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Abstract. A key component of modern symmetric ciphers are nonlinear blocks (non-linear substitutions, substitution
tables, S-boxes) that perform functions of hiding statistical links of plaintext and ciphertext, mixing and disseminating
data, and introducing nonlinearity into the encryption procedure to counter various crypto-analytical and statistical
attacks. The effectiveness of a symmetric cipher, its resistance to the majority of known cryptographic attacks and
the level of information technology security provided by it directly depend on the performance of nonlinear nodes
(balance, nonlinearity, autocorrelation, correlation immunity etc.). In this paper various methods for calculating
algebraic immunity are examined, their interrelation is studied, and the results of comparative studies of the algebra-
ic immunity of nonlinear blocks of the most well-known modern symmetric ciphers are presented.
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1 Introduction

Cryptographic transformation plays an important role in ensuring the security of modern infor-
mation systems and technologies [1, 2]. Symmetric ciphers because of their simplicity, efficiency
and multifunctionality are used in almost all modern cryptographic protocols, and also as an integral
part of other cryptographic primitives: hashing, pseudorandom sequence generation, password gen-
eration etc. Consequently, analysis and investigation of methods for synthesizing symmetric cryp-
tographic primitives, the development and theoretical justification of criteria and performance indi-
cators, including individual units of modern cyphers is important and relevant scientific and tech-
nical problem.

A key component of modern symmetric ciphers are nonlinear blocks (non-linear substitutions,
substitution tables, S-boxes) that perform functions of hiding statistical links of plaintext and ci-
phertext, mixing and disseminating data, and introducing nonlinearity into the encryption procedure
to counter various crypto-analytical and statistical attacks. Thus, the effectiveness of a symmetric
cipher, its resistance to the majority of known cryptographic attacks and the level of information
technology security provided by it directly depend on the performance of nonlinear nodes (balance,
nonlinearity, autocorrelation, correlation immunity etc.).

Certain indices of the effectiveness of non-linear blocks of symmetric ciphers were considered in
[3-9]. The concept of algebraic immunity was first introduced in [10,11] for estimating the stability
of Boolean functions to the so-called algebraic cryptanalysis, proposed in [12]. In [13] these posi-
tions were generalized for Boolean mappings (S-blocks), to calculate algebraic immunity, the math-
ematical apparatus of Grobner bases is used.

In this paper various methods for calculating algebraic immunity are examined, their interrela-
tion is studied, and the results of comparative studies of the algebraic immunity of nonlinear blocks
of the most well-known modern symmetric ciphers are presented.
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2 Algebraic immunity of Boolean functions

The concept of algebraic immunity was first introduced in [10,11] and is considered in detail
in the dissertation [14]. We introduce the definitions and notations necessary for the subsequent dis-
cussion, following the formulations adopted in [14].

Let GF(2) be a binary field and GF(2)" — n-dimensional vector space over GF (2).

Boolean function f(x) of n variables is a mapping f(x):GF(2)" —GF(2) where
X=X, X,) -

Truth table of a Boolean function f(x) of n variables is a binary output vector of the values of

the function that contains 2" elements, each element belongs to the set {0, 1}.
Algebraic normal form (Zhegalkin polynomial) of a Boolean function f(x) of n variables is de-

noted in form:

f(x)=a,®ax ®ax @..0a X, @a,XX, Da XX ®D...0a, X, X, D..®8, XXXz X,

where the coefficients a, €{0,1} and each Boolean function is implemented by the Zhegalkin poly-
nomial uniquely, i.e. each representation of f(x) corresponds to a unique truth table.

Algebraic degree Deg(f) of a Boolean function f(x) is a the number of variables in the long-
est term of the algebraic normal form of a function having a nonzero coefficient a,. At the same
time we consider Deg(0)=0.

Let’s denote as V. the set of all mappings GF(2)" — GF(2), i.e. this is the set of all possible
Boolean functions f(x) of n variables.

The set V, we will consider both as the ring of Boolean functions and as a vector (linear) space

over the binary field, i. e. V, = GF(2)* .

