,-m+b, 0<I,-P+qg,-m+b <P,

©®%(mod P)=1,-P,+q,-m+b(mod P).

Direct analysis (29) is showing that x;,l,,q; are unknown and should be determined. Now let us
take into account that rule of changing of X; is known. On the basis of (29) it is possible to make
equation system of the following form:

©*(mod P)=1,-P,+q,-m+b(mod P),
©"(mod P) =1,

i+1

P, +0,,-m-+b,,(mod P), (30)

©**(mod P)=1,,,
The equation system (29) analysis is showing that each new equation in the system adds 2 varia-
bles, but there exists linear dependence between x. and X, etc. On the whole in a system of k di-

P, + 0,y -m+by,, (mod P)

vision there will be 2k +1 variables, even if we consider that only x; is variable.

Thus an equation system of the form of (30) with 2k +1 variables has no solution. Also it
should be pointed out that by analogy with three modulo transformation, during multimodulo trans-
formation every new additional modulo transformation adds two variables.

Thus properties of inconvertibility of PRS generator in essence are connected with solving of
discrete logarithm equations, e.g. for three modulo transformations of the form of (6) as to i and
Ky +1.

For a successful cryptanalysis of generator, firstly, it is needed to solve a discrete logarithm
equation and find element — operand. First of all in this case operand of correspondent element of
A field should be found, and then a discrete logarithm equation with complexity I, should be
solved.

For condition (20) a possibility of correct transformation (of guessing) of P., of m-ary b, sym-

bol into p -ary ;" is determined with correlation (23).
The equation system analysis (29) is showing, that every new equation in the system adds 2 vari-
ables; in addition to this there exists linear dependence between x; and X, etc. In a system of K -

division there will be 2k +1 variables. That is why an equation system of the form of (30) with
2k +1 variables has no solution.

4 Investigation of distinguishing properties of PRS generated on the basis
of multimodulo transformations

Applying of PRS on the basis of multimodulo transformations in the finite fields GF(p) and

GF(p") is possible only under condition of providing good distinguishing properties. Where by

distinguishing is meant degree of resembling of PRS to physically random sequence. The main re-
quirements to such sequences from the point of distinguishing are given in [4,6,7].
Below are given the results of assessments in regard to properties of distinguishing of PRS gen-

eration based on multimodulo transformations in finite Galois fields GF(p) and GF(p"), which
output values are hashed.

13



CS&CS, Issue 1(1) 2016

The four types of PRSG are considered. The first one is PRSG in the field GF(p) without hash-
ing; the second one is PRSG in GF(p) with hashing, the third one is PRSG in the field GF(p")
without hashing, the fourth one is PRSG in GF(p") with hashing according to [13,14].

4.1 PRSG with multimodulo transformation in the field GF(p)

Data used during PRSG implementation is given below. On the whole there were implemented
10 PRSGs with different output options (Table 2).

PRSG options without hashing.

The value of the first module p with the size of 1024 bytes was chosen from ISO/IEC 9796-3
standard [15], besides it was the same for all implementations:
p=fffffffffffffco0fdaa22168c234c4c6628b80dclcd129024e088a67cc74020bbea63b139b22514a0
8798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245e4850576625e7ec6f44c42e9
a637ed6b0bff5ch6f406h7edee386bfh5a899fabae9f24117¢c4b1fe649286651ece65381Ffffffffffffffff.

The value of the second module p, (160 bytes) was also chosen from ISO/IEC 9796-3 standard

[15], the same for all implementations:
p, =ffd5d55fa9934410d3eb8bc04648779f13174945.

The value of the third module was chosen the same for all implementations, i.e. the alphabet ba-
sism=2.

The value of primary element 8 (1023 bytes) was chosen from ISO/IEC 9796-3 standard [15],
the same for all implementations:

O =Tfffffffffffffffe487ed5110b4611a62633145c06e0e68948127044533e63a0105df531d89cd912

8a5043cc71a026ef7ca8cd9e69d218d98158536f92f8alba7f09ab6h6a8el22f242dabb312f3f637a2
62174d31bfeb585ffae5h7a035bf6f71c35fdad44cfd2d74f9208be258ff324943328f67329cOfffffffffff
fFfff.

