ISSN 2519-2310 CS&CS, Issue 1(9) 2018

UDC 004.056.55

HIDING DATA IN THE FILE STRUCTURE

A. Kuznetsov, K. Shekhanin, A. Kolgatin, K. Kuznetsova, Ye. Demenko

V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
kuznetsov@karazin.ua, kyryl.shekhanin@nure.ua, kolgatin-a@yandex.ua, kate.kuznetsova.2000@gmail.com,
demenjay@gmail.com

Reviewer: Serhii Toliupa, Doctor of Sciences (Engineering), Full Prof., Taras Shevchenko National University of Kiev,
81 Lomonosova St., Kyiv, 03189, Ukraine.

tolupa@i.ua

Received on March 2018

Abstract. In this paper, the methods of steganography hiding of information in a file system structure is investigated.
Namely, the structure of the FAT file system (File Allocation Table) and methods of hiding information messages,
which are based on repositioning separate clusters of cover files. A new method is proposed that, unlike the known
ones, changes the order of alternation of clusters in each cover file, which allows to further hide a certain informa-
tional message, that is, to increase the capacity of the hidden channel. It was confirmed that the results of the data
concealment and deletion procedures largely depend on the number of clusters with which it is necessary to carry out
the appropriate transformations. It is noted that the extraction procedure is performed much faster than hiding the
message. The proposed method is implemented programmatically, the results of experimental researches confirmed
the adequacy of the theoretical conclusions and recommendations.

Keywords: steganography; hiding information data; file system.

1 Introduction

Steganographic methods of information protection become, in recent years, increasingly popular
and widespread [1-2]. In particular, this is due to the emergence of the latest technologies of hidden
communication messages in artificially created containers, redundancy in which is generated by
technical features of storage, processing and/or transmission of digital data [3-14]. Namely, meth-
ods of network steganography as a carrier (container) use transmitted over the network packet or a
set of data packets [3-6]. In the 3D steganography, informational messages hide into artificial ex-
cess of digital 3D object models, for example, in the retina of surfaces, holograms, etc. [7-9]. The
construction of hidden cluster channels is based on the use of data storage features in modern file
systems [10-14]. The last direction is researched in this paper, in detail, researched of methods of
steganography hiding of information in the file system structure.

2 Modern file systems

The file system is the procedure established, which determines the way of organizing, storing
and naming data on the storage media in computer systems, as well as in other electronic equip-
ment: digital cameras, mobile phones, etc. [15-17]. The file system determines the format of the
content and the method of physical storage of information, which is grouped into files. The specific
file system defines the size of file names and (directories), the maximum possible file size, and de-
fines the set of file attributes. Some file systems provide service capabilities such as access control
or file encryption.

The main functions of the file system are aimed at solving the following tasks: naming files; ap-
plication file interface; displaying the logical model of the file system on the physical organization
of the data warehouse; organization of file system stability to power failure, hardware and software
errors; content of the file parameters necessary for its proper interaction with other system objects
(kernel, application, etc.).

In multi-user systems, there is another task: protection of one user's files from unauthorized ac-
cess of another user, as well as collaborative work with files, for example, when a file is opened by
one user, for others, the same file will temporarily be available in read-only mode.

© Kuznetsov A., Shekhanin K., Kolgatin A., Kuznetsova K., Demenko Ye., 2018 43

mailto:kuznetsov@karazin.ua
mailto:kyryl.shekhanin@nure.ua
mailto:kolgatin-a@yandex.ua
mailto:kate.kuznetsova.2000@gmail.com

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

The greatest development in computing technology has traditionally been disk drives, the struc-
ture of which is generally presented in Fig. 2. Data on disk drives are recorded on tracks. The set of
tracks is divided into geometric sectors, while part of the path of a specific geometric sector is
called the track sector. The main logical unit of data storage in the file allocation table for disk file
systems is a cluster.

The cluster is a logical storage unit in a file
allocation table that combines a group of sec-

B tors of a track. For example, on the 256-byte-

C sized sector, a 256-byte cluster contains one

%¢\ sector, while the 2-kilobyte cluster contains

% : eight sectors. As a rule, a cluster is the small-

// ,—-%Q NN est disk space that can be allocated to store a

/////////(,’”'f)\l\))\\\\\\\\

i

\(‘)) use similar concepts (zones in the Minix,
\\\\\ \\ // ’ /// blocks in the Unix, etc.). On some Linux file
\\\ // systems (ReiserFS, Reiser4, Btrfs), BSD
\\ // (FreeBSD UFS2), the last block of a file can
\ == / be divided into subfragments, which can be
placed "tails" of other files. In NTFS, small

\gé files can be written to the Master File Table

D (MFT). The small cluster is best suited for

small files. So, this way is more economical.