The Boolean function g €V, is called the annihilator of a function f eV , if f-g=0
or (f+1).-g=0.

The set of distinct annihilators of a Boolean function g(x) forms a linear space, let’s denote
itby Ann(f)={geV,|f-g=0}.

Let’s denote the linear space of annihilators of degree <d as

A (f)={g eV, | f -g=0,Deg(g) <d}c Ann(f).

The concept of annihilators of Boolean functions is closely related to the evaluation of the effec-
tiveness of algebraic cryptanalysis of stream ciphers [10]. In particular, when using a filtering gen-
erator (see Fig. 1) of pseudo-random sequences (PRS) the search for the initial state of the linear
feedback shift register (LFSR) is associated with a decrease in the degree of the joint system of pol-
ynomial Boolean equations.

LFSR

r v vV v v
f(x)

PRS

Fig. 1 — Block diagram of the filter generator PRS
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Algorithm of algebraic cryptanalysis proposed in [10] allows under certain conditions, regarding
the part of the intercepted output sequence (PRS), to find the initial state of the LFSR with time

complexity O((S;)°), where

&, nl!
S =
" ;‘i!(n—i)!
and d is the least degree of the non-zero annihilator of the filtering Boolean function f(x) or its
inversion f(x)+1.

Thus, the aim of algebraic cryptanalysis is the search for nonzero annihilators, or at least an es-
timation of their minimal degree. To this end, the definition of algebraic immunity Al(f) of a

Boolean function f eV, was introduced in [11]:
Al(f)=min{Deg(g)|g € Ann(f) org € Ann(f +1)}.

The value of Al(f) is numerically equal to the minimal degree of such a Boolean function
geV,, that f-g=0or (f +1)-g=0.
Using the concept of a linear space of annihilators of degree <d let’s denote:

Al(f)=min{d | A’(f)O0mm A (f +1) =0}, (1)

I.e. for evaluating the algebraic immunity of a Boolean function f eV it suffices to find a nonzero

basis of the space of annihilators of the least degree of d .
The value d allows to quantify the complexity of algebraic cryptanalysis and, if sufficiently
large d, to guarantee the resistance of a stream cryptographic algorithm to an algebraic attack.

Algorithm for computing the algebraic immunity of Boolean functions. One of the algo-
rithms for calculating the algebraic immunity of Boolean functions is presented in the thesis [14]. It

is based on the construction of a basis for the linear space of annihilators Aj(f) of a given degree
d . By increasing d iteratively and repeating the construction of the basis of the space Aj(f), we
obtain the Al(f) estimation by the formula (1), i.e. through a nonzero basis of annihilators of the

least degree.

It is necessary to introduce the following additional notation for description the essence of the
algorithm.

Let’s denote a monomial with respect to variables x,,...,x. as

n X, u =1
Xu: Xu': P '
1;[ ' {1,ui=0,

where vectors x,u €V,’, X = (X,..., X,),u=(U,...,u,) .
The degree of the monomial x" is determined by the Hamming weight (the number of nonzero
coordinates) w, (u) of the vector u=(u,...,u,), i.e.
Deg(x’) =W, (u).

Taking these notations into account, the Boolean function f(x) in algebraic normal form (in the
form of Zhegalkin polynomial) can be written in the form

f)= > ax', a eGF(2). (2)

ueGF (2)"

The function (annihilator) g e Aj(f) can also be represented it in the form of Zhegalkin poly-
nomial
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g(x)= D, bx, 3)

veGF (2)™:w, (v)<d

where b, e GF(2) — unknown annihilator coefficients, w,(v) — Hamming weight of the vector
v=(v,..,v,). The function g belongs to the space Aj(f) only if equality f(x)-g(x)=0 holds
forany x e GF(2)".

