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Abstract: This article describes the method of correcting of single errors in the residue class (RC). The study of this
method makes it possible to create effective systems for monitoring data errors of computer systems in RC. The re-
sults of the analysis of the corrective capabilities of the arithmetic code in the RC showed a high efficiency of using
non-positional code structures, due to the presence in the non-positional code structure of primary and secondary re-
dundancy. The paper shows that the corrective capabilities of codes in the RC depend on the introduction of addi-
tional redundancy in the code structure. At the same time, if certain conditions are met, the data can be corrected by
introducing only one test base. The article provides examples of monitoring and correcting of single errors were rep-
resented by codes in the RC.
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1 Introduction

In general, in order to verify, diagnose and correct errors a code structure requires a certain error-
correcting capability. In this case, code is required to be introduced to data duplication, i.e. infor-
mation redundancy should be implemented. All of the above fully refers to a non-positional code
structure (NCS) in residue classes (RC) [1-3].

For each random RC the amount of redundancy R=M,/M uniquely determines correction ca-
pability of a non-positional error-correcting code. Error correcting codes in RC can have any given
values of minimum code distance (MCD) d &% | which depends on the value of redundancy R . The

acquainted theorem [1] establishes a link between error-correcting code redundancy R, the value of
MCD d & and the amount of RC check bases k .

Error-correcting code has MCD values d* in case when the degree of redundancy R is not
df -1
less than the product d®<) —1 of RC bases. On the one hand we get R > H m, , but on the other

min
i=1

n+k n k
hand R=M,/M = Hmi /Hmi = Hmn+i . In this case, it’s correct to state that (&) —1=k, or
i=1 i=1 i=1
d® =k +1. 1)
There are two approaches to solve the problem of providing NCS with all required error-
correcting properties in RC.
The first approach. If the requirements for error-correcting properties of NCS are known, for ex-

ample, depending on amount of errors being detected t,, or corrected t,, required information
redundancy R should be introduced, using the amount of k or the value {m, .} of check bases.
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Redundancy R determines minimum code distance d ® of NCS in RC.
Then, according to the error-control coding (ECC) theory for an ordered (m, <m,,) RC we have

that

tye <d" -1, )

tie <K; (3)

. {%} @

wo[f] ©

The second approach. For a given NCS A =(a |la, |...lla_ & la. .- &, |- | a,.) (fora

given value k) its error-correcting capabilities (determined by the d "¢
fined by the expressions (3) and (5).
Note that, if an ordered RC is extended by adding k check bases to n information modules, then

MCD d & of the error-correcting code is increased by the value k (see expression (1)).

min

value) of RC code are de-

The values of d®® can be also increased by decreasing the number n of information bases, i.e.
by transitioning to less accurate calculations. It’s clear that in RC between error-correcting R prop-
erties of error-control codes and calculation accuracy W inverse proportion exists. The same
computer can perform arithmetical calculations or any other math operations both with high W ac-
curacy but a low error-correcting R capability and with lower W accuracy, but with a higher capa-
bility R of error detection and correction in order to verify, diagnose and correct data faults, as well
as to demonstrate higher data processing performance (the time to execute basic operations is in-
versely proportional to n information bases in RC) [2,4,5].

2 The main part

Now we’ll analyze the process of single-error correcting data capability in RC given the minimal

information redundancy by introduction of a single (k =1) check base. In this case, according to the
error control coding theory in RC [1, 2], MCD is equal to the value d®® =k +1. If k =1, then
MCD is d{®“ =2, which, as according to the general error control coding theory, ensures any sin-
gle-error detection (an error in one of the residues a, (i=1,n+1))in NCS.