) _ A large cluster allows you to achieve higher

Fig. 1 — Structure of disc: speeds, but in small files, the place will be

(A) - track; (B) - geometric sector; used irrationally (many sectors will not be ful-

(C) - sector of the track; (D) - cluster. ly filled up but will be considered busy).

Disk file systems are usually stream-
oriented. Files in stream-oriented file systems are a sequence of bits, often providing functions such
as read, write, change data and control access. The most common current stream-oriented file sys-
tems are FAT (File Allocation Table) - its three different types (FAT16\32\64) and NTFS (New
Technology File System). Given the complete openness of the file system specification in this paper,
only FAT is considered below.

The structure of the FAT consists of five parts: Volume ID; FAT - tables (two examples); Clus-
ters (data files); Root directory.
Volume ID located at the beginning of the disk partition of the FAT file system. It is required for
the initial boot of the device. It also contains information about the parameters of the file system.
File Allocation Table is intended to indicate clusters of individual files. The disk data area is
separated into clusters - blocks that are sized when formatting a disk. Each file and directory occupy
one or more clusters. Thus, clusters of chains are formed. In the file allocation table, each cluster is
marked in a special way. The pointer size in bits for each cluster is specified in the file system
name. For example, for the FAT32 file system, the size of the pointer is 32 bites. There are three
types of cluster pointers:
e free cluster is a cluster in which new files and directories will be recorded;.
e busy cluster - the pointer indicates the next cluster in the chain. If the chain of clusters is over,
then the cluster is marked with a special value (OXFFFFFFOF in hex);
e Bad block - cluster with access errors. Indicated when formatting the drive to disable later ac-
cess to it.
Damage to the file allocation table completely destroys the file system structure, so two copies of
the table are always stored on the disk.

44

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

Clusters (data files) - the data area that is placed directly after the last FAT table. The FAT direc-
tory (folder, directory) is an ordinary file marked with a special attribute. The data of such a file in
any version of FAT is a chain of 32-byte file records (directory entries). The catalog cannot contain
two files with the same names. If the disk validation program detects an artificially created pair of
files with the same name in one directory, one of them is renamed.

Root directory — the disk area in which the root directory information is located. Its size is lim-
ited, so in the root directory of the disk can be no more than 512 files and subdirectories.

The main advantage of the FAT file system is its simplicity and compatibility with outdated op-
erating systems. For this file system, there is a many detailed open documentations. A breach in the
system often lead to damage to one or more files. However, in case of serious damage, it is much
easier to restore information than NTFS.

3 Steganographic methods of hiding information in the file system structure

The simplest steganographic methods of hiding information in the structure of the file system are
discussed in [10,11]. They use free clusters (or certain service data fields) to record a hidden mes-
sage, but this method is unreliable [13,14]. Other methods, such as [12-14], are based on the use of
multiple cover files and hiding an informational message by changing the relative positions of the
clusters of different cover files one to another.

The hidden data is presented in the form of a bit array:

M ={b,,b,,...b, .}, b {01}.
On the device p=2", me N cover files are selected:
FoFpeoF oo
The order of the clustering of the cover files will hide the information message, that is, after the
embedding, the cover files cannot be deleted, moved or modified. The natural number m and

names of the cover files is the secret key. Also important is the order of cover files [14].
An array of cluster numbers for cover files is formed:

C0,0 C0,1 CO,Lo—l
C C .. C
1,0 11 1LL-1
C= ot 1)
Cp—l,O Cp—1,1 Cp—l,Lp_l—l

where each row of the array contains the cluster numbers of the corresponding file. For example,
the file F, corresponds to the i line of the array C, that is, the cluster numbers of the i covering

file can be represented as an array
Cr :{Ci,O’Ci,l""’Ci,Li—l}
where L, - clusters number in icover file.

If, when hiding the information, it is necessary to save without changing the contents of the cov-
er files, then it is necessary that the conditions are fulfilled: Vi:L, >k, k=n/m. An array D of

empty file system cluster numbers is formed: D ={c,c,,...,c_}, And ¢, <c, <...<c_.

