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Abstract. We investigate periodic characteristics of sequence of output blocks in the output feedback encryption
mode. The model of random homogeneous substitution is used for an abstract description of this formation. This
property is directly related to the periodic properties of output feedback encryption mode, since it characterizes the
probabilistic distribution of output blocks with certain period appearance, provided that the assumption is made that
the properties of the block symmetric cipher are consistent with certain properties of the random substitution. Also in
the work specific practical tasks are solved, namely recommendations are being developed for the application of the
outbound feedback on the encryption threshold, certain requirements and limitations are justified.
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1 Introduction

One of the most common block symmetric encryption modes used to provide confidentiality ser-
vices is Outbound Feedback (OFB). The OFB has several advantages: firstly, the output block can
be formed in advance, even before the message, which can greatly speed up the process of protect-
ing information; and secondly, in this mode, as in the mode Electronic Codebook - ECB, errors that
can arise when transmitting ciphertext over the communication channels, are localized in the block,
not extending to the neighboring, and in the OFB mode only changed bits will be false (in the ECB
mode the entire block will change). Thirdly, the cryptographic properties of the output block do not
depend on the open text, they are determined only by the properties of the base cryptographic trans-
formation, and, possibly, by the value of the initialization block, which determines the specific form
and frequency of the output block. This work is devoted to study of the periodic properties of output
block in OFB mode, because the occurrence of output block repetition is the most dangerous case, it
gives an attacker the possibility to violate the established mode of message confidentiality.

We derive a formula for estimating the probability of a cycle occurrence for an arbitrary fixed
value of a set of transformations. This property is directly related to the periodic properties of the
output blocks, since it characterizes the probabilistic distribution of the output block with certain
period appearance, provided that the assumption is made that the properties of the block symmetric
cipher are consistent with certain properties of the random substitution. Also in the work specific
practical tasks are solved, namely recommendations are being developed for the application of the
Outbound Feedback on the encryption threshold, certain requirements and limitations are justified.
The conclusions summarize and concretize our results, discuss possible ways of further research.

2. Output Feedback Encryption Mode

The output feedback encryption mode is intended to provide a confidentiality service. This mode
is based on encryption of the initialization vector to generate a sequence of output blocks that are
added to the normal text to form encrypted text and, conversely, to the ciphertext to decrypt it. This
mode requires unique initialization vector for each application with the provided (fixed) key. Let's
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consider the specification of output feedback encryption mode.
The parameters of the mode are encryption key K, |K|=k, and initialization vector S, |S|=1.

Additional requirements for initialization vector are not imposed. When encrypting the message M
(|M|>1) is presented as a sequence of blocks:

M=mm,|..[Im,, [m|=1
for i=1,2,.,n-1, 1<|m,|<I.

The initial value of the output block y, (|,|=1) is calculated as

7% =T (S)- (1)
Each ciphertext block is calculated according to the ratio
c=meL, () ) 2
for i=12,..,n, and
=T (7ia) ©)
for i=12,.,n-1.
The result of message encrypting is ciphertext C=c,||c,||...]|c,.

When decrypting, the ciphertext C (|C| >1) is presented in the form of a sequence of blocks:
C=cllc,Il.-llc,, [c|=]

for i=12,..,n-1, 1<|c | <I.

The initial value of the output block 7, (|y,|=1) is calculated as

7o =T (S)-
Each message block is calculated according to the ratio
m =c® L|,\mi\ (7i—1) 4)
for i=12,..,n, and
7i :TI,(Ii()(}/i—l)
fori=12,.,n-1.
The result of the decryption of ciphertext is the message M =m,||m, ||...|[m, .

The encryption and decryption scheme in the output feedback encryption mode is shown in
Fig. 1. This scheme formally depicts the sequence of execution of transformations (2), (4) for all
values of the cyclic variable i=1,2,..,n.

Let's consider the periodic characteristics of output feedback encryption mode. First, we note
that, by definition, the output block consists of the initial value of the block y, and the remaining

blocks y., which are calculated for (1), (3) for each value of the cyclic variable i=1,2,..,n—1. That

is, the task of the research is precisely in determining the period of the sequence of blocks
7, 1=01.,n-1.

Each output block y, is the result of encrypting the previous block y; ,, where the initial value
7, 1s equal to the result of the initialization vector encryption. If you use the terminology of the
substitutions theory [1-3] and present the basic encryption transformation Tlff) initiated by the se-
cret key K as some substitution s acting on the set of open texts, then the period of the sequence of




ISSN 2519-2310 CS&CS, Issue 3(7) 2017

output blocks 7, 7,, ..., 7,_, will correspond to one of the cycles s, = (y,s,(Y),S*(Y),....s¢ "(y)) of
the substitution s where the initial value of the cycle y is equal to the initialization vector value S .

K e ﬁ
S * ¥ * i * n2 Ve ] Fa
=T (S) AT o) s ) > - B )
M=my([m,]...[m,
k!
+

C=clle;--lle,

;mn M=m|my]|..|m,
S — — —
—> L (S) =L ) E L () =)

+ 7o + + e Fma ' Fn

>

Fig. 1 — Scheme of encryption and decryption

Each next element s’(y) of the cycle s, with the length I is the result of multiple encoding of

the initialization vector:
y=S,;

(N =T (S)=r;
s' () =T (T40(8)) = s

() =T (TO.TE(S)) = 715
|i—1;a3i3

)= (LT (8)) =R =70
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$' (V) =T (T80 T8 (8)) = 7.
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Thus, the investigation of the periodic properties of the sequence of output blocks »,,i=0,1,..,n

is to study the cyclic structure of the substitution s, namely, in estimating the distribution of the
length I, of the cycles s, for different initial values y=S of the basic ciphering transformation

T,ff). Such investigations will make it possible to estimate the length |. of output blocks period for

different y=S and K or to determine the probability of forming the output blocks of a certain pe-
riod for an arbitrary fixed value of the initialization vector y=S and a randomly selected secret

key K.

Let us consider some of the provisions of the theory of substitutions and their relation to the
properties of BSC, in particular, we introduce the basic concepts and definitions associated with
certain properties of symmetric block crypto-transformations (the distribution of the number of cy-
cles, magnifications and inversions, etc.).