In general, just as in the positional numeral system (PNS), the process of data error correction in
RC consists of three stages. The first stage — data checking (correctness or incorrectness verification

of the initial number A..). On the second stage diagnosing the false ARC number (detection of a

single corrupted residue & of the number ,&RC to the base m, in RC). And, finally, on the third

stage correcting the invalid residue & to its true value a, of the number, i.e. correcting false A,

number (getting the correct number A,. = A, ).
The degree of information redundancy R (code error-correcting property) is estimated by the
value of MCD d_ ™. As previously noted, the value of MCD is defined by the ratio

d® =k +1, where k is the amount of check bases in an ordered RC.

Let’s start with the NCS Ay, =(a [|a, ||...lla_ & &, II---l1a, |-l &,.) in RC having a mini-

mal (k =1) additional information redundancy. In this situation it’s considered that d{%) = 2.

According to the error control coding theory in PNS if the minimum code distance is granted to
be d{"™™) =2 a single error in a code structure is ensured to be detected. In PNS a single error is

min
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understood as a corruption of a single information bit, for instance 0 —1 or 1— 0. In order to cor-
rect this single error it’s required to ensure the condition, when d "™ =3,

min

Contrary to PNS, a single error in RC is understood as a corruption of a single residue a, modu-
lo m,. Inasmuch as the residue a, of the number A, =(a |la,|..lla_ll&alla.ll--la,la.;)
modulo m. contains z :{[Iogz(mi —1)]+1} binary bits, then it’s formally correct to be considered

that if d =2 (k =1) is within limits of a single residue a,, an error cluster can be detected in

min
RC, with its length not exceeding z binary bits. However in RC, as it is shown in literature [1, 2, 5],
there are some cases when a single errors can be corrected while d®¢) =2

In the light of specific features and properties of NCS representation in RC an error-correcting
capability given d*® =2 can be explained in the following manner.

1. A single error in PNS and in RC are different concepts, as it was shown before. With that be-
ing said, MCD d®) for PNS and d(*“ for RC has different meaning and measure.

min min

2. Existing (implicitly) intrinsic (natural, primal) information redundancy in NCS, being stored
in residues {a,} due to their forming procedure, has a positive effect (from the perspective of in-

creasing data jam-resistance, transfer and processing reliability) that kicks in only with the presence
of a subsidiary (artificial, secondary) information redundancy. An artificial information redundancy
in NCS is being introduced by using (additionally to n information bases) k check bases in RC. A
distinguishing feature of RC is its significant display of the intrinsic information redundancy only if
the subsidiary one is also present, due to introduction of check bases.

3. As shown in [1,2,5], error control code in RC with mutually prime bases has the MCD value

of d{*) only if the information redundancy level is not less than the product of any d*® —1 bases
of a given RC.
The availability and interaction of primary and secondary redundancies during the subsidiary

tests (time redundancy usage) of error-correcting process, which may provide a single-error error-
correcting capability in RC, while d ®® =2 (given k =1).

min

Indeed, according to the expressions (3) and (5) for an ordered RC following conclusions can be
made: with a single (k=1) check base m in RC, the NCS

A= la,l.-llalla lla,ll--lla,lla,,) can have several values of d*® . In this case, it de-

min

pends on the value of check residue m,_,. If, for every different RC modulus condition m, <m, ,

n+1

(i=1,n) is met, then conclusion can be made that d®9 =2 as according to the expression (1), and
t.x. =1, according to the expression (2). If the condition m;-m, <m_, (i, j=Ln;i=j)is met
across the totality of {m} information bases for a random modulus pair, then d{"“ =3 and
te =2.

det.

Thus, for the NCS in RC given k =1, the MCD d{*® can vary, depending on the value of RC

min
check base m_,,. Assume, RC is given information bases m, =3, m,=4, m;=5, m,=7 and
moreover m, =m,,, =m, =11. In this case error verification of any single corrupted NCS residue
can be ensured.

Assume, for example, m, =m_,, =61. Ad hoc, we’ll draw up a Table 1, mapping information

bases to check bases. As Table 1 shows, number representation specificity in RC in some cases al-
lows not only to detect an error, but to find a place of its occurrence with the use of a single check
base, which would be impossible to do in the PNS, utilizing existing methods of detecting and cor-
recting errors.