By substituting (2) and (3) we obtain

o ¥ ax| £ w3 [ % awe|o

ueGF (2)" VeGF (2)":w, (v)<d ueGF (2)" \ veGF (2)":w, (v)<d

where uvv=(u, vv,..,u, vv,), v —disjunction (logical OR operation).
After grouping the terms by the common factor, we obtain the equality:

z( 5> aubvjxwzo, @

weGF (2)" \ &, .b,:a, vb,=w

which holds for any we GF(2)". Consequently, a system of linear homogeneous equations is ob-
tained

{ Y. ab, =0, vweGF(2)" (5)

ay by, v, =w
relatively unknown coefficients b, of annihilation g(x).

The solution of the system (5), for example, by the Gauss method, determines the basis of the
space Aj(f).

Pattern. For n=2 and d =1

f(x)= Qgo T X, + 8y X, + A %X,
g(x)= boo + b10X1 + b01X2 :
After substitution f(x)-g(x)=0 it follows

f (X) : g (X) = aOObOO + (aOOblo + alObIO + a1ObOO)X1 + (a00b01 + aOlbOl + a01b00)X2 +
+ (a0, +8gibyg + &by + a0y, +a5,by )X %, =0,
from which it comes to a system of linear homogeneous equations:

8oy =0,

8gobho + @y +8ybg =0,

8Dy + 8g1Bpy +89,Py =0,

a0y, +8gibyg + a0y, +ay b +ayby, =0
relatively unknown by,,b,,, b, — coefficients of the function g(x).

Then, for example, for the function f(x)=x, +x, (i.e. for a,, =a, =0 and a, =a, =1) we’ve
got the system:

blO + boo =0,
b01 + boo =0,
b01 + b10 =0,
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which satisfies only two solutions:

by =b, =by, =0, 1.e. g(x)=0,
by =b, =y, =1, 1.e. g(X) =1+Xx +X,.

A close inspection shows that g(x)=1+Xx +X, is indeed an annihilator of the func-
tion f(X)=x +X,:

F()-9(¢) = (% + X)L+ X +X,) =X + X + X + XX, + XX, +X%, =0.
Summarizing the aforesaid, we define the basic steps of the algorithm for finding the basis of
the annihilator space [14].
Input: neN,d e{l,...,n}, function f(x) (given by a list of monomials x" with nonzero coef-
ficients a, in (2)).
Output: Linear space A;(f) given in the form of a parametric family of Zhegalkin polynomi-

als in n Boolean variables of degree <d .
Step 1. Represent the functions f(x) and g(x) in the form of the sums (2) and (3), respective-

ly.
Step 2. Expand the brackets in the product f (x)-g(x) and, by grouping the summands a b x"
by sorting them by a, v b, =w, obtain the equation (4).

Step 3. Compose a system of linear homogeneous equations (5).
Step 4. Find the general solution of the system (5) in parametric form and feed it to the output
of the algorithm.

The dissertation [14] gives an estimate o(m.(s: )3) of the bit complexity of the considered al-

gorithm, where m is the number of non-zero coefficients a, in (2).

Using the considered above algorithm for searching the basis of the annihilator space, we can
calculate the algebraic immunity of a Boolean function f(x) by sequentially scanning all the val-

ues d >0 until we obtain a nonzero space of annihilators A;(f) or Aj(f +1). The minimum val-
ue, for which Aj(f) =0 and/or Aj(f +1)=0, corresponds to the value of the algebraic immunity
of a Boolean function f(x).

Algorithm for calculating algebraic immunity Al(f).

Input: neN, function f(x) (given by a list of monomials x" with nonzero coefficients
a, in (2)).

Output: The value of Algebraic Immunity Al(f).

Step 1. Assign d =1.

Step 2. Calculate the space of annihilators Aj(f) and Aj(f +1).

Step 3. If Aj(f)=0 and Aj(f +1)=0 assign d =d +1 and go to step 2.

Step 4. If AJ(f)=0 and/or Aj(f +1)=0 assign Al(f)=d and feed it to the output of the al-
gorithm.