3. Special Provisions of the Theory of Substitutions

By the definition BSC is a key-parameterized function of a bijective mapping of a set of
plaintexts into a set of ciphertexts V, —»V,, K eV, [4]. In general, for any I-bit block cipher there
are 2'! possible permutations of plaintext. These transformations, called permutations of degree 2',
form a group under the operation of performing sequential transformations. Such a group is called a
symmetric group of permutations of degree 2" and is denoted by S, [1]. In practice, it means that
the number of bits of the key, which is necessary to obtain all possible permutations, is about
In2'1~1-2" bits (by the Stirling formula In(x!) = xIn(x) —x—0O(In(x)) ). For example, for | = 128,
we have 21~ 2%%% possible permutations of 128-bits blocks, of which, depending on the length
of the key, only 2% or 22°® transformations are used. Thus, the basic transformation of the cipher is
essentially a subset of the complete set of all possible substitutions acting on a set of processed data
blocks. The basic assumption that is adopted in substantiating the stability of symmetric crypto-
graphic transformation is in preserving the probabilistic properties of random substitution. It is as-
sumed that while encrypting and applying a limited set of substitutions from S, , however, certain

distribution probabilities of this subset elements correspond to the properties of randomly selected
substitutions from the whole set S, [5-8].

Let’s consider the basic concepts and definitions of the theory of substitutions [1] and associate
them with cyclic properties of BSC. For this we consider the set of all biective transformations of

the set Y ={y,, ¥,,..., ¥} to itself, forming a symmetric group S, with the power n! of all possible
substitutions of degree n. By definition of the symmetric group [1], each substitution se S, corre-
sponds to a unique substitution s e S_, such that

sTos(y)=s-sT(y)=e(y), yeV,
where e(y) € S, is the unit substitution, i.e. e(y)=y forall yeY .
Let’s use the following symbols:
$-s-..-s=8, 5.5t -8
where products contain k multipliers. Accordingly, we have
s“.s¥=s¥.sk=5s"=¢.

The set of substitutions of degree n, which is locked in relation to the multiplication and inverse
computation operation for se S, an element s*eS_, is called substitution group. Each such
group is a subgroup of the symmetric group S, [1].

Consider some substitutions se S, that act on a set Y . We will define a binary relation on a set

-1, -1 _ ok

=5,

Y , while we will assume that y ~y' for y,y'eY if there exists such j that y'=s!(y). This bina-
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ry relation is reflexive, symmetric and transitive, i.e. the relation is equivalence. Indeed, according
to [1] we have:

o y~vy,because y=s"(y)=e(y);

e - it follows from condition y~y' that y'~y, because it follows from equality y'=s'(y)
that y=s7'(y");

e - it follows from y~y' and y'~y" that y~y", because from the equalities y'=s’(y) and
y"=s'(y" it follows that y"=s'(s'(y))=s"(y).

The cycle s; of substitution s e S, with the length |, is defined as follows:

5, =(¥,5(¥), 87 (V) 57 (YD)
where s (y)=y.
An arbitrary substitution s e S, can be expanded into the corresponding cycles [1]:

5 = (Y3, 8.(¥), 87 (¥a)s oo S (V) (Vi S (¥ S (Yoo ST (¥)): (5)
Elements y, and y,,, in substitution seS, form increment, if s(y,)>s(y,,,) it is assumed that
an element y, always preceded by increment. A pair of elements y; and y; in substitution seS,
forms an increment if s(y,) >s(y;), i<j.
For example, the substitution s of degree 4

s={ 7S T 7 jz(l 2 3 4]
s(v) s(y) s(ys) s(v,)) (1 4 3 2
can be given in the form of a schedule for 3 cycles:

s=(y)=0, =1

S, = (yzlsz(Y2)) =(2,4) ’ Iz =2 ;
S3 =(y3) :(3)1 |3 :1.
We have the following schedule:
$ = (Y)(¥2: 5, (Y, ))(¥;) =(D)(2,4)(3).

In this substitution there are two increments (the element y, =1 always preceded by one incre-
ment, and one more increment forms the elements y, =1 and y, =2, because s(y,) =1>s(y,)=4)
and three inversions (they form pairs of elements y, and y,, y, and y,, y, and y,, because there
are inequalities s(y,) >s(y;), s(Y,)>s(Y,), s(Ys)>s(y,), respectively).

On the set of all permutations of the symmetric group S, we give a uniform probabilistic distri-

bution, i.e. for each selected substitution seS, we put in correspondence the probability of its se-

lection equal to 1/n!. According to modern views of symmetric cryptography, such a set of equiv-
alence mappings corresponds to the idea of an "ideal” cipher. After all, if the random selection of a
separate substitution s S is associated with the value of the entered encryption key, then the re-
sulting conversion will match the random and evenly selected ciphertext for each open text with any
key, i.e. in all possible variants of open text mapping in the ciphertext.

We will investigate the probabilistic properties of random substitution, in particular, the proba-
bilities of a cycle of a certain length in a randomly selected substitution, since this particular event
will correspond to the case when the output block y; of a certain period is formed for an arbitrary

fixed value of the initialization vector S.
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4. Probability Evaluation of a Certain Length Cycle in Randomly Selected Substitution

Consider a random value & equals to the number of cycles in a randomly chosen substitution
se S, . The substitution s e S refers to a cyclic class {1“2..n*"} if it contains ¢, cycles of length
1, «, cycles of length 2, and so on:

S = (YY) (Y )Y 1 Y " DY 5 Y ) (Y 0 Y 0 )
log +20, +...4+ N, =nN.
Denote by C(e,,,,...,c,) the number of substitutions in the cyclic class {1“2*..n"}, and by
C(n,k) the number of substitutions of degree n that have k cycles. Then we have [1]:
n!
S 1%2%, n“g e, a, !
n!
Cink)= > =s(n,k)|, (6)

ayna, a,
o 2aytoana-n L27%.0"a te, Lo, !

oy +ay+.+a,=k, ;20

Clay,a,,...,x,)

where s(n,k) are Stirling numbers of first kind, which is determined by the ratio
(), =X(X=1)...(x—=n+1) = > s(n,k)x“,
k=0

where (x), =x(x—1)...(x—n+1) is the common designation of the declining factorial (the symbol of
Pohgammer).