Let’s assume, that in the corrupted (A= M ) number A=(a, ||, ||... | ai; |G [l @i ||| @, || a,..)

the error §, = (a, + Aa;) modm, is verified to be present in the residue a, modulo m,.
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Table 1 — Research results of error-correcting capabilities of error control codes in RC (1 =1)

3 Max.
me=m,, =mg=61; di") =k +1=2, [ [m, <m;. Max. | ount
it amount
_ _ of cor-
RC information bases of detec- | . ‘ble
K , table da- A
m <m, kK | df=k'+1 -
m=3m=4/m=5|m,=7 g 'r " WEITOrS | irs in
in RC
RC
+ — - — 3<61 1 2 1 0
_ + - - 4<61 1 2 1 0
— — + - 5<61 1 2 1 0
- — — + 7<61 1 2 1 0
+ + — — 3-4=12<61 2 3 2 1
+ — + — 3-5=15<61 2 3 2 1
+ — - + 3-7=21<61 2 3 2 1
— + _ 4.5=20<61 | 2 3 2 1
— — 4.7=28<61 2 3 2 1
— — 5-7=35<61 2 3 2 1
+ + + — 3-4-5=60<61 | 3 4 3 2

We’ll take a look at the ratio, which makes it possible to correct an error in a given residue

a [1].
It’s clear that:

A= (A+AAd)mod M, .

(6)

Basing on that the error magnitude can be equated to AA=(0]|0]|...||0|| A&, ||O]|...||0]|0), then

the correct (A< M ) number A can be expressed as follows:
A= (A~ Aymod M, = (a, | ay ... [ a4 11G || @i,y |-

~[10110) Jmod M, =[a, ||, |I... | &, || (& — Aa)modm || &, ||... || &, ||

n+1

|ay lla,.,) = (01 0]l... |0l Ag; [|O]]...
Jmod M,.

We’ll quantify the value of A. Inasmuch number A is correct, i.e. is contained in numerical in-

terval [0, M), then the following inequality will be fulfilled:
A:(;{—AA)modMo <M .

()

Basing on the value of the error AA is equal to A4 = Ag, - B,, then the inequality (7) will be ex-

pressed as:

A—Aa -B —r-M,<M or
A—Aa B -r-My<M,/m_ ,(r=1,2,3,..),

A-(&-a)-B-r-M,<M,/m
A—(a—8&)-B—r-M,<M,/m

n+1?

n+1?

(a— &) B <M,/m,,—A+r-M,

a,—4& <(M,/m

n+1

)/B.—~A/B +r-M,/B,

a<a+(M,/m)/B—A/B+r-M,/B,.

(8)
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Since the orthogonal base of RC module m, takes the form of B, =m, - M,/ m,, then the expres-

sion (8) shows up as:
a <&+(m+r-m-m _)/(m-m )—A/B or
a, <& +m (1+r-m )/ (m-m,)—A/B,. 9)

Inasmuch as the value of the residue a, is a natural number, then the value of
m(1+r-m_,)/(m-m_,)—A/B,, as shown in the expression (9), should be an integer. Thus, taking
an integral part of the last ratio, the formula for correcting error in the residue & of the number A
will be:

a = (& +[m-(1+7r-m,)/ (M -m,,)—A/B)modm]. (10)

We’ll have a look at the examples of error correction in RC.

Example Nel. Perform data verification of the number A.. =(0||0]|0]|0||5) and correct it if re-
quired, when RC was given information m, =3, m, =4, m,=5, m; =7 and check m, =m, =11
bases. Thereby, M :ll[mi = ﬁmi =420 and M,=M-m_, =420-11=4620. Orthogonal RC

i=1 i=1
bases B, (i =1,n+1) are shown in Table 2.