The number L, is the number of empty clusters of the file system, and it is required that the

condition is fulfilled:
p-1

L= L.

Information message M is separated into blocks by m bits each: M ={B,,B,,...,B,}, that
k=[n/m] and if k=n/m, then B ={b,,b,...b, .}, B, ={0,.b. bt oo

45

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

By ={By_1ym: B aymezy -+ Bemat- If kK <n/m, then the last block is supplemented by zeros
B ={b,,0,-0,.} B, ={b,,0,,0, 000} s B =0y _pymi Bpeayimayyr+++sBrg1 0, 0., OF

km-n

Each block B,, i=12,...,k is interpreted to the natural number Vi:0<B, < p—1. Each of the
natural number.B,., 1=12,..,k is interpreted to the number of cover files from files array
FoFooF o

All clusters of the cover files are overwritten to empty clusters, that is, the D array is filled with
cluster numbers from the array C. The order of overwriting clusters of cover files corresponds to a
sequence of natural numbers {B,,B,,...,B,}, which are conditioned by the information message.

For example, the first empty cluster overwrites the first cluster of the cover file with number B, in
the second empty cluster overwrites the next cluster of the cover file with the number B, etc. The
natural numbers B, may coincide, and in this case, the clusters of the same cover file with the num-
ber B, are written. In order to enhance the protection, various techniques can be used, for example
[14], the initial value of By, is selected, and the order of overwriting the clusters of the covering
files is given by a sequence of positive integers {N,,N,,...,N,},
N.=B ,+B modp, 0<N. <p-1.

After, the first empty cluster overwrites the first cluster of the cover file with the number N, in

the second empty cluster - the next cluster of the cover file with the number N, etc. At the result of

the algorithm, the first k empty clusters of the file system will be written by clusters of the cover
files. So the condition k < L, must be fulfilled.

To extract the information message M the array D of the clusters of the cover files is formed:
D={c,.c,,....c_}, and ¢, <c, <...<c_ . Each cluster number in this array is correlated with only
one cluster of the cover file. This correspondence is determined by the logic of embedding infor-
mation and is used to extract data. In this case, a sequence of natural numbers is formed
{B,,B,,...,B, }, which correspond to the blocks of the informational message:

B, :{bO’bll""bm—l}7 B, :{bm’bm+l""’b2m—1}’ B :{b(k—l)m’b(k—l)(m+l)""’bkm—1}'
The informative message is calculated from these bit blocks
M ={b,,b,,...b .}, b {01}.

If k <n/m, then the last block is "cut"” - its last km—n bits are not used.

The disadvantage of this method is a small size of hidden data, which depends on the number of
cover files and the size of the one cluster at the file system. Each cluster of cover files can contain
log, p=m information bits. In this paper, we propose a new steganographic method of hiding in-

formation in the structure of the file system, which, in contrast to the one discussed, further modi-
fies the order of the cluster alternation in each cover file. The improved method allows an increase
in the amount of hidden information is achieved.

4 Proposed method

The proposed method of steganographic hiding of data in cluster file systems is based on the use
of several cover files (as in the prototype method) and the hiding of a secret message by changing
the relative positions of clusters of different cover files one to the other and, unlike the known
methods, the order of alternating clusters in each cover file. The hidden data is represented as the bit
array:

M ={bg,byibi i, 000,05 b} BB {03

On the device p=2", me N cover files are selected: F,F,,...F .

46

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

The array of cluster numbers of cover files is formed as (1). For each cover file, the order of al-
ternating clusters in each cover file is changed. The order of alternation is given by the information
sequence M . To do this, p bit arrays of information bits are formed

M, ={b},b],...b] .},

*

* *
M, ={b Ll’bL1+l""’bL1+L2—l}’

Ml_p :{b7_1+|_2+...+|_p,1’ T_l+|_2+...+|_p,1+1’---1bT_1+L2+...+Lp,1_1}’

each of which is mapped to an array of cluster numbers of files

CFl ={a e Ll—l}’

CF2 :{62,0’02,1’""CZ,LZ—l}’