Formula (6) implies the expression for the exact probability distribution of a random event

& =k, in the case where randomly selected substitutions will observe exactly k cycles (see ex-
pression (5)).

Using the formula for computing Stirling numbers of the first kind, we have [1]:
C(n,k) |s(n,k)
Pz — k)= < . ) _| ' |
n! n!
In [1] we obtain the expected value M ¢, and variance D&, of the random variable &, :

,k=0,1..,n.

n

ME, =Zl_=|nn+C+o(1), D&, =21—2%=|nn+C+o(1), C=0,5772...,

=1 j=1 j=1
in addition, it is shown that when n— oo a random variable &' =(& —Inn)/(Inn) is distributed
asymptotically with parameters (0, 1)

limP(&' <u)= 1 [ e dy

2z

For random variables ¢, and 7, , which are equal to the number of increments and inversions

in randomly selected substitution seS_ , the corresponding expected value and variance have the
form [1]:

n(n—-1) Dr =2n3+3n2—5n M2 _n Dy _n

ME =
& 4 72 "2 "o12

in this case random variables

¢ =0 -Mg) /(D)

when n — oo are also asymptotically distributed with parameters (O, 1).
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Empirical distributions of the probability of occurrence of a certain number of cycles, increments
and inversions in randomly selected substitutions from a certain subset V S, whose elements are

substitutions implemented by the use of the encryption function on reduced cipher models, are in-
vestigated in [5, 8]. It is established that the obtained empirical distributions are very close to the
theoretical distributions under consideration, i.e. it can be argued that the reduced models of BSC
on these criteria are similar to the properties of random substitution from S, .

At the same time, to evaluate the probability of forming output blocks y, of a certain period for

an arbitrary fixed value of the initialization vector S another characteristic of random substitution
is required, namely, the distribution of the number of cycles of a given length. In accordance with
[1], this characteristic in random substitution is determined as follows.

We denote y,, as the number of cycles of length L in an arbitrary equivalence arbitrary substi-
tution of degree n. Obviously that

S = Xnia T Xna ot Znon
The probability distribution of a random event y, =k is defined as [1]:
1 [n/L] k( 1)]
P =k) = , k=0,1...,|n/L|. 7
(=R = 1 2 oyr o[n/L] (7)
When n— oo arandom variable y,, has a Poisson distribution with parameters 2 =1/L, i.e.

: Ly 1 .
limP(z,, =K)={rpe " k=01... (8)

We use the formula for the exact distribution of probabilities of a random event y, =k in the
form (7) [1]. The value n!P(y, =k) corresponds to the number of substitutions containing k cy-
cles with the length L. We are interested in the number of such substitutions se S, , which for an
arbitrary fixed y, eY will necessarily have cycles s =(y,,s (Y,),s*(Y.,),...s' (y;)) of lengths
L =I.. Consider the case when L =1, i.e. we will count the number of such substitutions from S
which, for an arbitrary fixed y. €Y will necessarily have a cycle (y,) of length L=1. =1. In cryp-

tography, when considering block symmetric cryptographic transformations, such cases are called
fixed points of substitution [5]. Taking into account that L =1, formula (7) takes the form

POtna =K) =1 2(1)1 k=0,1,..,n

and for each k =1,...,n of n!P(y, _, =k) cases for an arbitrary fixed y; Y will be observed pre-
cisely
Coa_ (h=1!  ki(n-K)! Kk
C¥ (k=-1)!(n-k)! n! n
times, i.e. the number of substitutions containing one fixed point of a specific form (cycle (y;)) will
be determined by the formula:

)

>Rz, =K) —;(Eﬁjgj;“ﬁ'j=(n—1)!, (10)

and the corresponding probability of the appearance of such fixed point (for given initial value
y; €Y) in the randomly chosen substitution of the degree n will look like:
C (n-p' 1
> P(y12=H) -1=( r_1 (1)

n! n

10
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Let’s explain the formula (9). In total, there are exactly C* methods for simultaneously choosing
values ., V.Y, Y €Y, Yi#EY, #Y, #..#Y,,  Which uniquely determine cycles
(vi) (v,) (v,) .. (y; ) of length L=1. But for each fixed y, €Y there are exactly CX, ways for
choosing the remaining values vy, ,y; ,...,y; €Y . lL.e. from the total number n!P(y, ., =k) of sub-

stitutions containing k cycles of length L =1, only
k-1

Co k
NP, =k) C"l =NP(Yy 10 = k)H

n
substitutions will necessarily contain a cycle (y;) .

The last formula (11) can be obtained much simpler from trivial combinatorial considerations.
Indeed, if on the set Y ={y,,V,,..., ¥,} we will fix m elements, then there are (n—m)! ways for

permutations of the remaining elements. I.e. on the all set of substitutions from S_ with the random
probability distribution, the probability of choosing a substitution with m fixed points is equal to
(n—m)! 1 1
nt  (n-m+D(n-m+2).n ()
Which for m =1 coincides with (11).
Formulas (9-12) were obtained in [9] when studying Galois / Counter Mode and GMAC - GCM
& GMAC, which allowed us to estimate the probability of a zero hash subkey, i.e. the probability of
such event, when encryption of zero open text will get zero value of ciphertext. We extend the re-
sult obtained earlier to an arbitrary value of the length of cycle L=I. €{L,2,...,n} in the study of
periodic properties of the output blocks in OFB mode.
Consider the case of an arbitrary length of a cycle, we will calculate the number of such substitu-
tions s from S, which, for an arbitrary fixed y, €Y will necessarily have a cycle

(yi J Si(yi)! Siz(yi)""’ SiLil(yi))

(12)

of length L=1€{L2,...,n}.
For fixed lengths and quantities of cycles (L and k) there are exactly C*- ways to simultane-
ously select values

Vi Yoo Yoo Yo
yil' yjli yula"'y yvla
yi2 1 y,z 1 yu21---1 yvz l (13)

yik—l’ yjm’ yUH T ykal !
which collectively determine k cycles of length L each:

(i Yi =5 (Vi) Y, = Siz(yi)1"'1 Yo = SiL_l(yi)) )
Vi Y5 =8 () Yo, =S (Y ) Yo, =S5 (Y,))
(i, Y5, =S, i ) Yo, =S8 (V) Yo, =80 (VL)) (14)

(yik—l, yjk—l - Sik—l (y' H)’ yUH - Sizka (yik—l), T yVH = SLil(yikfl))’

et
and all elements from (13) are unique, since the set of cycles (14) is included in the decomposition
of the same substitution.