3 Algebraic immunity of Boolean mappings (S-boxes)

The concept of algebraic immunity of Boolean functions in [13] is generalized to the case of
Boolean mappings F:GF(2)" — GF(2)" (vector Boolean functions), which are implemented by

substitution blocks (substitution tables, S-boxes) of block symmetric ciphers. To determine the al-
gebraic immunity Al (F) we’ll use the terms and definitions from [15].
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Let state the natural numbers n, m, and the field K. Let consider a finite system S of m alge-
braic equations

R0 X0 %,) =0,

P, (X, X,,...., X,) =0,

2(X1 2 ) (6)

P.(X,X%,,....%,) =0

of variables x,x,,..., x, with coefficients over the field K.
Let K[x,X,,...,X,] is the set of all polynomials in variables x,Xx,,...,x, with coefficients over

the field K. On this set the operations of addition and multiplication are defined, and the set itself is
called the polynomial ring. This ring is commutative (for any elements a,b € K[x, X,,...,x,] holds

the equality a-b=Db-a), with an identity (for all a < K[x;,X,,...,x,] holds the equality a-e=a,

where e=1).

A nonempty subset | of a commutative ring with identity R is called an ideal in R (denoted as
I <R) if the following two conditions are satisfied:

— for any elements a,be | elementa—bel;

—forany ael u ceR elementa-ceR.
Elements a,,a,,...,a, constitute the basis of the ideal
| =(a,a,,..,a8,)={a, -n+a,-r,+..+a ;n,L,..rRcR.
It is said that an ideal | <R admits a finite basis if it contains elements a,,a,,...,a, such that

| =(a,a,,..,8,).
The fundamental Hilbert’s basis theorem states that each ideal 1 < K[x;,X,,...,x,] admits a finite

basis, i.e. there are such f,(X,,X%,,...%,), T,(X, %0y X,)5 ooy £ (X, %,,...,X,) €1, that
I =(f,f,,...f)={f-n+f, -+ .+f  r;006,..neKX,X,.., X1}

Let associate with the system S (6) the ideal I, generated by the polynomials P,(X,,X,,...,X,),
P (X, X500 %, )5 - oos Pu(X, %540, X, ), COrresponding to the equations of the system:
1(S)=(R,R,...RP)={R - h+P -r,+...+P, -r;6,b,..r e KX, X,..., X1}

If F el1(S), then for each solution (X, X,,..., X,) of system (6) holds the equality
F(X, X, X,) =
=B (X, Xy X)) (X Xy X)) P(X Xy X)) (X Xy X))+t
+PL (X, Xy ooy X)) 0 (X, Xy X)) = '
=0-1(X, Xy, X)) +0-1,(X, Xyyooy X, )+ +0-1, (X, X, .0, X)) =0.

If {P,P,,...P.} and {P1,P>,..., P} both are two bases of the same ideal |, then the system of
algebraic equations

P (X, Xy, X,) =0, 51(x1,x2,...,xn)=0,
P, (%, Xy, ..y X,) =0, Ez(xl,xz,...,xn)=0,
P (%4 %100 %) =0, Pi (%, Xy, X, ) =0

are equivalent, that is the sets of their solutions coincide.

41



ISSN 2519-2310 CS&CS, Issue 4(8) 2017

Consequently, the set of solutions of a system of algebraic equations is uniquely determined by
the ideal of the system, and the various bases of the same ideal correspond to equivalent sys-
tems [15].

Suppose that there is a certain polynomial h(x,X,,...,X.) € K[X,, X,,...,X,] and it is required in a
finite number of steps to find out whether it belongs to an ideal 1 <K[x,X,,...,X,] given by its ba-
sis | =(f, f,,..., f.,). In other words, it is necessary to solve the so-called problem of occurrence: to
find out whether there exist such polynomials (X, X,,...,X,), L(X, Xy, X,) 5 coes T (X, Xp00es X))
that h=f -r+f,-r,+..+f -r, and hel =(f, f,,..,. f,).