The value of generator k key for all implementations was generated at random under condition
that k =1+ p—1. The values of PRSG options are given in the table 2.

Table 2 — PRSG options in GF(p) used during testing

Size Size Size
implementation b ’ m ’
Ytes | pytes bytes
1 1024 160 2 1023 | e6894898f9976bad42761f201cc2ff016
2 1024 160 2 1023 | 84b1c668a99815a269eb15fc87315efc
3 1024 160 2 1023 | f4bf155fa99f25a259ebf5f1f73f5efl
4 1024 160 2 1023 | 44b4554a541473419942eb45a2595e41
5-SHA-1 (3) 1024 160 - 1023 | f4bf155fa99f25a259ebf5f1f73f5efl
6-SHA-1 (4) 1024 160 — 1023 | 44b4554a541473419942eb45a2595e41
7-SHA-256 (1) | 1024 160 — 1023 | e6894898f9976bad42761f201cc2ff016
8-SHA-384(1) 1024 160 - 1023 | e6894898f9976bad2761f201cc2ff016
9-SHA-384 (2) | 1024 160 — 1023 | 84b1c668a99815a269eb15fc87315efc
10-SHA-512 (1) | 1024 160 - 1023 | e6894898f9976bad42761f201cc2ff016
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The results of experimental research of theses generators are given in the tables 3 and 4.

4.2 PRSG with transformations in the field GF(p")

The research of such a PRSG was carried out without hashing. On the whole 5 PRSGs with dif-
ferent output options were implemented.
The value of the first module f,(x) was chosen from DSTU 4145 [16] the same for all imple-
mentations:
f,(x)=x43 1+x5+x3+x+1.
The value of the second module f,(x) was chosen from DSTU 4145 the same for all implemen-

tations:
f,(x)=x163+x7+x6+x3+x+1.

The value of the third module f,(x) was chosen from DSTU 4145 the same for all implementa-

tions:
f,(x)=28.

The value of primary element & was chosen from DSTU 4145 the same for all implementations:

0= X425 + x424 + x423 + x422 + x419 + x418 + x417 + x412 + x406 + x403 + x400 + x395 +
X394 + x393 + x392 + x390 + x389 + x387 + x385 + x382 + x381 + x380 + x375 + x371 + x370 +
X369 + x368 + X367 + X366 + x361 + x358 + X357 + x355 + x354 + x352 + x351 + x350 + x349 +
X348 + x347 + x346 + X345 + x343 + x339 + x338 + x333 + x332 + x331 + x330 + x328 + x325 +
X322 + x321 + x320 + x319 + x318 + x314 + x311 + x310 + x309 + x308 + x307 + x304 + x302 +
X299 + x298 + X297 + X294 + x293 + x291 + x288 + x280 + X277 + X276 + X274 + x271 + x270 +
X268 + X266 + X264 + x263 + x261 + x260 + x259 + x258 + x257 + x256 + X255 + x254 + x253 +
X252 + X251 + X248 + X247 + x243 + x239 + x238 + x236 + x235 + x231 + x230 + x228 + x225 +
X223 + X219 + x217 + x215 + x213 + X211 + x210 + x209 + x207 + x205 + x203 + x202 + x201 +
x199 + x198 + x196 + x195 + x194 + x193 + x191 + x188 + x186 + x185 + x184 + x182 + x180 +
X179 + x176 + x173 + x172 + x170 + X169 + X167 + x166 + x162 + x161 + x158 + x157 + x155 +
X153 + x152 + x151 + x149 + x147 + x146 + x142 + x140 + x137 + x136 + x134 + x133 + x131 +
x129 + x128 + x124 + x123 + x119 + x117 + x115 + x114 + x113 + x109 + x107 + x106 + x104 +
x103 + x102 + x97 + x96 + x92 + x89 + x87 + x86 + x83 + x81 + X78 + X75 + X72 + X69 + x68 +
X64 + x60 + X58 + x57 + x56 + X55 + x54 + x52 + x51 + x49 + x47 + x45 + x42 + x38 + x37 + x35
+ %32 +X31 +X30 + X26 + X25 + x22 + X115+ X14 + X11 + X9+ X7 + X6 + X5+ x4 + X + 1.