Of the C“ ways of simultaneously choosing the values (13) for each fixed set

Yir¥i» Yy Yy, €Y there are exactly CX* ways for choosing the remaining values

11
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yil' yjl’ yul'"" yVl’
Yi, 1 Yi, o Yo, e Yo, 0

Yi Vi Yoo Yo
because the selection of set vy, y;,y,,...y, €Y is determined by selecting only one element
y; €Y, and from the remaining n—1 elements possible different combinations of kL —1 elements.
Thus, for each k =O,1,...,[n/ L] of the total number n!P(y,, =k) of substitutions containing k
cycles of length L, only
nP(z . —K) C:E - Pz, - )(n DIKLI(n—kL)!
Cct ni(kL —1)!(n- kL)I
substitutions will necessarily contain a cycle
(Yo S (VST (W) ST (V1))

Summing up the last expression for all k :0,1,...,[n/ L], taking into account (7), we obtain an

n!'P (nL_k)__(n 1)'kLP(ZnL k)

exact formula for determining the number of substitutions s from S, which, for an arbitrary fixed
y. €Y will necessarily have a cycle

(¥, (%), 87 (VS (V1))
of length L=1 €{L,2,...,n}:

Zn P(z, =K) (1)'—<n ) (15)

c:L Z(k 1)'|_kl ~ Uj

and the corresponding formula for calculating the probability of randomly choosing a substitution s
from S, with the following cycle:

[n/L] Ckal (n _1)| 1
= Znl = —
2P == e (16)

It is obvious that the last analytic expression for L =1 completely coincides with the formula (8)
in [9] with the corresponding statement.

The resulting analytic expression (16) can also be considered as a combinatorial identity (simpli-
fied formula) for the sum of the members of formula (7) with the corresponding proportional coef-
ficients

Coy' kL

ct n
or even for the Poisson distribution (8). The probability estimate (16) of a cycle of a certain length
can be obtained by another, in a much simpler way, using simple combinatorial considerations.

We fix some arbitrary value y, from the set Y ={y,,V,,..., ¥, }. There are totally n! substitutions

on the set Y , of which only

n—!:(n—l)!
n

substitutions will contain a cycle (y,) of length L =1 in their cyclic schedule.
In addition, from n! substitutions of the symmetric group

(n-1)=(n-1)!

n(n —1)

12
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substitutions will contain a cycle (y;,y,,;) of length L =2,
n!
m(n—l)(n—Z) =(n-1)!
substitutions will contain a cycle (y;, Y, Y. ;) of length L =3 and so on.
That is, for an arbitrary fixed value y, €Y the number of substitutions from S, containing the
cycle (y,,s,(Y,),S7(Y),-,S-(Y,)) is defined as (n—1)!, and the corresponding probability of ran-
domly choosing a substitution containing such a cycle is defined as

(n-p! 1
n! n'
regardless of the length of the cycle L=Ie{2,.,n}, nor its own value vy, from

Y ={Ys Voron Yo}
Thus, the probability of a cycle of a certain length is determined only by the degree n of substi-
tution. For example, for n=4 from n!=24 substitutions of the symmetric group for any fixed y.

from Y ={y,, ¥,, ¥s, ¥,} we have (n—1)!=6 substitutions each that necessarily contain cycles of
different lengths (or (y;), or (¥, ¥;.i)» OF (Vs Yisis Yusi i) OF (Yo Vit Yusi i Yosi ju) » TESPECTIVELY).
Consequently, the probability that a randomly selected substitution from S, contained cycle of
length L=1. €{L,2,...,4} will be equal to 1/n=1/4 independent from either y. no L=I..

Since the obtained analytical expressions (15) and (16) are rather complicated and cumbersome,
especially the order of their output, we illustrate the example of calculating the probabilities of a
cycle of given length in a randomly chosen substitution from a symmetric group S,. An example

will be supplemented by explanations showing the validity of the formulas obtained and the combi-
natorial arguments presented.

5 Example For Symmetric Group S,

Consider an example of all biective transformations of the set Y ={y,,v,, ;. Y, } to itself, i.e. the
set with n!= 24 substitutions of degree n = 4.
Table 1 shows all substitutions that make up the symmetric group S, (the results of each substi-

tution are given, the order of each substitution for cycles, total number of cycles and the distribution
of the number of cycles of a certain length, each substitution is numbered for convenience).
Table 2 shows the distribution of the number of values & =k and y, =k for different k (the

symbol # (x) indicates the number of cases (x) for all substitutions from S,).
Consider the case when for an arbitrary fixed y, €Y randomly chosen substitution s from S,

will necessarily contain a cycle (y;) of length L =1.

First we consider substitutions with k = 1 cycles of length L =1. We have 8 such substitutions
(table 2). But each individual y. €Y generates a cycle of length L =1 only twice, that is, for each
arbitrary fixed y. €Y there are precisely 2 substitutions that contain a cycle of length L =1 of the
form (y,) . For example, for y, €Y these are 4th and 5th substitutions, for y, €Y these are the 16th
and 21st substitutions, etc. The number of substitutions, which for an arbitrary fixed y. €Y contain-
ing k = 1 cycle of length L=1 of form (y,) are calculated as follows. In total, there are exactly
CK3' =4 ways to select a value y, €Y . This choice is no longer limited, because for each y, Y
cycle (y,) is defined unambiguously (according to the formula there are C*%° =1 options for
choosing a value y,;,; €Y ). That is, the total number of substitutions containing only k = 1 cycle of

13



ISSN 2519-2310 CS&CS, Issue 3(7) 2017

kL-1=0
length L =1 (such 8 substitutions) must be multiplied by value —1=% =7 Thus, for an arbitrary
n=4

fixed y, €Y the number of substitutions containing only one cycle (y,) is equal to two.

