Sorption properties of polymeric beads and films containing tetraoctyl diglycolamide towards europium (III) ions

Keywords: europium, sorption, TODGA, triacetate cellulose, styrene-divinylbenzene copolymer, removal rate

Abstract

The article presents results obtained during investigation of Eu(III) ion removal from aqueous solutions using triacetate cellulose films and styrene-divinylbenzene copolymer beads containing tetraoctyl diglycolamide (TODGA). A simple method for manufacturing films containing up to 50 % w/w TODGA is provided. Solution acidity effect on the removal rate of Eu(III) ions was studied. Maximum removal of Eu(III) ions was obtained in nitric acid solutions with concentrations of 1-6 mol/l. Additionally, increase in the europium removal rate is also observed at pH > 2 for beads and in the pH range of 2 to 4 for films. In the former case increase in the removal rate is explained by increase in the nitrate ion concentration in the solution and Eu(NO3)3(TODGA)3 complex formation, and in the latter case – by decrease in TODGA protonation rate with рН growth. Observed trends indicate a high similarity in surface sorption mechanisms between the materials studied. Sorption equilibrium of Eu(III) ions onto the styrene-divinylbenzene copolymer beads impregnated with TODGA is adequately fitted to Langmuir sorption isotherm. The maximum sorption capacity of this material for Eu(III) removal from solutions with nitric acid concentration of 1 mol/l is 7.4 mg/g. It has been found that the maximum removal rate of Eu(III) ions by the triacetate cellulose films is achieved for TODGA content in the films ≥ 40 % w/w. The possibility of selective europium sorption from natural water using both beads and films is shown. Although cations present in natural water do not bind to sorbents studied, there is still slight deterioration in sorption properties when moving from model solutions to natural water. Complete desorption of Eu(III) ions from the film surface is achieved by washing three times with an EDTA solution, рН = 6.8. Prepared films can be reused for Eu(III) ion removal.

Downloads

Download data is not yet available.

References

Chiarizia, R.; McAlister, D. R.; Herlinger, A. W. Trivalent Actinide and Lanthanide Separations by Dialkyl‐Substituted Diphosphonic Acids. Sep. Sci. Technol. 2005, 40 (1-3), 69–90. https://doi.org/10.1081/SS-200041762.

Chiarizia, R.; Gatrone, R. C.; Horwitz, E. P. Am(III) and Eu(III) Extraction by Aliquat-336 and Benzyl Substituted Quaternary Ammonium Salts from Nitrate and Thiocyanate Solutions. Solvent Extr. Ion Exch. 1995, 13 (4), 615–645. https://doi.org/10.1080/07366299508918295.

Landgren, A.; Liljenzin, J.-O. Extraction Behaviour of Technetium and Actinides in the Aliquat-336/Nitric acid system. Solvent Extr. Ion Exch. 1999, 17 (6), 1387–1401. https://doi.org/10.1080/07366299908934654.

Khopkar, P. K.; Mathur, J. N. Synergistic Extraction of Some Trivalent Actinides and Lanthanides by Thenoyltrifluoroacetone and Aliquat Chloride. J. Inorg. Nucl. Chem. 1977, 39 (11), 2063–2067. https://doi.org/10.1016/0022-1902(77)80548-4.

Yuan, L.; Sun, M.; Liao, X.; Zhao, Y.; Chai, Z.; Shi, W. Solvent Extraction of U(VI) by Trioctyl-phosphine Oxide Using a Room-Temperature Ionic Liquid. Sci. China Chem. 2014, 57 (11), 1432–1438. https://doi.org/10.1007/s11426-014-5194-8.

Kosyakov, V. N.; Yerin, E. A.; Vitutnev, V. M. The Use of Trioctylphosphine Oxide for Solvent Extraction Recovery and Purification of Transplutonium Elements. J. Radioanal. Chem. 1980, 56 (1-2), 83–92. https://doi.org/10.1007/BF02516940.

Antony, M. P.; Kumaresan, R.; Suneesh, A. S.; Rajeswari, S.; Robertselvan, B.; Sukumaran, V.; Manivannan, R.; Syamala, K. V.; Venkatesan, K. A.; Srinivasan, T. G.; Vasudeva Rao, P. R. De-velopment of a CMPO Based Extraction Process for Partitioning of Minor Actinides and Demon-stration with Geneuine Fast Reactor Fuel Solution (155 GWd/Te). Radiochim. Acta 2011, 99 (4), 207–215. https://doi.org/10.1524/ract.2011.1815.

Mathur, J. N.; Murali, M. S.; Iyer, R. H.; Ramanujam, A.; Dhami, P. S.; Gopalakrishnan, V.; Rao, M. K.; Badheka, L. P.; Banerji, A. Extraction Chromatographic Separation of Minor Actinides from PUREX High-Level Wastes Using CMPO. Nucl. Technol. 1995, 109 (2), 216–225. https://doi.org/10.13182/NT95-A35054.

Mathur, J. N.; Murali, M. S.; Natarajan, P. R.; Badheka, L. P.; Banerji, A.; Ramanujam, A.; Dhami, P. S.; Gopalakrishnan, V.; Dhumwad, R. K.; Rao, M. K. Partitioning of Actinides from High-Level Waste Streams of Purex Process Using Mixtures of CMPO and TBP in Dodecane. Waste Manag. 1993, 13 (4), 317–325. https://doi.org/10.1016/0956-053X(93)90060-A.

Dhami, P. S.; Chitnis, R. R.; Gopalakrishnan, V.; Wattal, P. K.; Ramanujam, A.; Bauri, A. K. Studies on the Partitioning of Actinides from High Level Waste Using a Mixture of HDEHP and CMPO as Extractant. Sep. Sci. Technol. 2001, 36 (2), 325–335. https://doi.org/10.1081/SS-100001082.