The value of generator k key was generated at random under condition that k =1+ p" —1.

1 -DRNG in GF(p”): k =x207 + x206 + x205 + x204 + x203 + x202 + x201 + x200 + x199 +
x198 + x197 + x196 + x195 + x194 + x193 + x192 + x187 + x186 + x185 + x183 + x182 + x181 +
X179 + X177 + x174 + x173 + x172 + x171 + x165 + x160 + x129 + x128 + x122 + x120 + x119 +
X117 + x116 + x115 + x114 + x113 + x112 + x111 + x109 + x104 + x101 + x98 + x82 + x81 + x80
+ X77 + X75 + X74 + X73 + X72 + X71 + X70 + X69 + X68 + X67 + X65 + X64 + X4 + X2 + 1;

2 — DRNG in GF(p”): k =OxFFFF OEEA7821 00000003 05bfal24 00072FFB 00000007
00000015;

3 — DRNG in GF(p”): k =0x151 1596FBBC 47F9B44C ADBC8541 9841BACD FF841632
001F589F OEEA7821 0034814F 05BFA124 02F846FB 07894ABC 05519584;

4 — DRNG inGF(p"): k=0x3CE 10490F6A 708FC26D FESC3D27 CAF94E69 0134D5BF
F988D8D2 BAAEAEDE 975936C6 6BAC536B 18AE2DC3 12CA4931 17DAA469 C640CAF3;

5 — the implementation 2 of DRNG in GF(p”) with hashing with the help of SHA-384.

The data of experimental research of theses generators are given in the tables 3 and 4.
For testing of developed PRSG was applied NIST STS method, recommended by the National
Institute of Standards and Technology USA [6]. NIST STS packet consists of 16 static tests. These
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tests are applied for checking of the hypothesis about randomness of binary arrays of undefined
length have generated by RSG or PRSG. Taking into consideration the results of all the tests the
decision about, whether array of zeros and units will be set at random or not, is made.

With application of NIST STS method was carried out a testing of pseudorandom sequences and
also properties comparison of these sequences with properties of PRS generator of pseudorandom
bytes BBS (test sample, recommended by NIST). The data about PRS tests pass according to the
rule 1 [6] is given in the table 3. And the data about BBS generator was taken for reference.

Table 3 — The results of PRS testing on distinguishing according to the rule 1

Generator Tests quantity, which passed | Tests quantity, which passed
more than 99% arrays more than 96% arrays
BBS 134 (70,8%) 189 (100%)
1-DRNG GF(p) 136 (71,95%) 189 (100%)
2 - DRNG GF(p) 124 (65,6%) 189 (100%)
3- DRNG GF(p) 140 (74,07%) 187 (98,94%)
4 - DRNG GF(p) 130 (68,78%) 187 (98,94%)
5- SHA-1 (3) 128 (67,72%) 189 (100%)
6 - SHA-1 (4) 129 (68,25%) 189 (100%)
7 - SHA-256 (1) 129 (68,25%) 189 (100%)
8 - SHA-384 (1) 143 (75,66%) 189 (100%)
9 - SHA-384 (2) 130 (68,78%) 188 (100%)
10 - SHA-512 (1) 122 (64,55%) 189 (100%)
1-DRNG GF(p”) 138 (73%) 189 (100%)
2 _ DRNG Gp(pn) 132 (69,84%) 187 (98,94%)
3 -DRNG Gp(pn) 126 (66,67%) 189 (100%)
4- DRNG Gp(pn) 134 (70,8%) 187 (98,94%)
5-SHA-384 2- DRNG GF(p") 139 (73,5%) 189 (100%)

In the table 4 is given the summary data about tests passes by generators according to the

rule 2 [6].