I. Data verification of A.. =(0]/0||0]|0||5). According to the control procedure [1] the value
will be defined as:

Table 2 — Orthogonal RC bases B, (1 =1)
B, =(1]/0]|0]|0]|0) =1540, m, =1
B, =(0]11]0]|0]|0) =3465, m,=3
B, =(0]|0|11/]0]|0)=3696, m, =4

4
6

B, = (0]10]|0[|1]]0) = 2640, m, =
B, = (0]0[[0][0[]2) = 2520, m, =

Ass :(niai ~Bijmod M, =(25:ai : Bi]mod M,=(a B +a,-B,+a;-B;+
i=1 i=1
a,-B,+a;-B;)mod M, = (0-1540+0-3465+0-3696 + 0- 2640 + 5- 2520) mod 4620 =
= (5-2520) mod 4620 = 12600(mod 4620) = 3360 > 420.

Thus, in the process of data verification it was evaluated, that A, =3360> M =420. In this
case, with the possibility of only single errors appearing, conclusion is made that the number in
question A, =(0||0]|0]|0]|5) is incorrect (3360 > M =420).

In order to correct the number &360 =(0||O||O]|O]|5) data is required to be verified first, i.e. cor-
rupted residue & has to be detected. Once done, the true value of the residue a. modulo m. needs
to be defined, whereupon the corrupted residue & should be corrected.

Il. Data diagnosing of Amo =(0]|0]|0]|0|5). According to the mapping method [1, 2], possible
projections Aj of the number Asseo =(0]|0||0||O}|5) are:

A =(lo]0]5), A =(0]0]0[5), A =(0ll0]l0]5),
A, =(0]|0]|0[|5) and A =(0[|0]|0]0).
Computational formula for the values Aj ons OF PNS number projections is written as [1]:

16
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Ao =| D .a-B; [modM; =(a,-B,, +a, B, +...+a,-B,)mod M. (12)
i=1;

j=i, n+1.
According to the expression (11) we’ll compute all the values of Aj ons - ONce done, we will

n+l*

make (n+1) comparison of the AjPNS numbers to the number M =M, /m_,,. If there are any
numbers not being contained in the informational numeric interval [0, M), which contains k cor-
rect numbers (i.e. /X > M), among /31 projections, then conclusion is made that these k residues of
the number A are not corrupted. Only the residues among the rest [(n+1) —k] number A, resi-

dues can be false.
The set of the active quotient residues for a given RC and the totality of the quotient B; orthog-

onal bases are shown in Table 3 and Table 4 respectively.

Table 3 — Set of the active quotient RC residues (1 =1)

j ' m, m, m, m, M,
1 4 5 7 11 1540
2 3 5 7 11 1155
3 3 4 7 11 924
4 3 4 5 11 660
5 3 4 5 7 420

Table 4 — The totality of the quotient orthogonal RC bases B; (I =1)

Jﬁi' S 2 3 4
1 385 616 | 1100 | 980
2 385 231 330 210
3 616 693 792 672
4 220 165 396 540
5 280 105 336 120

Now then (Table 4):

- 4
Apns = (Zai : Bn] modM, =(a,-B, +a,-B,, +a,-B,, +a,-B,))mod M, =

i=1
=(0-385+0-616+0-1100+5-980) mod1540 = 280 < 420.
Arriving at conclusion, that the residue a, of the number Ai is possibly a corrupted residue &, ;
- 4
AZPNS = (Zai : BinmOd Mz = (a'l : BlZ +a,- Bzz +a;- Bsz +a,- B42) mod Mz =

i=1
=(0-385+0-231+0-330+5-210) mod1155 =1050 > 420.
Hence, the residue a, is ensured being not corrupted;
- 4
A3PNS = (Zai ) Bisijd M3 = (a1 ’ BlS +a,- st +a;- Bs3 +a,- B43) mod Ms =