Table 1 — The set of substitutions from S, and their cyclic properties

N Number of cycles of
Result of substitution Decomposition of | Number of length L, xn, L

substitution to cycles cycles, &n

-
1

1| L=2| L=3

It
ESN

s(y1) | s(y2) | s(ya) | s(Ya)

Y1 Y2 Y3 Ya (Y1) (y2)(y3)(Ya)
Y1 y2 Y4 Y3 (Y1) (Y2) (Y3, Ya)
Y1 Y3 Y2 Ya (Y1) (y2,y3)(ya)
Y1 Y3 Y4 y2 (1) (Y2, Y3, Ya)
Y1 Ya Y2 Y (Y1) (Y2, Ya, ¥3)
Y1 Y4 Y3 y2 (y1) (Y2, ya) (¥s)
Y2 Y1 e Ya (Y1, Y2) (y3) (Va)
Y2 Y1 Ya Y (Y1, ¥2) (¥3, Ya)
9 y2 Y3 Y1 Y4 (Y1, Y2, ¥3) (Ya)
10 Y2 Y3 Y4 Y1 (Y1, Y2, Y3, Ya)
11 Y2 Ya Y1 Y3 (Y1, Y2, Ya, Y3)
12 Y2 Ya Ys Y1 (Y1, Y2, ¥4) (¥3)
13 Ys Y1 Y2 Ya (Y1, Y3, ¥2) (Y4)
14 Y3 Y1 Ya Y2 (Y1, Y3, Ya, Y2)
15 Ys Y2 Y1 Ya (Y1, ¥3) (¥2) (V4)
16 Y3 y2 Y4 Y1 (Y1, Y3, Ya) (¥2)
17 Ys Ya Y1 Y2 (Y1, ¥3) (Y2, Y4)
18 Y3 Y4 Y2 Y1 (Y1, Y3, Y2, Ya)
19 Ya Y1 Y2 Y (Y1, Ya, Y3, ¥2)
20 Ya Y1 Ys Y2 (Y1, Ya, ¥2) (¥3)
21 Y4 y2 Y1 Y3 (Y1, Ya, ¥3) (¥2)
22 Ya Y2 Ys Y1 (Y1, Ya) (¥2) (V3)
23 Va4 Y3 Y1 Y2 (Y1, Ya, Y2, Y3)
24 Ya Y Y2 Y1 (Y1, Ya) (Y2, Y3)

o
o

O NOOTPA|WIN -
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Table 2 — Distributions of quantities of values & =k and y,, =k for all substitutions from S,

k 0| 1|2|3]|4
#(&=k) 0|6 116 1
#(roa=kK)| 9|8 |6 |01
#(xo.=K)|15| 6 | 3|00
#(xs=kK)|16| 8| 0|00
#(xa=k)| 18| 6 | 0| 0O

Estimation of the Probability of the Cycle (y,)

Consider now the substitutions containing k = 2 cycles of length L =1. We have 6 substitutions
(table 4), of which three substitutions in a cyclic decomposition contain cycles (y;) (y..,), three

substitutions contain cycles (y,) (Y..,) . three substitutions contain cycles (y,) (Y,.,) and three sub-

14
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stitutions contain cycles (y,) (y,.,) - It is clear that one and the same substitution can be assumed to
different ways, i.e. it can, in its cyclic decomposition, be treated to substitutions containing cycles
(i) (¥;,) and substitutions containing cycles (y;) (Y,,;) - For example, the sixth substitution has a

cyclic decomposition (y1) (Y2, Ya) (ys), it should be considered as a substitution with cycles
(¥;) (¥;,1) and with substitutions with cycles (y,) (V..s)-

Table 3 — Substitutions containing 1 cycle of length 1 and one cycle of length 3

Result of substitution| Decomposition
Ne of substitution to

S(y1) | s(y2) | s(ys) | s(ya) cycles

4 | yr | Y3 | Ya | Y2 | (1) (Y2, Y3, Ya)
5 | va | Ya | Y2 | Ys | (v1) (Y2 Ya Y3)
9 | Yo |y | V1| Ya | (YuVY2Ys) (Va)
12 | yo | Va | Y3 | Ya | (Y, Y2 Ya) (V)
13 | ya | Y1 | Yo | Ya | (Vi Y3 Y2) (Va)
16 | y3 | Yo | Ya | Y1 | (Y. Y3 Ya) (V2)
20 | Va | Y1 | Y3 | Yo | (Y1 YaY2)(y3)
21 | ya | Y2 | Y1 | Y3 | (Y, Ya Y3) (Y2)

Table 4 — Substitutions containing 2 cycle of length 1 and one cycle of length 2

Result of substitution | Decomposition

Ne of substitution
S(yl) S(yZ) S(y3) S(y4) to Cyc]es

2 0 Y1 | Y2 | Ya | Y3 | (y1)(Y2) (Y3 Ya)
31 yr | y3 | Y2 | VYa | (Y1) (Y2 Y3) (Ya)
6
&

Vi | Ya | Y3 | Y2 | (y1) (Y2 Ya) (¥3)
Yo | Y1 | Vs | Ya | (yuY2) (va) (va)
150 y3 | Y2 | Y1 | Ya | (Y1Y3) (¥2) (Va)
22| Yo | Yo | Y3 | Y1 | (¥1,Y4) (v2) (vs)

The number of substitutions containing k = 2 cycles (y;) (y,;) of length L=1 for fixed

y, €Y are calculated as follows. In total, there are exactly C** =6 ways to simultaneously se-

lect values y;,y,,; €Y . But for fixed y, eY there are exactly C\“;*;* =3 ways for choosing a val-

ue y;,; €Y . That s, the total number of substitutions containing k = 2 cycles of length L =1 must
kL—1=1 3

be multiplied by the value —2—==2— = — , we obtain the desired value, for an arbitrary fixed
C. . 6

y; €Y the number of substitutions containing k =2 cycles (y;) (y;,;) of length L =1, is equal to
three. For example, for fixed value y, €Y the second, third, and sixth substitutions contain k = 2

cycles of length L =1 with cyclic decompositions: (y1) (Y2) (Y3, Ya), (Y1) (Y2, Ya) (V) T2 (Y1) (Y2, Ya)
(Va)-

Consider substitutions containing k = 4 cycles of length L =1 (no substitution can have k = 3 cy-
cles of length L =1). We have 1 substitution (Table 1), its cyclic decomposition has the form: (y1)

kL—1=3
(y2) (v3) (ya). Applying the same formula, we have (é;% = % =1, that is, the total number of
n=4

15
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substitutions containing four cycles of length 1 coincides with the number of substitutions with cy-
clic decomposition (y;) (Vi.i) (Yuuirj) (Viuiju), @s it should be.