Ce, :{cp’o,cp’l,...,cp’Lp_l}.
The clusters of each cover file are reordered, that is, the cluster numbers in each of Cr., C¢ , ...,
Ce, arrays change their alternation in accordance with the values of the bit arrays M;, M,, ...,
M . Asaresult, new arrays of cluster numbers are obtained C;, CEZ, s C;p . Reordering clus-

ters in each cover file can be done in different ways. For example, by splitting down all numbers
{Cio:Ciss+ G, 1} Into two halves and comparing each half with the value of the information bit

bi=1, L+L+..+L,-1<j<L+L+..+L -1, 0na j position in array C place a cluster
from the first half of ordered numbers, if b, =0 - from the second half.
Formed in this way arrays C. ={c;,,¢;,,....¢; . ,} reordered numbers of cover files form an array

of
Coo Cou - Copa
e Co Cy v clyLrl.
Cp—l,O Cp—l,l Cp—l,Lp,l—l

Changing the alternation of clusters in each cover file allows you to hide the first
L +L,+..+L,, information bits from the array M, that is, the information sequence
{05,070 (. .o, 1} The rest of the information bits are hidden in the same way as in the above

prototype method [14].
The array D of empty file system clusters is formed: D={c,,c,,...c_}, ¢ <c,<..<c_.The

sequence of information bits {b,,b,,...,b, ,} is separated into blocks bym bits each:
{B,,B,,...,B,}, Each block B, i=12..,k s interpreted as a natural number, i.e.
Vi:0<B, < p—1. Each natural number B,, i=12,...,k is interpreted as the number of the cover
file from the set of files F o, F,,....,F ;. All cluster of the cover files are overwritten in empty clus-

ters, that is, the array D is filled with cluster numbers from the array C* (reordered clusters, that
is, with the alternating cluster interchanges in each cover file). The order of rewrite of cluster covers
files corresponds to a sequence of natural numbers {B,,B,,...,B,}, that are specified by the infor-
mation message. For example, the first empty cluster overwrites the first cluster of the cover file
with number B, in the second empty cluster, the next cluster of the cover file with the number B,

47

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

etc. The natural numbers B, may coincide, and in this case, the regular clusters of the same cover
file with the number B, are written. As a result, the first k empty clusters of the file system will be

recorded by the clusters of the cover files. To extract the information message M , the array D of
the cluster numbers of the cover files is formed: D={c,,c,,...,c_}. Each cluster number in this ar-

ray is correlated with only one cluster of the cover file. In this case, a sequence of natural numbers
{B,,B,,...,B,}, is formed that correspond to the blocks of the informational message, i.e. the in-

formation sequence {b,,b,,...,b, ,}, b €{0,1} is formed. Then the information sequence is extracted
{b:;, bI’ e bzl+L2+...+Lp,1—l}’ bl* E{O’l}

For this purpose, the arrays C. ={c;y,¢,,....¢; . ,} Of the cluster numbers of each cover file are

analyzed. The extraction rule corresponds to the logic of hiding. For example, the splitting of all
ordered {c,,,C;;,...,C; . ,} numbers into two halves and the matching of each half with the value of

the information bit can be applied. For example, if there is a cluster on the j position in array C;
on the first half of an array of ordered numbers {c;,,c;,,...C, . ,}, accepts b’ =1. If the second half

accepts b, =0. Thus, due to the additional change in the order of alternation of clusters in each

cover file, it is possible to increase the size of hidden information. In particular, in comparison with
the prototype method, it is possible to hide one bit per cluster of cover files in an additional way.

The proposed method was implemented programmatically, experimental research of its effec-
tiveness was conducted. Fig. 2 and 3 contain results of the comparative analysis of the built-in data
capacity by a base method and the method offered in this work are given.

Fig 2 shows the dependence of the size of the steganograms on the size of the cluster of cover
files. As it is seen, that is doubling the bandwidth of steganogram.

In fig. 3 shows the size of the ste-
ganograms depending on the number of
cover files. There are comparing the results
\ show that with equal input parameters, the

proposed method allows hiding twice long-

\”8” er message than the basic method proto-

type. In addition, the improved method al-

&”6 lows you to use only one cover file, as

compared to the basic method. By compar-

S ing the computational complexity of the

Cluster size. byte methods, it can be argued that the improved

method requires twice the computational

resources. For experimental research of the

effectiveness of the methods, the program

"Stegano FAT", FAT 32 file system on a

JetFlash 350 Transcend® flash drive with a

capacity of 8 GB, USB 2.0 connection in-

terface and laptop Lenovo® Y510P with
Windows® ver. 8.1 OS were used.