The problem of occurrence is solved by simplifying the expression for h(x,X,,...,X,) using so
called reduction of a polynomial. Let’s write the polynomial h(x,X,,...,X,) as the sum:
h=h. +h,,, where h, — senior monomial, and h,, — the sum of the remaining monomials in h.
Suppose also that h. is divisible by the leading term f_. of one of the polynomials f,, i.e.
h. = f.-Q and h= f_-Q+h,, for some monomial Q. Then the operation of reduction is given by

h=h-f-Q=f.-Q+h, - f.-Q-f,-Q=h, +(-1,)-Q,

where f,, - the sum of the remaining monomials in f. = f. + f,, . Herewith the leading term of the
polynomial h, is less than the leading term of the polynomial h. If a polynomial h belongs to an
ideal 1 =(f,f,,..., f.), then the reduced polynomial h will also belong to this ideal. Indeed if
he(f,f,,..f,) then h—h =fQe(f,f,,.., f,). Consequently, the problem of occurrence can
now be solved no longer for a polynomial h, but for a reduced polynomial h, . If for a finite number
of reductions the polynomial h is reduced to zero (zero belongs to any ideal), then
he(f,f,,..f.).

Basis f,f,,..,f ofideal | =(f,f,,.., f ) is called the Grébner basis of this ideal if every
polynomial hel reduces to zero by means of f, f,,..., f_. In other words the set of polynomials
f,, f,,..., f,, is a Grobner basis in the ideal | =(f, f,,..., ) if for any hel monomial h; is di-
visible by one of the monomials f, f,.,..., f,c [15].

For the operation of reduction of polynomials the concept of the leading term is used. In other
words, it is assumed that on a set of all monomials of the ring K[x,, X,,...,X,] the linear order (mo-
nomial ordering <) is given that satisfies the properties [16]:

— it follows from x" < x" that x"-x" < x"-x" for any monomials x“,x",x" (monomials are de-
fined as (2), i.e. x,u,v,weV, , X=(X,..-, X.),U=(Up,..., U ),V =(V,..0, V. ), W= (W, ..., W) );

— 1< x" for any monomial x".

Some examples of monomial ordering are cited below:

— dictionary or lexicographic order (lex): x* <, x*, if such i exists that u; <v, and u; =v, for
j <1 (first the variables in monomials in the alphabetical order are ordered, and then the first dif-
ference in monomials is found);

— degree lexicographic order (deglex): X" <. X', if W, (U) <w, (v) or w, (u) =w,(v), but with
that x" < x" in the alphabetical order (ordered by the sum of powers, in the case of equality of sums
— by alphabetical order);

— degree reverse lexicographic order (degrevlex): X' <j.ieviex X

v

, Ifw (u) <w,(v) or
w, (U) =w, (v), but with that x" >, x" in the alphabetical order (ordered by the sum of powers, in
the case of equality of sums — by reverse alphabetical order).
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The solution of the problem of occurrence, i.e. the ascertainment of membership of a polynomial
h toanideal I =(f,f,,..., f,), consists in constructing all possible reductions h by means of ele-

ments of the Grobner basis of the ideal | . A polynomial h belongs to an ideal 1 =(f, f,,..., f) if

and only if a zero is obtained as a result of reduction [15].
For each ideal 1 <K[x;,X,,...,X,] there exists a Grobner basis, and the construction of the Grob-

ner basis itself is based on the resolving the linkage [15]. The polynomials f; and f; have a linkage
if their leading terms are both divisible by a non-constant monomial @. Let f.=w-q,
f,c =®-d,, where @ — the greatest common divisor of leading terms f,. and f,.. Let’s consider
the monomial F ; = f;-q,—f;-q, | and reduce it using a basis f, f,,..., f_ as long as possible. If
the resulting polynomial F',; =0, then they say the linkage is solvable. Otherwise, the resulting

polynomial f ., =F" should be added to the basis f, f,,..., f, of theideal I after which the pro-
cedure for finding and reducing of linkage will be continued. After reducing the finite number of
linkages aset f, f,,..., f ., f., .. f, isobtained in which every linkage is solvable.

In accordance with the diamond lemma, the basis f, f,,..., f of anideal | <K[x,X,,...,X,] isa
Grobner basis only if there are no unsolvable linkages in it [15].