i=1
=(0-616+0-693+0-792+5-672) mod 924 =588 > 420.
Deduced, the residue a, is ensured being not corrupted;
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- 4
Aspns = (Zai ) Bi4Jm0d M,=(a,-By, +a, B, +a;-B; +a,-B,)mod M, =
i=1
=(0-220+0-165+0-369 +5-540) mod 660 = 60 < 420.
Conclusion: the residue a, modulo m, of the number A, is possibly a corrupted residue a,;
- 4
Ao = (Zai - Bistod M. Since M, =M =420,
i=1

the residue a; of the check module m, =m, will be always among the totality of possibly corrupted
residues a of RC number.

Overall conclusion. During data diagnosing of A=(0]|0]|0]|0]||5) in NCS, the residues a,=0
and a, =0 were ensured not being corrupted. The residues to the bases m,, m, and m, might be
corrupted, i.e. the residues & =0, a, =0 and & =5. In this case it’s required to correct the resi-
dues &, a, and a;.

I11. Correcting data errors /13360 =(0]|0]|0]|0]|5). According to the acquainted [1] expression:

a, :[a +{m‘ (d+rm,) —ADmOd m, (12)

I I mn+1'mi Bi
we will correct possibly &, &, and a; corrupted residues a,, a, and a,, where r=1,2,3,....
It turns out that:
a=|a+ ml.(1+r-_mn+1)_ﬁ mod m, = O+[3.(1+r.11)_3360} mod3
m,,, - m B, 11-1 1540
=(0+[3,27-2,18]) mod3=(0+[1,09]) mod3=(0+1)mod3=1;
a, =7+ m4.(1+r-_mn+1)_ﬁ mod m, = 0+[7-12_3360} mod 7 =
m..,-m, B, 11-4 2640
=(0+[1,9-1,27])mod 7 =(0+[0,63])mod 7 =(0+0)mod 7 =0;
o=l mn+1-(1+£-mn+1)_ﬁ modm, . = 5+[11-(1+11)_3360} od 11—
m,,-m . . 11-6 2520
=(5+[2-1,3])mod11l=(5+][0,7])mod11=(5+0)mod5=0.

n+l

n+l

With accordance to the computed residues a, =1, a, =0 and a;, =0 we are correcting (recover-
ing) the corrupted number &360 =(0||0||O]|O||5), i.e. the corrected number becomes
A, =(l0]0]0]5).

To validate corrected data, as according to the acquainted [1] expression, we’ll define the value
of the number 'ahor. =()|0|0||0|I5) in the following way (see Table 2):

- 5
A ons =£Zai-Bijmod M,=(a,-B,+a,-B,+a,-B,+a,-B, +a,-B)mod M, =
i=1

=(1-1540+0-3465+0-3696 + 0- 2640 + 5- 2520) mod 4620 = 14140(mod 4620) = 280.
Thus 280 < M =420, the number AZSO =(1]|0]|O||O||5) is correct.
In order to validate correctness of the number A, we’ll make a computation and comparison of
the wvalues to the correct residues a,=0 and a,=0. In this case they are

a, = 0+[4'(1+11)—3360} mod4=0 and a, = 0+{5'(1+11)—3360} mod5=0. The result-
11-3 3465 11-4 3696
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ed computations a, =0 and a, =0 of the residues modulo m, and m, in RC verified correctness of
the corrupted number &360 =(0||O||O|O|5). Thus, the original number AQC =(0||O|O|O5) is
corrupted A, wherein the single error Aa, =1 occurred modulo m, . This error made the correct
number A, being corrupted A, .

In order to verify if the correct number A, is true, subsidiary tests on the process of corruption
and correction of the number A, modulo m, =3 are required. The amount of possible N.. incor-
rect (corrupted) ARC codewords (if only a single error occurred) for each correct A,. number are

Nee =nz+1:mi —-(n+1).