We will calculate the number of substitutions from S, (Table 1), which for fixed y, €Y neces-
sarily contain a cycle (y.) of length (y,). To do this, we must summarize the number of substitu-
tions that for fixed y, €Y in their cyclic decomposition contain a different number of cycles of
length L =1, namely, 2 substitutions with k = 1 cycle (y.), three substitutions with k = 2 cycles
(y;) (y;.;) and one substitution with k = 4 cycles (y;) (Y.i) (Youij) (Yuuiju)- In general, we
have 6 substitutions from the total of 24 substitutions of the symmetric group. That is, at randomly
equal probable selection of substitutions from S, the probability that in it for arbitrary fixed y, €Y
will be observed cycle (y;) of length L=1 isequal to 6/24 = 1/4.

Estimation of probability of occurrence of a cycle (y;, y,.;)

Consider the case when for arbitrary fixed y, €Y randomly chosen substitution s from S, will
necessarily contain a cycle (y;,y,,;) of length L =2.

First we consider substitutions containing k = 1 cycle of length L =2. We have 6 such substitu-
tions, which are given in Table 4 (if the substitution from S, contains two cycles of length 1, then it

necessarily contains one cycle of length 2). We will calculate the number of substitutions, which for
an arbitrary fixed y; €Y contain k = 1 cycle of length L =2 of form (y;,y,;). In total, there are

exactly C;? =6 ways to simultaneously select values ., Y;.i €Y . But for each y, €Y there is

exactly C"’;* =3 ways to choose a value y,;,; €Y . That is, the number of substitutions, which for

an arbitrary fixed y, €Y in a cyclic decomposition contain k = 2 cycles (y;) (y,,;) of length I=1, is
kL—-1=1
equal to 6-—-=2-=3. For example, for y, €Y the seventh, fifteenth and twenty second substi-
n=4
tutions contain k=1 cycles of length 1=2 each.
Let's also consider substitutions containing k = 2 cycles of length L = 2. In total there are 3 such

substitutions in S, , this (see Table 1):
¢ the eighth substitution with a cyclic decomposition (y1, y2) (Y3, Ya);

e seventeenth substitution with cyclic decomposition (yi, Y3) (Y2, Ya);

e last, twenty fourth substitution with cyclic decomposition (Y1, Ya) (Y2, Y3)-

The number of substitutions, which for any fixed y, €Y contains k = 2 cycles (y;,y,,;) and
(Yosij» Youiju) OF length L =2, is calculated in the same way. In total, there are exactly C\;* =1
ways to simultaneously select values V;,Y,.i, Yyij» Yiuiju €Y - This choice is no longer limited,
because for selected Vi, Viis Yo Yowiju €Y corresponding k=2 cycles (y;,y;,;) Ta
(Yysi j» Yuuijo) are defined unambiguously (according to the formula there are C\"’5° =1 vari-
ants). That is, the number of substitutions, which for an arbitrary fixed value y, €Y have cyclic
decomposition (Y;, ¥.i) (Y. s Yuiju) COINcides with the total number of substitutions with k = 2

cycles of length L =2, i.e. equal to 3. No substitution from S, can have k =3 and k=4 cycles of

length L=2. We immediately proceed to calculate the probability of occurrence of the cycle
(¥i»¥;.) in randomly selected substitutions. We sum up the number of substitutions, which for an

arbitrary fixed y. €Y in their cyclic decomposition contain a different number of cycles of length

16
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L =2, namely, we have 3 substitutions with k = 1 cycle (y;,y,.;), and three substitutions with k = 2
cycles (¥, Yiui) (Vosij» Yosiju) - 1IN general, we have 6 substitutions from the total of 24 substitu-
tions of the symmetric group, that is, at randomly equal probable selection of substitutions from S,
the probability that in it for arbitrary fixed y; €Y will be observed cycle (y;,y;,;) of length L =2
is equal to 6/24=1/4.

Estimation of probability of occurrence of a cycle (y;, Y .is Yo.i;)
Similar to the above, we will calculate the number of substitutions, which for arbitrary fixed
y; €Y have cycle (Y;, Y., Y,.i ;) Inan arbitrary substitution s €S, , there can be no more than one

such cycle, i.e. cases with k>1 are impossible. Each cycle of length L =3 in the substitution de-
composition is combined with a cycle of length 1, i.e. all eight of these substitutions are given in
Table 3. We will calculate the number of substitutions which for arbitrary fixed y, €Y necessarily

contain a cycle (y;, Y., Y,.i ;). In total, there are exactly C2° = 4 ways to simultaneously select
values Y,,Y,.,,Y,..; €Y . Butforeach y €Y there are exactly C*;;* =3 ways to choose of val-

ues Y, Y. €Y . That is, the number of substitutions, which for an arbitrary fixed value y, €Y
kL—-1=2
necessarily have a cycle (Y;,Y,.;,Y...;), is defined as 8- —=— = 6. For example, for y, €Y

kL=3
n=4

these are 6 substitutions (Ne 9, 12, 13, 16, 20, 21) with cyclic decompositions (see Table 3): (yi,

Y2, ¥3) (Va), (Y1, Y2, ¥a) (Y3), (Vi Y3, ¥2) (Ya), (Y1, Yo, Ya) (Y2), (Y1, Ya, ¥2) (Y3) and (ya, Ya, Ys) (¥2)-
Consequently, at randomly equal probable selection of substitutions from S, the probability that

in it for arbitrary fixed y, eY will be observed cycle (y;,Y,.;,Y,..;) of length L =3 is equal to
6/24 = 1/4.