The resolving of the linkage allows to define the effective algorithm for constructing the Grébner
basis of the ideal | =(f,, f,,..., f,,) (Buchberger's algorithm).

Step 1. Check whether the linkage in the set f, f,,..., f, exists. If there are no linkages, then the
set f,, f,,..., f, is a Grobner basis of the ideal | =(f, f,,..., f.,). If linkages exist then go to step 2.

Step 2. Form a polynomial F, ; = f; -, — f; -q, with linkage of the polynomials f; and f; found
in previous step and reduce it by means of a set f,, f,,..., f. as long as this is possible. If the poly-
nomial is reduced to a nonzero polynomial f_ ., go to step 3, otherwise go to step 4.

Step 3. Add the polynomial f_ ., totheset f,f,,..., f. and go to step 4.

Step 4. Pick up linkage didn’t examined previously and go to step 2. If all the linkages are pro-
cessed, then we derive the resulting set f,, f,,..., ., f...,..., f, in which all the linkages are solva-
ble. This is the Grobner basis of ideal | =(f,, f,,..., f,).

To date, other algorithms for constructing the Grobner basis are known, for example algo-
rithms F4, F5 [17,18]. The Grobner basis can be simplified in the following methods [15].
1. Minimization of the Grébner basis. If f and f; are two elements of the Grobner basis, with

their leading terms f,. and f,. that are divisible by each other, for example, fjc‘ f., then

the polynomial f; can be removed from the set f,, f,,..., f,,. The Grobner basis is called min-
imal if f,. itis notdivisible by f,. forall i= j.

2. Reduction of the Grébner basis. If some member g of the polynomial f, is divisible by the
leading term of the polynomial f;, then we reduce g it with f; and use the result of reduc-

tion to replace the term g in the polynomial f;. In this case the Grobner basis remains a

Grobner basis, the number of elements of the basis does not change, however the degrees of
the polynomials f,, f,,..., f decrease. The Grobner basis is said to be reduced if no member

of the polynomial f; is divisible by the leading term of the polynomial f, forall i= j.

The minimal reduced Gréobner basis of the ideal | < K[x,X,,...,X,] is uniquely defined (with

unit coefficients at the highest powers of the basis elements), that is, it doesn’t depend on the initial
basis of the ideal | =(f, f,,..., f,) and on the sequence of operations performed (but depends on
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the ordering of the variables x,X,,...,X.) [15]. The concept of a minimal reduced Grdbner basis is

used in the work of Jean-Charles Faugére [13] to determine the algebraic immunity of S-blocks
(nonlinear complication nodes) of block symmetric ciphers. Let consider a non-linear block (S-box)
of the block symmetric cipher (see Fig.2), which implements the Boolean mapping

S:GF(2)" ->GF(2)" [1-9].
S-box is defined by a system of algebraic equations over a binary field:
fl(X17X2""'Xn) =Y
£,(X, X0y X,) = s

(7)
o (X Xgse X)) = Y
i.e. a collective of Boolean polynomials
Vi = B0 X0 %),
y2_f2(x1’x2"“’xn)’ (8)

Yo — F (X0 %000 X,)

in the ring K[X,, X, ..., X, Y1, Yoo Y] OF variables x,%,,...,X,, ¥y, ¥o,-.., ¥, With coefficients over
the field K =GF(2).

X, —» — Y, = (X, %X,,.0 X))

X,—» L Y, = F (X X000 X))
S-box

X,—> — Y = fm(Xl,Xz,...,Xn)

Fig. 2 — Block diagram of a non-linear block of a block symmetric cipher

With the system of equations (7), algebraically defining the structure of an S-block, we associate
the ideal | generated by the polynomials (8):

1(S) = (Y, = fL(X X0 X0 ), Yo = £ (X0 X0 X0 ), os Y = B (X0 X500 X)) =
={(y, =) L+ (Y, — F) L+t (Yo — Tu) i 0 Do Ty € GF(2)[X0 X0y Xy Vi Yaoeens Y1} -