Table 4 — The results of PRS testing on distinguishing according to the rule 2

Generator

Tests quantity, in which
possibility value is
P<0,01

Tests quantity, in which
possibility value is
P <0,001

2

3

BBS

1-DRNG GF(p

(p)
2 - DRNG GF(p)
3-DRNG GF(p)
4 - DRNG GF(p)

5 - SHA-1 (3)

6 - SHA-1 (4)

7 - SHA-256 (1)

8 - SHA-380 (1)

9 - SHA-380 (2)

10 - SHA-512 (1)

NIOIRFRINININ O | W O

O|I0O|0|0|0|0O| O] O] O]l OO
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Continuation of Table 4

1 2 3
1-DRNG GF(p") 0 0
2 - DRNG GF(p") 4 0
3-DRNG GF(p") 2 0
4 - DRNG GF(p") 1 0
5-SHA-384 2- DRNG GF(p") 1 0

In the fig. 2 and 3 as examples are given phase portraits of distinguishing received with the ap-
plication of NIST STS [6] test method. Their analysis allows making a conclusion about high quali-
ty of distinguishing (randomness).

Generator 8-SHA-384 test results
The proportion passing

1 OO OO Ao~ OO—— OO
0,995
0,99 +
0,985
0,98 +
0,975
0,97 +
0,965
0,96
0,955

0 20 40 60 80 100 120 140 160 180 200

Test number

Fig. 2 — The results of experimental research of DRNG 8-SHA-384

. . Generator 5-SHA-384 2-DRNG test results
The proportion passing

1 00— OO— OO~ OO~ OOR——O-OORAO——EO-ERO——O-O-O-O—OO- ORI~
0,995
0,99 +
0,985
0,98 -
0,975
0,97
0,965
0,96
0,955

SO KO &

0 20 40 60 80 100 120 140 160 180 200

Test number

Fig. 3 — The results of experimental research of DRNG 5-SHA-384 2-DRNG GF(p”)

The PRS analysis was carried out according to rating K1 — K4 AIS 20 [4] requirements, which
are summarized in the table 5.

Also let us point out that ratings are hierarchically dependent, i.e. each following rating com-
pletely includes the previous one and adds its new requirements. Above-given results of research
allow making a conclusion that PRS of multimodulo transformations can be applied almost for most
of the cryptographic applications. Restrictions can occur only because of complexity of transfor-
mation (performance).

Aforementioned requirements are setting up all the level of security from the lowest (an applica-
tion of DRNG as a counter) to the highest (analyst even knowing certain internal states of generator
cannot compromise the whole array).
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Table 5 — Comparison of functional ratings K1-K4

Functional Requirements to Cryptographic systems, which DRNG of this rating
rating DRNG is applied for
K1 K1(i) Interactive protocols
K2 K1(i) + K2(ii) Steam ciphers
K3 K1(i) + K2(ii) + | Key generation, Generation of digital DSS (secret key x

K3(iii) + K3(iv) | or random number k), Password generation

K1(i) + K2(ii) + | Key generation, Generation of digital DSS (secret key x
K4 K3(iii) + K3(iv) + | or random number k), Session key for symmetric crypto-
K4(v) graphic mechanisms, Password generation

Besides AIS 20 testing method can be applied either in actual time, during the process of re-
search or technological testing.

5 Conclusions

Currently a number of methods and on its basis means of PRS formation have been developed.
Their peculiarity includes the fact that they are built as a rule for binary basis m=2. The aim to
develop PRS generation methods and means with necessary properties of probability and undefined
(certain) alphabet basis is important and necessary. From our point of view the rating of multimodu-
lo transformations should be called the most promising among ratings of such transformations.

Determined PRS generator, which is functioning according to three modulo transformation on
the basis (11) or (12) under conditions (2)—(8) fulfillment, provides generation of PRS (symbols)

numbers with certain basis of m alphabet, repetition period p" —1, equally possible appearance of

symbols at the repetition period p" —1 and ensemble of isomorphisms (p(p” —1).

On the whole the method and directly PRS generator based on multimodulo transformation can
be applied in a number of cryptographic and other applications, in which are set conditions of the
high equiprobability and the necessity of undefined basis of PRS symbols appearance.

For through study of PRS generation complexity additional studies are needed. As rough as-
sessments can be used the ones given in [10] concerning the complexity of cryptographic transfor-

mations in the finite field GF(p").
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