Estimation of Probability of Occurrence of a Cycle (Y;, Y., Yusi i Yosiju)

In any substitution seS, there can be only one cycle of length L =4. Such substitutions are

given in Table 5.
Table 5 — Substitutions containing 1 cycle of length 4

Result of substitution Decomposition
M s | s0) 509|500 | e
10y, |y (Yo |V (Y1, Y2, Y3, Ya)
110y, |ya Y1 Y3 (Y1, Y2, Ya, Y3)
14 | ys Y1 Ya Y2 (Y1, Y3, Ya, Y2)
18 | y3 Ya Y2 Y1 (Y1, Y3, Y2, Ya)
19/ya [ya Y2 |Vs (Y1, Yar Y3, ¥2)
231ya |Ys Vi Yo (Y1, Ya, Y2, Ya)

Obviously, all such substitutions necessarily have in their single cycle all elements from set
Y ={y,.Y,.¥s,Y,} i.e. for each y, €Y in each substitution of Table 5 there will be a cycle
kL—1=3

(Yir Yjuir Yusisjr Yosiju) - Check the above formula: —27=2— =1, indeed, all substitutions from

n=4
Table 5 will necessarily contain a cycle (Y;,Y.i, Yu.ij» Yu.i,50) fOr each arbitrary fixed y; €Y. Con-

sequently, the probability of a cycle (Y;,Yj.is Yy s Yuiju) N @ randomly selected substitution
se S, isequal to 6/24 = 1/4.
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6. Interpretation of the received results to the properties of BSC

The obtained analytic expressions (15) and (16) allow us to estimate the number of substitutions
from the symmetric group, which for a certain element of the set of transformations necessarily con-
tain a cycle of a certain length with this element, and the corresponding probability to randomly se-
lect substitution with such cycle.

We use these formulas to study periodic properties of OFB mode. In this case, we assume that
the probabilistic properties of substitutions generated by the encryption function correspond to cer-
tain properties of random substitution, i.e. they correspond to our representations of such "ideal"
BSC, which at any given encryption key randomly and equally compares any encrypt text to any
open text. In this way, the |-bit BSC will implement a subset of the symmetric group of substitu-

tions of degree 2', selecting a particular substitution s from S , associated with the entered encryp-
tion key. On the all set of cipher keys we can choose substitution, which for an arbitrary fixed
y;=SeY ={y,¥,,...Y,} necessarily has a cycle (y,s(¥).S (¥;)....5 (y;)) of length
L=I e{L2,..,n}. The probability of this event is determined by (16).

In practice this means that the probability of a cycle of any length in randomly chosen substitu-
tion from a symmetric group S, for an arbitrary fixed element of a set does not depend on either
this element or the length of the cycle. It depends only on the order n=2" of the substitutions of the
symmetric group S, and is defined as the inverse value, that is equal to 1 / n. For any fixed value of
the introduced initialization vector y=S, the probability that the corresponding output block
7,,1=0,1,..,n-1 formed in the OFB mode will have a period of length L =1, €{1,2,...,n} does not
depend on either the value of this initialization vector or the length of the period. It is determined
only by the degree of substitution, that is, in this case, the digit of the cipher and it is equal to 2.

Determine the probability that the period of formed output blocks will be not less than 2"
blocks, i.e. the probability of such an event, when for fixed value of the initialization vector y, =

the corresponding output blocks will not be repeated during 2™ iterations by the formulas (1) and
(3) when forming the output blocks , :

o 2" [2'/L] ckt 2 211 Cckt
P(Vi,jefl2,..2" iy 27| ) =1-2 D Py =K) ék‘f = > > Py, =k “- 17)
L=1 k=1 L=2"+1 k=1 2|
Taking into account (16) we obtain:
2m 2
P(Vi,jefl2,..2" iy 2y, |.)=1-D.2" = > 2'=1-2"", (18)
L=1 L=2"+1

Thus, when the assumption about the correspondence of certain probabilistic properties of the
cipher to the properties of a random substitution is correct, the probability of non-repetition of out-
put block at a certain length is a function of this length. This fact determines the main limitation of
the use of the OFB mode, it is directly derived from the results of the research. The main limitation
on the use of the OFB mode for BSC "Kalyna™ [10,11] is specified in Appendix G.2 "Limit on the
total length of messages protected by the use of one key" namely:

- when the block size is equal to 128 bits, it is recommended to limit the number of blocks pro-

tected by the single key to value 2% (16 million TB);

- when the block size is equal to 256 bits, it is recommended to limit the number of blocks pro-
tected by the single key to value 2'**;

- when the block size is equal to 512 bits, it is recommended to limit the number of blocks pro-
tected by the single key to value 2%".

Since, as shown in Section 2, the essence of protecting an informational message according to
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the OFB mode specification is in addition of output blocks to it, then the restrictions specified in
appendix G.2 relate to the restrictions on the length of output blocks, which are formed by multiple
encryption of the same non-secret initialization vector by the formulas (1), (3). That is, the imple-
mentation of the restrictions recommended by the specification of the national standard provides
certain probabilistic indicators of non-periodic output blocks, namely:
- when the block size is | = 128 bits, and when performing the recommended limitation of the
number of blocks protected by a single key with the size 2™ =2%, the probability of non-
repetition of the output blocks 1—-2™" =1—2"% >1—2"* will be ensured;

- when the block size is | = 256 bits, and when performing the recommended limitation of the
number of blocks protected by a single key with the size 2™ = 2" the probability of non-
repetition of the output blocks 1—-2™" =1—27"% >1-27'% will be ensured:;

- when the block size is | = 512 bits, and when performing the recommended limitation of the
number of blocks protected by a single key with the size 2™ = 2%", the probability of non-
repetition of the output blocks 1—2™"' =1—2" >1—27%° will be ensured.

More often, in the theory of information security, the inverse value is used, it is the probability
that a formed output blocks with a length that does not exceed a certain limit will have at least one
repetition. Taking into account (17) and (18), this probability will be determined as:

o om [2I /L] C kIL—l |
Pn=1-P(Vi,je{l2,.2"% i £ |.) =D D, P(2,, =k) ékll =2 (19)
L=1 k=1 2l

Figure 2 shows the dependence R, and m for different | (,,i=0,1,..,n—1 with the length not

more than 2™ = 2% blocks).
From the dependencies shown in

Fig. 2, it is evident that increasing
/ the length of the output blocks leads

/
to an increase in the probability of
I=128 any number of repetitions of the

P, Lm

/ output blocks. These graphs can be
2-200
/< = 256

used to justify certain restrictions,

/ for example, if you want to reduce

the probability of any number of

repetitions of the output blocks, you
2-100 must reduce its length.