Test ;iesults have shown that corruption of the residue a, modulo m, =3 of the correct number
A, can produce only two incorrect numbers: A, =(0]/0]|0]0]|5) and A,,, =(2]/0]0]0]|5).
This points to the fact that the corrected number A, = Ag, =(1]/0]|0]|0]|5) is both correct (is con-
tained in the interval [0, 420)) and true. The trueness of the resulted number A, = (i||0||0||0||5)
is confirmed by the fact that the single error Aa, =2 to the base m, =3 converts
(A=(A+AA)mod M, =
=(L]|0]|0||0]|5)+(2]|0]|0]|0]|0) =[(L+2)mod 3]|0]|0[|0]|5] = (0]|0/0[|0]|5)) this number to the
unique incorrect number A, =(0||0]|0]|0||5).

Example Ne2. Assume, the correct numberis A, =(1||0]|0]|0||5) and assume that Aa, =1.

In this case A=(A+AA)mod M, = (1]|0|0]|0[|5) +(L]|0]|0]|0]|0) =
=[(1+1) mod3||0||0||0||5]:(§||O||O||O||5). This RC number is relevant to the number 1820 in
PNS, i.e. the number A, is incorrect. We’ll correct the number A, now.

Data diagnosing should be made ahead of correcting the number ,5.1820. To do this we’ll map pro-
jections A, (] =1,5) of the number szo =(21|0]|0]|0]|5) first. Resulted RC code structures are:
A =(0[0]0[|5), A, =(2[0[|0[|5), A,=(2[|0|0]|5), A, =(2]|0]|0]|5) and A =(2]0]|0]|0).

All the projections of A, are:

A o = (5-980) mod 1540 = 280 <420 =M ;

Ayons = (2-385+5-231) mod1155=1925(mod 1155) = 770> 420=M ;
Ayons = (2616 +5-672) mod 924 = 4592(mod 924) =896 > 420 = M ;
A, pns = (2-220+5-540) mod 660 = 3140(mod 660) =500 > 420 = M ;

Asons = 2-280(mod 420) =560 (mod 420) =140 < 420=M .

Inasmuch as A, Ay and A, >420, the conclusion is made that the residues a, =0,

a,=0 and a, =0 of the number A., =(2]|0]|0||0||5) are not corrupted. Only the residues a, and

a, can be corrupted & =2 and a,=5.
We obtain, that:

a =l + ml.(1+r-_mn+l)_ﬁ modm = 2+[3.(1+11)_1820} mod3
m.,,-m B, 11.1 1540

=(2+[3,27-1,18])mod 3= (2+[2,09]) mod 3 = (2 + 2) mod 3 = 4(mod 3) =1.
Hence, the corrected residue modulo m, is a, =1. In a like manner the residue a, =5.
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Applying the results a, anda, the corrupted number A,  =(2]/0]/0]/0]|5) is corrected. As a fi-
nal result the corrected number is A, =(1]/0]/0||0]|5).

Example Ne3. Performing verification of the number A.. =(0||0]|0]|2]|21). In case corruption

was detected, data diagnosing and correction should be made.
I. Data checking of A,. =(0||0]|0]|2]|1). According to the acquainted control procedure A,

will be calculated using expression:

n+l
Ao =(Zai : Bijmod M, = (0-1540 +0-3465+0-3696 + 2 - 2640 +1- 2520) mod 4620 =