It should be noted that the actual execu-
tion time of hiding methods depends on

‘s
474872 s,

Steganogram size, byte

.
.
.
e
e

118718 **ea, 29679,5

Steganogram size, byte

Number of cover files both the hardware features of the data carri-

ers and the algorithmic implementation. We

Fig. 2 — Dependence between: will analyze the operation time of the

- message length and size of a cluster (a), methods, depending on the selected param-
and count of cover files (b) eters: size of cluster; size of message; count

of cover files; total size of the cover files.

48

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

To estimate the dependence of the time spent on the executing of the hiding and extracting mes-
sages methods to the cluster size, we set the message size is 100 bytes, the number of cover files —
2, the total size of the cover file — 7 MB.

7,000 6,276 < 410 | 0,025
6,000 ----...,,_"_. | 0,020
8 5,000 '0..... 3,960 8
%1 4,000 3,341 2,870 Yo | %] oo
£/ 3,000 &l 0,010
T 2,000 1= 0,005
1,000 |) 0,008
0,000 , 0,000
2048,000 4096,000 8192,000 | 2048,000 4096,000 8192,000
|

Cluster size. byte Cluster size, byte

Fig. 3 — Effect of size of a cluster on spent time

We will change the cluster size in the range: 2048, 4096, 8192 bytes. The results of the experi-
ment are summarized in Fig. 3. In this graph and the following ones, on the left are the results of
hiding the message, on the right — when extracting. The dotted line shows the results of the modi-
fied method, the solid line shows the results of the basic method. As seen in Fig. 3, with increasing
cluster size, the time of the concealment of the message is reduced. The improved method requires
twice as much time to hide information in contrast to the based method, with the same configura-
tion. The selected method does not affect the time of information retrieval. To estimate the depend-
ence between the spent time on the hiding and extracting message and size of the message, we set
the cluster size is 2048 bytes, the number of cover files — 2, the total size of the cover files 7 MB.
We will change the size of the message: 100, 200, 400 bytes.

The results of the time spent analysis are shown in Fig. 4. As seen in Fig. 4 as the message size
increases, the time to hide and extract the message increases. To estimate the dependence of the
time spent on hiding and extracting the message to the number of cover files, we set the size of the
cluster - 2048 bytes, the message size is 100 bytes, the total size of the cover files - 7 MB. We will
change the number of cover files: 2,4,8. The results are shown in Fig. 5.

20,000 0,035
‘ I 7o 0,030
15,570 | 0,030
15,000 ~
o Lot 0,025 0,020 0,020
g 10,120,. | g| 0020
[10,000 7,340 — et 8,360 al
& 5,840 | 10015
5,000 3,820 =10,010
| 0,005
0,000 - 0,000
100 200 400 | 100 200 400
Steganogram size, byte I Steganogram size, byte
Fig. 4 — Effect of the size of the message on spent time
10,000 | 0,035 0,032
8,801 0,030
8,000 d 0,022 9928 0,031
[} 6,000 '00..5;310 I %) 0,025 M
f’) 4693 "t eeeeesnnass 5010 | 8| 0020)
8l 4000 2,760 | 0,015
al 4 ~—~—— 2,704 | &l 010 0,017
2,000 | 000
0,000 0,000
2 4 8 | 2 4 8
Number of cover files Number of cover files

[
Fig. 5 — Effect of a count of cover files on spent time

49

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

As seen in Fig. 5, as the number of cover files increases, the time to hide the message - decreas-
es. This is due to the fact that the number of information clusters, with an increase in the number of
cover files, decreases, and accordingly increases the number of clusters that will be recorded with-
out mixed. When a message is extracted, the time spent increases according to the number of cover
files. To estimate the dependence of the time spent on the hiding and extracting of the message on
the total size of the cover files, we fix the cluster size - 2048 bytes, the number of cover files - 2,
size of the message is 100 bytes. We will change the total size of the cover files: 1.7, 3.5, 7 MB.
The results are shown in Fig. 6. As seen in Fig. 6, when the total size of the cover files increasing,
time to hiding and extracting the message increases.