Algebraic immunity of a non-linear block of a block symmetric cipher is defined as the min-
imal degree of a polynomial P inanideal 1(S) [13]:

Al (S) = min{deg(P), P & 1(S) GGF (D)[X,, Xps-r Xy Yos Var-oos YT}, (©)

and the minimal reduced Grobner basis of the ideal 1(S) for a degree reverse lexicographic order
(degrevlex) contains a linear basis of polynomials P in 1(S), such that Al(S)=deg(P). In other
words, to calculate algebraic immunity AI(S) it is sufficient to construct a minimal reduced Grob-
ner basis of the ideal 1(S) given by equations (8) and to find a polynomial of minimal degree

among the elements of this basis. The value of the minimum degree is the value of the algebraic
immunity Al(S) of the block symmetric cipher substitution box (S-box).
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The link between the algebraic immunity of the S-block (9) and the Boolean function (1) is
shown in [19, p. 337]. Consider a Boolean function fg (X, Xy, ..., X,, ¥y, Yos-eer Yo ) : GF(2)*" — GF(2)
whose values are defined as follows:

LV, (%0 X0 X)) = Y5,

fS(X11X21-..1Xn’y1’y21-..1ym):{0’3i, J fi(Xi,Xz,...,Xn) + yJ

The set of solutions of equation
fo (X, X0 s X0 Vi Yoreens Vi) —1=0

coincides with the set of solutions of system (7). Consequently, there are different bases (fg—1)
and (y,—f,y,—f,,....y,,— f,,) of one ideal of equivalent systems, i.e.

I(fs _1): I(yl_ fl’ Y,— fl""1ym - fm)'

Ideal of the space of annihilators Ann(f)in the ring GF(2)[X,, X,,..., X, Yis Yo ¥, COINCideS
with the ideal 1(f;—1), hence, the algebraic immunity (9) of the Boolean mapping

S:GF(2)" - GF(2)" coincides with the minimal degree of nonzero polynomials belonging to the
annihilator of the function f:

Al(S)=min{Deg(g)| g € Ann(f;)}.

Thus, any S-block can be unambiguously described by a Boolean function [19], the algebraic
immunity of this function can be calculated, for example, using the algorithm of paragraph 2.

4 Values of algebraic immunity of nonlinear blocks of modern ciphers

In this paper comparative studies of the algebraic immunity of nonlinear blocks of modern sym-
metric ciphers have been carried out. As objects of research, well-known and standardized on the
national and/or international level block symmetric crypto-transformations are chosen:
— cryptographic algorithm AES, standardized in the US as a federal data processing standard
FIPS-197 [20], and also internationally as a block cipher in ISO / IEC 18033-3 [21];

— cryptographic algorithm Camellia, standardized internationally as a block cipher in
ISO/IEC 18033-3 [21];

— cryptographic algorithm CAST, standardized internationally as a block cipher in
ISO/IEC 18033-3 [21];

— cryptographic algorithm SEED, standardized internationally as a block cipher in
ISO/IEC 18033-3 [21];

— cryptographic algorithm “Kalyna”, national standard of Ukraine DSTU 7624:2014 [22];

— cryptographic algorithm “Kuznechik”, standardized in Russia as GOST 34.12-2015 [23];

— algorithm of symmetric encryption and integrity control “BelT”, the Republic of Belarus,

standardized in STB 34.101.31-2011 [24];
— cryptographic hash function Whirlpool, based on block symmetric crypto-transformations,
standardized internationally in ISO/IEC 10118-3:2004 [25].

To calculate algebraic immunity the expression (9) was used. For immediate calculations, the
Magma software package [26] is used, which implements a wide range of functions related to alge-
bra, group theory, rings and fields, number theory and many other branches of mathematics.

The tested blocks of the replacements, except for the S-block of the hash function of Whirlpool,
were considered in detail in work [9], table 1 shows some results of the research.

The following notations [9] are used in the table:

— B —balance;
— N -—non-linearity;
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— A —autocorrelation;

— AD —algebraic degree;

— PC —propagation criterion;
— Cl —correlation immunity.