i-1
= 7800(mod 4620) = 3180 > 420 . This number is incorrect A, .
Il. Data diagnosing of A, ., =(0]0]0]|2]/1). All possible projections AJ. of the number A,
are: A =(0[|0[|2]12),, A,=(0]|0]|2][2), A,=(0]l0]|0||1) and A, =(0|0[[0[2).
Calculating the values of all of five projections AJ. in PNS:
A1Rc = (O 10]]2]] 1) = A1PNS = (al'Bll +ay, By +ayBy + a4'B41) mod M, =
=(0-385+0-616 + 21100 +1:980) mod 1540 =100 < M =420,
Arc = (0 10]]2 ”1) = Appns = (a'By, +a,°B,, +ay By, +a, B,)mod M, =
=(0-385+0-231+2:330+1.210) mod 1155 =870 > M = 420;
Are = (0 10]]2 ”1) = Appns = (@ B3 +ay By +ay By +a,B,g) mod M, =
=(0-616+ 0693+ 2792 +1.:672) mod 924 =418 < M = 420;
A4RC =(]l0]l0]1) = A4PNS =(a;'B,, +a,'B,, +ayB,, +a, B, )mod M,
=(0-220 + 0165+ 2-396 +1:540) mod 660 = 540 > M = 420;
Arc =(0]|0]012) = Ajpns = (ay'Bys + @, By + ag By + a,B,s) mod My =
=(0-280+ 0105+ 2-336 +1:120) mod 420 = 240 < M = 420.

The calculations of the Aijs values and comparing them to the verification interval [0,420)

range of correct RC numbers A.. resulted in following. The totality of the residues a, =0 and
a, =0 is correct (residues are not being corrupted), while the residues & =0, a,=0 and & =1 of
the incorrect number A, ., = (00| /0]|2]/1) might be incorrect (could have been corrupted).

I11. Correcting possibly corrupted residues a,, &, and &, of the number A, .

Possibly corrupted residues & =0, a,=0 and &, =1 required to be corrected using expression

a = (éi +{m‘ (drrem,,) —AD modm,. Then:
m,,, - M, B

n+1 i i

a=|a+ mo(A+rm,) A mod m, = 0{3.(1”.11)_3180} rod 32
m,.,-m, B, 11-1 1540

=(0+[3,27-2,06])mod3=(0+[1,21])mod3=(0+1)mod3=1.
Hence, a, =1.
For the value &j it is:

o=+ my-@+rm,) A modm, = 0{5.(1”.11)_3180} —
m,,, - M, 2 11-4 3696

=(0+[1,36-0,86])mod5=(0+[0,5])mod5=(0+0)mod5=0.
In this case a, =0.

n+l
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For the residue &, value is:
m,-(L+r- mml) A mod m, lJ{ll.(1+r.11)_3180} mod1l—
m,.;- s 11-6 2520
=(1+[2-1, 26])mod 11=(1+[0,74])mod11=(1+0)mod 11=1.
Obtaining that a; =1.
Using the calculated values a =1, a,=0 and a, =1 of the recovered residues the corrupted
number ch =(0]|0]|0]|2]|1) can be corrected, becoming A, =(1]|0]|0]2]/1). Verified by
100 < 420.

3 Conclusions of research

Contrary to PNS (positional numeral system), arithmetic RC (residue class) codes feature addi-
tional correcting properties. Thus, NCS (non-positional code structure) involves both intrinsic and
subsidiary information redundancies, that in some cases results in allowing to correct single errors

in RC, while MCD is d"® =2. However, correcting single errors requires performing subsidiary

tests of data checking, i.e. time redundancy usage, additionally to information redundancy. Exam-
ples of specific implementation of a single error correcting procedures were introduced, that prove
reviewed method is possible to be implemented in order to correct data errors in RC.
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MeToa BUNIPABJIEHHS OIHOKPATHHX MOMMJIOK JAaHMX, LI0 MPEACTABJIEH] KOIOM KJIacy JHIIKIB.