7. Conclusions
=512

Based on the obtained results, we
600 can do conclusions that are im-
2100 2200 2" portant in practical terms.

Fig. 2 — The dependence of the probability that 1. Properties of modern symmet-

there will be at least one repetition in output ric cryptotransformations depend not
blocks only on the characteristics of BSC,

but also on the mode of application.
Therefore the National Standard "Information technology. Cryptographic protection of information.
The algorithm of symmetric block transformation” provides 10 modes of cryptotransformations:
simple substitution (Electronic Codebook - basic transformation), Counter, Cipher Feedback, Sym-
metric Key Block Cipher-Based Message Authentication Code, Cipher Block Chaining, Output
Feedback, Galois/Counter Mode and Galois Message Authentication Code, Counter with Cipher
Block Chaining-Message Authentication Code, XOR Encrypt XOR (XEX) Tweakable Block Ci-
pher, Key Wrapping.
2. In OFB mode, which is used to provide a privacy service, the output message is protected by

o=
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addition of output blocks, which are formed by multiple encryption of the same non-secret initiali-
zation vector. If we assume that the properties of the cipher correspond to certain properties of ran-
dom substitution, then the periodicity of the output blocks will be determined by the presence of
cycles in randomly selected substitutions from the symmetric group, and the selection of the substi-
tution is set to the value of the secret key.

3. Investigation of the properties of randomly selected substitution s from the symmetric group

S, has shown that the probability of cycle s, =(y,,s,(y,),S’(Y,),...s' *(y,)) of any length L =1, for
an arbitrary fixed element y, from the set Y ={y,, y,,..., ¥} does not depend on either this element
y; or the length L =1, of the cycle. This probability depends only on the order n of the substitutions
of the symmetric group S, and is defined as an inverse value, that is equal to 1/ n.

4. Thus, the periodic properties of the output blocks in OFB mode are determined by the distri-
bution of the probabilities of the number of cycles of random substitution. The selection of a secret
key that parameterizes the encryption function corresponds to the selection of a particular substitu-
tion from the symmetric group; selecting the initialization vector value corresponds to the selection
of an element y, from the set of elements Y ={y,,y,,..., y,} over which substitution occurs. But

neither the actual value of the initialization vector nor the length of the output blocks period has any
effect on the probability of obtaining an output blocks of a certain period. This probability is deter-
mined only by the degree n=2" of substitution, that is, by the size | of the basic cipher transfor-
mation.

5. From the point of view of the practical application of symmetric cryptographic transfor-
mations to output blocks, the requirements of homogeneity are proposed at a length not exceeding
the established limit. The probability of such event is determined by 1—2™" where 2™ is the length
restriction of the output blocks. For example, for a 128-bit cipher "Kalyna", when we have limiting
the length of a output blocks to 2™ in the OFB mode, the probability that the gamma blocks never
coincide equals to 1-2"" =1-2"% i.e. it is much more than 1—2"*. The probability that at length
no more 2" blocks of output blocks in the OFB mode will coincide at least once, will equal
R.= 2™, This dependence can be used to substantiate the restrictions on the length of the output

blocks when the upper limit of probability B, is set.

6. The specification of BSC "Kalyna" [10,11] recommended certain restrictions on the total
length of messages protected by the use of one key. As for OFB mode such restrictions should be
considered as requirements for the maximum length of output blocks, which with a certain probabil-
ity will not be repeated. The above recommendations are fundamental because the occurrence of
output blocks repetition is the most dangerous case when using the OFB mode, since in this case,
the attacker will almost certainly violate the established privacy mode of the messages. For exam-

ple, if the probability of a repetition of the output blocks is equal to 27**, then the length of output
blocks for 128-bits BSC "Kalyna" should not exceed 2* blocks (in the standard this restriction is

more stringent and equal to 2%°).

7. The estimations of the probability of forming the output blocks with given period can be con-
sidered as a criterion for selection of cryptographic primitives, or criterion of the statistical test. In-
deed, if the studied cryptographic primitive in OFB mode with equal probability forms output
blocks with any period and this probability is determined by inverse to the degree of substitution,
then by the cyclical properties this cryptographic primitive responsible to probabilistic properties of
random substitution and by this criterion can be adopted for use. Actually such studies, particularly
on nonlinear replacement nodes or reduced BSC models are promising direction for further work.
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Mepioanuni Baactusocti mmdpramu y pesxxkumi Output Feedback.

AHoTanisi: J[oCIiDKYIOTECS BIaCTHBOCTI PEKUMY FaMyBaHHS 31 3BOPOTHIM 3B’s13KoM 3a mmdpramoro (anr. — Output Feedback). I3 3a-
CTOCYBaHHSIM MaTEMaTHYHOTO arapary Teopil IMiICTAHOBOK JOCII/DKYIOThCS MEPIOANYHI BIaCTHBOCTI F'aMH, 30KpeMa IIPOBOAUTHCS OLli-
HKa FIMOBIPHOCTI TIOSIBM F'aMH TIEBHOTO MePioy 32 YMOBH BiITIOBIAHOCTI BJIaCTUBOCTEIl GJIOKOBOTO CHMETPUYHOTO IIH(Py HEBHUM Blia-
CTHUBOCTSIM BHIIQJKOBOT IMiJICTAHOBKH. PO3pOOISIOTECS MPaKTHYHI PEKOMEHIALIT [I0JJ0 3aCTOCYBaHHS PeKUMY FaMyBaHHS 31 3BOPOTHIM
3B’S3KOM 32 MH(pPramoro, o0IrpyHTOBYIOTHCSI BUMOTH Ta OOMEKEHHSI, 110 BUIUIMBAIOTH i3 OTPUMAHHX OLIIHOK MEPiOIMYHUX BIACTHBOC-
Teli raMmu.

KutrouoBi cioBa: pexxuM mmdpyBaHHs, epioANYHICTh raMu, BUMAIKOBA MificTaHoBka, Output Feedback.
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