] A
8,000 0,025
6,710 I ' 0,021

6000 5010 uee” | oo
g 4,201"““.....0 2[0,015
% 4,000 " 3,293 | 3
& 2,083 2,417 | 810010

2,000 0,005

0,000 l 0,000

1,7 3,5 7 I 1,7 35 7
Total size of cover files, Mbyte | Total size of cover files, Mbyte

Fig. 6 — Effect of the total size of cover files on spent time

5 Conclusions

In this paper, we propose a new method, which, in contrast to the known besides regrouping
clusters covering files additionally changes the order of alternating clusters in each of the cover
files. It allows to further hide a specific information message, that is, increase the bandwidth of the
hidden channel. The proposed method is implemented programmatically, the results of experi-
mental research confirmed the adequacy of the theoretical conclusions and recommendations. There
are results can be argued: the time of concealment and deletion of the message is largely influenced
by the number of clusters over which we need to make a reposition; Extracting is performed much
faster than concealing the message.

References

1. S. Katzenbeisser, F. A. Petitcolas. Information Hiding Techniques for Steganography and Digital Watermarking, Norwood, MA,
USA: Artech House, 2000, 220 p.

2. F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn. "Information hiding-a survey," in Proc. of the IEEE, Vol. 87, No. 7, pp. 1062-
1078, Jul 1999.

3. W. Mazurczyk, M. Smolarczyk, K. Szczypiorski. "Retransmission steganography and its detection”, Soft Computing, Vol. 15,
No. 3, pp. 505-515, 2011.

4. S. Nair, A. Kumar, A. Sur and S. Nandi. "Length based network steganography using UDP protocol"”. 2011 IEEE 3rd Int. Confer-
ence on Communication Software and Networks, Xi‘an, 2011, pp. 726-730.

5. K. Ahsan and D. Kundur. "Practical data hiding in TCP IIP", In: ACM Workshop on Multimedia and Security, 2002, [On-line].
Internet: http://ee.tamu.edu/deepalpdf/ acm02.pdf

6. S. H. Sellke, C. Wang, S. Bagchi, and N. B. Shroff. "TCP/IP Timing Channels: Theory to Implementation", pp. 2204-2212, 2009.

7. V. ltier, W. Puech and A. G. Bors. "Cryptanalysis aspects in 3-D watermarking". 2014 IEEE International Conference on Image
Processing (ICIP), Paris, 2014, pp. 4772-4776.

8. Yang, Qin, Liujie, Sun, and Wenju, Wang. "A robust watermarking scheme for 3D models based on encrypted holographic algo-
rithm". Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things, Harbin, 2015, pp. 85-89.

9. Z. Li, S. Beugnon, W. Puech, and A. G. Bors. "Rethinking the high capacity 3D steganography: Increasing its resistance to ste-
ganalysis". 2017 IEEE (ICIP), Beijing, 2017, pp. 510-414.

10. S. F. Liu, S. Pei, X. Y. Huang, and L. Tian. "File hiding based on FAT file system". 2009 IEEE International Symposium on IT
in Medicine & Education, Jinan, 2009, pp. 1198-1201.

50

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

11. J. Davis, J. MacLean and D. Dampier. "Methods of Information Hiding and Detection in File Systems". 2010 Fifth IEEE Interna-
tional Workshop on Systematic Approaches to Digital Forensic Engineering, Oakland, CA, 2010, pp. 66-69.

12. H. Khan, M. Javed, S.A. Khayam, F. Mirza. “Designing a cluster-based covert channel to evade disk investigation and forensics”.
Computers & Security, Vol. 30, Issue 1, January 2011. [On-line]. Internet: https://www.sciencedirect.com/science/article/pii/
S016740481000088X

13. H. Khan, M. Javed, S.A. Khayam, F. Mirza. “Evading Disk Investigation and Forensics using a Cluster-Based Covert Channel”.
National ~ University of Science & Technology (NUST), Islamabad 44000, Pakistan. [On-line]. Internet:
https://www.sigsac.org/ccs/CCS2009/pd/abstract_17.pdf

14. N. Morkevi¢ius, G. Petraitis, A. Venckauskas, J. Ceponis. “Covert Channel for Cluster-based File Systems Using Multiple Cover
Files”. Information Technology and Control, 2013, Vol.42, No.3. pp. 32. [On-line]. Internet:
http://itc.ktu.lt/index.php/ITC/article/view/3328 .

15. L. Yang, P. Chen, G. Zhu, and L. Yu. "Repairing algorithm design for FAT file system in embedded system". 2011 International
Conference on Consumer Electronics, Communications and Networks (CECNet), XianNing, 2011, pp. 3393-3396.