AHoTanis. Y maHiif CTaTTi PO3MJISIHYTO METOJ BHUIIPABICHHS OJHOpPA30BUX MoMmIOK y kiaci jumkiB (KJI). ocnimkeHHs naHoro
METO/ly Ja€ MOXJIMBICTh CTBOPIOBATH €(EKTHBHI CHCTEMH KOHTPOJIO MOMHJIOK JaHHX KoMm''oTepHHX cucteM y KJI. Pesymbratu
aHali3y KOPUI'YBaJbHUX MOXIHMBOCTel apupmernynoro koay y KJI mokasamu BHCOKY e(eKTHBHICTh BUKOPUCTAHHS HEMO3UI[IHHUX
KOJIOBHX CTPYKTYp, 32 PaXyHOK HassBHOCTI y HEMO3MLIiiHiil KOJOBIH CTPYKTYpi MEPBUHHOI Ta BTOPUHHOI HaaMipHOCTI. ¥ po6oTi mo-
Ka3aHo, 10 KOPHUI'YBaJIbHI MOXIIHBOCTI KofiB y KJI 3amexarh BiJ BBEJCHHS JOJATKOBOI HaJMIPHOCTI y KOJOBY CTPYKTYypy. Ilpn
[IbOMY TIPY BUKOHAHHI TIEBHHX YMOB KOPEKIisl JaHMX MOKE OyTH IpOBeJeHA BBEJCHHSM TUIbKH OIHI€] KOHTPOJIbHOI OCHOBU. Y
CTAaTTi HaBeJeHI PHUKIIAIH KOHTPOJIIO Ta BUIIPABJICHHS OJIHOPA30BHX IIOMHJIOK JIAHHUX, MPEACTaBIeHUX Koxamu y KJL.
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MeToa ucnpasJieHHs1 OAHOKPATHBIX OMIMOOK JaHHBIX, MPEACTABICHHBIX KOIOM KJIacCa BbIYETOB.

AuHoTanmmsi. B naHHOH cTaThe paccMOTpPEH METOoJ| MCHpaBICHHUS OJXHOKPATHHIX OIIMOOK B Kiacce BeraeToB (KB). HccnenoBanne
JTAaHHOTO MeTOoJa 1aéT BO3MOXKHOCTh CO37aBaTh d((QEKTHBHBIE CHCTEMBI KOHTPOJIS ONIMOOK JaHHBIX KOMIBIOTEPHEIX cucTeM B KB.
Pe3ynbpTaTel aHANN3a KOPPEKTHPYIOMIMX BO3MOXKHOCTEH apudmerndeckoro kojga B KB mokazamu BeICOKYIO 3()(eKTHBHOCTD HCIIOIb-
30BaHUS HEMO3UIMOHHBIX KOJOBBIX CTPYKTYp, 3a CUET HaJIM4Msl B HEMO3MLUOHHON KOMOBOH CTPYKType NEpBUYHOW M BTOPUUHOMN
n30BITOYHOCTH. B paboTe mokas3aHo, 9TO KOPPEKTHPYIOLINE BO3MOXKHOCTH Ko#oB B KB 3aBHCST OT BBEJCHUS AONOIHUTENBHON H3-
OBITOYHOCTH B KOJOBYIO CTPYKTYpY. [Ipn 3TOM IpH BBITIOJIHEHHH ONPEAEIEHHBIX YCIOBUH KOPPEKIMS JaHHBIX MOXKET OBITH IPOBe-
JIeHa BBEICHHEM TOJIBKO OJHOTO KOHTPOJIBFHOTO OCHOBAaHUS. B cTaThe MpUBEAEHBI IPUMEPHI KOHTPOIS U UCTIPABICHHS OTHOKPATHBIX
OIMOOK JTaHHBIX, IIpeCTaBIeHHBIX Kogamu B KB.

KiroueBble ¢j10Ba: HEIO3UIIMOHHAS KOI0BAasI CTPYKTYPa; KJIACC BbIYCTOB; MO3UIIMOHHAs CUCTEMA CUMCIICHHS, MUHUMAIbHOC KOJ0-
BOC pacCTOSIHUEC, HOMCXOYCTOﬁQHBOC KOJUPOBAHMUE, NTUArHOCTUKA U KOPPECKUMS JaHHBIX.
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