Table 1 — Cryptographic properties of non-linear blocks of block ciphers

B N A AD PC Cli Al

AES + 112 32 7 0 0 2
SEED - 110 40 7 0 0 2
CAST-128 - 120 0 4 8 0 2
“Camellia” + 112 32 7 0 0 2
“Kalina” + 104 72 7 0 0 3
“Kuznechik” + 102 72 7 0 0 3
“BelT” + 104 72 7 0 0 3
“Whirlpool” + 95 80 7 0 0 3

In the last column “Al” of Table 1 the values of the algebraic immunity of nonlinear substitution
blocks of modern ciphers are listed. These data are obtained from (9) by constructing Grobner bases
of ideals 1(S) given by sets of polynomials (8) from equations (7) of the corresponding S-blocks.

The results obtained are indicative of the insufficient algebraic immunity of nonlinear boxes of
block ciphers, which were developed in the late 90s — early 2000s. The algorithms considered
(AES, SEED, CAST-128, “Camellia”), represented in the modern international standard 1SO / IEC
18033-3, have relatively low algebraic immunity and can potentially be considered as real targets for
constructing effective algebraic attacks.

Block symmetric crypto algorithms “Kalyna”, “Kuznechik”, “BelT”, as well as cryptographic
function of hashing of Whirlpool, are developed taking into account the possible algebraic attacks.
Nonlinear substitution blocks of these algorithms have high algebraic immunity and, apparently,
will remain resistant to new methods of algebraic cryptanalysis.

5 Conclusion

Methods of algebraic cryptanalysis since early publications [27,28] have turned from abstract
and inapplicable mathematical ideas into a developed section of modern cryptology that is widely
discussed in the scientific community. To date, a huge number of research projects have been car-
ried out in this field of knowledge, and obviously, in the coming years, effective algorithms for al-
gebraic cryptanalysis of modern symmetric ciphers should appear.

In this paper some aspects of algebraic cryptanalysis were considered, in particular, methods for
calculating the algebraic immunity of non-linear blocks of symmetric ciphers were studied. This
concept first was introduced for stream cryptoalgorithms in [10,11], and was generalized in [13] to
Boolean mappings, i.e. nonlinear blocks with arbitrary dimension of inputs and outputs. Algebraic
immunity, in some sense, characterizes the complexity of solving a system of equations describing a
non-linear block and thus allows one to obtain an idea of the resistance of a symmetric cipher to al-
gebraic cryptanalysis. In particular, the algorithm of algebraic cryptanalysis of stream ciphers with
filter-generator scheme was proposed in [10]. Complexity of implementing this algorithm is a func-
tion of the value of algebraic immunity of a cryptographic Boolean function.

The calculation of the algebraic immunity of a nonlinear block in the general case is associated
with the construction of the Grobner basis of the ideal of the polynomial ring given by polynomials
from the equations of the permutation block. This problem is solved by computationally effective
algorithms of Buchberger, F4, F5, etc. [15-18]. Moreover, the considered mathematical methods
can also be used to search for effective algebraic attacks [19], which confirms the perspective and

46



ISSN 2519-2310 CS&CS, Issue 4(8) 2017

relevance of ongoing research in this field.

In this paper the algebraic immunity values substitution boxes of some modern ciphers are given.
In particular, it was found out that the cryptoalgorithms developed at the end of the 90s — the begin-
ning of the 2000s do not have the ultimate values of algebraic immunity, i.e. can be considered as
targets for potential effective algebraic attacks. Block ciphers of the latest generation (“Kalina",
"Kuznechik", "BelT") were developed taking into account the possible application of algebraic
cryptanalysis and have uttermost values of algebraic immunity.

A promising direction is further research on methods of algebraic cryptanalysis, in particular, the
use of quantum computing technologies to solve systems of algebraic equations that describe a
symmetric cipher. According to the authors of this work, in this direction of research the most sig-
nificant and interesting scientific results are expected.
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