16. Z. Jinhai. "Research of embedded FAT file system™. 2011 International Conference on Uncertainty Reasoning and Knowledge
Engineering, Bali, 2011, pp. 44-47.

17. H. Zhao, X. Li, L. Chang, and X. Zang, "Fat File System Design and Research". 2015 International Conference on Network and
Information Systems for Computers, Wuhan, 2015, pp. 568-571.

Peuensent: Cepriii Tomona, a.T.H., npod., KuiBcekuit HamionansHu# yHiBepcuTeT iMeHi T. LlleBuenka, M. KuiB, Ykpaina.

E-mail: tolupa@i.ua
Hapniiinno: Bepesens 2018.

ABTOpHU:

Onekcannp KysuenoB, A.T.H., mpod., akagemik Akajaemii Hayk mpukianHoi pamioenekrpoHiku, XHY imeni B.H. Kapa3zina,
M. XapkiB, YkpaiHa.

E-mail: kuznetsov@karazin.ua

Kupun [lexanin, acnipant, XHY imeni B.H. Kapasina, m. Xapkis, Ykpaina.
E-mail: kyryl.shekhanin@nure.ua

Amnppiit Konratin, cTygeHT (akynbTeTy KOMITIOTEPHUX HayK, XapKiBChKUHM HauioHanbHUH yHiBepcuTeT imeHi B.H. Kapasina,
M. XapkiB, YKkpaiHa.
E-mail: kolgatin-a@yandex.ua

Karepuna Ky3nenosa, ctynenTka ¢akynbrery kKoM roTepHux Hayk, XHY imeni B.H. Kapaszina, m. XapkiB, Ykpaina.
E-mail: kate.kuznetsova.2000@gmail.com

€BreH JleMeHKo, CTyIeHT (akyiabTeTy KOMII'IOTEPHHMX HayK, XapKiBCbKMH HalioHaidpHUH yHiBepcuter imeni B.H. KapasiHa,
M. XapkiB, YkpaiHa.
E-mail: demenjay@gmail.com

IIpuxoByBaHHs 1aHUX B (pail10BOI CTPYKTYPI.

AHoTanis. Y cTaTTi JOCTiKYIOTbCI METOIH cTeTaHorpadii, o NpUXOBYIOTH iHGOpMaIiio B CTPYKTYpi (aimoBoi cucremu. A
came, cTpykTypa daitnoBoi cucremu FAT (tabnums posmoxiny ¢aiiiB) i METOAM NMPUXOBYBaHHS iH(POpMAIiifHUX MOBiIO M-
JIeHb, 110 3aCHOBAHI Ha 3MiHi IOJIOKEHHS OKpeMHX KiacTepiB daiiiniB oOkmaanHku. [IponoHyeThCs HOBHH MeETOJ, SKHH, Ha
BiIMiHY BiJl BiJOMHX, 3MiHIO€ TIOPSJOK CIIiTyBaHHS KJIacTepiB B KOXXHOMY (aiini oOKJIaguHKH, IO TO3BOJISIE JOIATKOBO TIp -
XOBaTH iH(popMaIliiiHe MOBiTOMJICHHS, TOOTO 301IBIIUTH EMHICTh MPUXOBAHOTO KaHamy. [linTBEepIKEHO, IO pe3yabTaTH MPO-
Leqyp MPUXOBYBAaHHS Ta BIJIYYCHHS NAaHUX B 3HAUHIA Mipi 3ajJieXaTh BiJl KUIBKOCTI KJIACTEPiB, 3 AKUMH HEOOXiTHO MPOBECTH
BIJIMOBi/IHI NepeTBOpeHHs. Big3HaueHo, mo npoiexypa BIUTydeHHS BUKOHYEThCS Ha0araTo MIBH/IIE, HiX IIPUXOBYBAaHHS MOBi-
nomieHHs. [IpornoHOBaHM METO peai3oBaHUil IPOrpaMHO, a PEe3yNIbTaTH EKCIIEPUMEHTAIbHUX JOCITIKeHD IiATBE PIKYIOTh
MPaBUJIBHICTh TEOPETUIHUX BUCHOBKIB 1 peKOMEHAII.

Kawuosi cioBa: creranorpadis; mpuxoByBaHHs iHGOPMALIHAX TaHUX; (aijioBa cucTeMa.

Penenzent: Cepreit Tomona, 1.1.H., mpod., KueBckuit HanmonansHeli yauBepcuteT nmenn T. IlleBuenko, r. Kues, Ykpanna.

E-mail: tolupa@i.ua
[Moctynuna: Mapt 2018.
ABTOpBI:

Anexcannp Ky3nenos, A.T.H., mpod., akageMuk AKaJeMHH HayK NpUKIagHOW paanosnekrponukd, XHY umenu B.H. Kapasuna,
r. XapbKoB, YKpanHa.

51

mailto:kuznetsov@karazin.ua
mailto:kyryl.shekhanin@nure.ua
mailto:kolgatin-a@yandex.ua
mailto:kate.kuznetsova.2000@gmail.com
mailto:tolupa@i.ua

ISSN 2519-2310 CS&CS, Issue 1(9) 2018

E-mail: kuznetsov@Xkarazin.ua

Kupunn Illexanun, acnupant, XHY umenu B. H. Kapasuna, r. Xappkos, YkpauHa.
E-mail: kyryl.shekhanin@nure.ua

Amnppeii Konratus, ctyneHT gakynpTeTa KOMIbioTepHbIX Hayk, XHY umenu B.H. Kapasuna, r. XappkoB, YkpanHa.

E-mail: kolgatin-a@yandex.ua

Exarepuna Ky3nenosa, cryzneHTka ¢akysipTeTa KoMbloTepHbIX Hayk, XHY umenu B.H. Kapasuna, r. XapskoB, YkpanHa.
E-mail: kate.kuznetsova.2000@gmail.com

EBrenmii JlemeHko, cTyneHT ¢akynbrera KoMnbloTepHbIX Hayk, XHY umenu B.H. Kapasuna, r. XapskoB, Ykpauna.
E-mail: demenjay@gmail.com

CkpbiTHE JaHHBIX B (aii10Boii cTpyKTYpe.

AHHOTauMA. B cTaThe HcciaeayloTcs METOIBI CTeraHorpaduu, CKphIBaonIe HHGOPMALIUIO B CTPYKType (QailnoBoil cucT eMBbl.
A mMeHHO, cTpyKTypa daiinoBoii cuctemsl FAT (Tabnuma pacupeneneHust (paiioB) U METOIBI CKPHITHS HH(OPMAIIMOHHBIX
co00IIeHNH, KOTOPBIE OCHOBAHBI HA U3MEHEHHMHU MOJOXKEHMS OTIENBHBIX KJIAacTepoB ¢ailnos obmoxkku. Ilpeanaraercst HOBBIN
METOJ], KOTOPBIH, B OTIMYNE OT U3BECTHHIX, H3MEHSIET NOPSAOK YepeIOBaHMUs KIAaCTepPOB B KaXIoM ¢ailiie 00JI0XKKH, 9TO MO3-
BOJISICT JIOTIOJHUTENIBHO CKPBITh HH(GOPMAIIMOHHOE COOOLIEHHUE, TO €CTh YBEIHYUTh €MKOCTh CKPBITOTO KaHada. IloaTBepixie-
HO, 4TO Pe3yJIbTAThl IPOLEAYP COKPBITUSA U U3BJICUEHUS JITAaHHBIX B 3HAYUTEJIbHOI CTENEHH 3aBUCST OT KOJUYECTBA KJIACTEPOB,
C KOTOPBIMH HEOO0XOJNMO HPOBECTH COOTBETCTBYIOLIME IIpeoOpa3oBanusi. OTMEYeHO, 4TO MPOLEeAypa U3BICUSHHE BBIIOJH sI-
eTcsi Topas3o OblcTpee, YeM CKphITHe coobmenus. IIpeanaraemslii MeTox peann3oBaH MPOTPAMMHO, a Pe3yJIbTaThl YKCHEPHU-
MEHTaJbHBIX HCCIIEJOBaHUI NOATBEPKIAIOT IPABUIBHOCTh TEOPETUUECKUX BBIBOJOB U PEKOMEHIallui.

Knrouessble c1oBa: creranorpadus; cKpbITue HHOOPMAIMOHHBIX JaHHBIX; (haioBas cucreMa.

52

mailto:kuznetsov@karazin.ua
mailto:kyryl.shekhanin@nure.ua
mailto:kolgatin-a@yandex.ua
mailto:kate.kuznetsova.2000@gmail.com