Prabhu, S. P.; Prasad, T. L.; Rao, D. D. Use of Solid Extraction Chromatography for Determina-tion of Uranium in Sea Water and Brine. Desalination Water Treat. 2016, 57 (55), 26845–26849. https://doi.org/10.1080/19443994.2016.1139104.

Skinner, M.; Knight, D. The Behaviour of Selected Fission Products and Actinides on UTEVA® Resin. J. Radioanal. Nucl. Chem. 2016, 307 (3), 2549–2555. https://doi.org/10.1007/s10967-016-4706-8.

Panja, S.; Mohapatra, P. K.; Tripathi, S. C.; Gandhi, P. M.; Janardan, P. A Highly Efficient Sol-vent System Containing TODGA in Room Temperature Ionic Liquids for Actinide Extraction. Sep. Purif. Technol. 2012, 96, 289–295. https://doi.org/10.1016/j.seppur.2012.06.015.

Gujar, R. B.; Ansari, S. A.; Prabhu, D. R.; Pathak, P. N.; Sengupta, A.; Thulasidas, S. K.; Moha-patra, P. K.; Manchanda, V. K. Actinide Partitioning with a Modified TODGA Solvent: Counter-Current Extraction Studies with Simulated High Level Waste. Solvent Extr. Ion Exch. 2012, 30 (2), 156–170. https://doi.org/10.1080/07366299.2011.609392.

Modolo, G.; Asp, H.; Schreinemachers, C.; Vijgen, H. Development of a TODGA Based Process for Partitioning of Actinides from a PUREX Raffinate Part I: Batch Extraction Optimization Studies and Stability Tests. Solvent Extr. Ion Exch. 2007, 25 (6), 703–721. https://doi.org/10.1080/07366290701634578.

Ansari, S. A.; Pathak, P. N.; Husain, M.; Prasad, A. K.; Parmar, V. S.; Manchanda, V. K. Extrac-tion of Actinides Using N,N,N′,N′-Tetraoctyl Diglycolamide (TODGA): A Thermodynamic Study. Radiochim. Acta. 2006, 94 (6-7). https://doi.org/10.1524/ract.2006.94.6.307.

Ansari, S. A.; Pathak, P. N.; Manchanda, V. K.; Husain, M.; Prasad, A. K.; Parmar, V. S. N,N,N′,N′‐Tetraoctyl Diglycolamide (TODGA): A Promising Extractant for Actinide‐Partitioning from High‐Level Waste (HLW). Solvent Extr. Ion Exch. 2005, 23 (4), 463–479. https://doi.org/10.1081/SEI-200066296.

Reilly, S. D.; Gaunt, A. J.; Scott, B. L.; Modolo, G.; Iqbal, M.; Verboom, W.; Sarsfield, M. J. Plutonium(IV) Complexation by Diglycolamide Ligands—coordination Chemistry Insight into TODGA-Based Actinide Separations. Chem. Commun. 2012, 48 (78), 9732. https://doi.org/10.1039/c2cc34967a.

Ansari, S. A.; Mohapatra, P. K.; Manchanda, V. K. Recovery of Actinides and Lanthanides from High-Level Waste Using Hollow-Fiber Supported Liquid Membrane with TODGA as the Carrier. Ind. Eng. Chem. Res. 2009, 48 (18), 8605–8612. https://doi.org/10.1021/ie900265y.

Iqbal, M.; Huskens, J.; Verboom, W.; Sypula, M.; Modolo, G. Synthesis and Am/Eu Extraction of Novel TODGA Derivatives. Supramol. Chem. 2010, 22 (11-12), 827–837. https://doi.org/10.1080/10610278.2010.506553.

Suzuki, H.; Sasaki, Y.; Sugo, Y.; Apichaibukol, A.; Kimura, T. Extraction and Separation of Am(III) and Sr(II) by N,N,N´,N´-Tetraoctyl-3-Oxapentanediamide (TODGA). Radiochim. Acta 2004, 92 (8). https://doi.org/10.1524/ract.92.8.463.39276.

Zhang, Y.; Liu, Z.; Fan, F.; Zhu, L.; Shen, Y. Extraction of Uranium and Thorium from Nitric Acid Solution by TODGA in Ionic Liquids. Sep. Sci. Technol. 2014, 49 (12), 1895–1902. https://doi.org/10.1080/01496395.2014.903279.

Apichaibukol, A.; Sasaki, Y.; Morita, Y. Effect of DTPA on the Extractions of Actinides(III) and Lanthanides(III) from Nitrate Solution into Todga/n‐Dodecane. Solvent Extr. Ion Exch. 2004, 22 (6), 997–1011. https://doi.org/10.1081/SEI-200037727.

Goldstein, S. J.; Rodriguez, J. M.; Lujan, N. Measurement and Application of Uranium Isotopes for Human and Environmental Monitoring. Health Phys. 1997, 72 (1), 10–18. https://doi.org/10.1097/00004032-199701000-00002.

Popov, L. Method for Determination of Uranium Isotopes in Environmental Samples by Liquid–liquid Extraction with Triisooctylamine/xylene in Hydrochloric Media and Alpha Spectrometry. Appl. Radiat. Isot. 2012, 70 (10), 2370–2376. https://doi.org/10.1016/j.apradiso.2012.05.019.

Chavan, V.; Paul, S.; Pandey, A. K.; Kalsi, P. C.; Goswami, A. Thin Extractive Membrane for Monitoring Actinides in Aqueous Streams. J. Hazard. Mater. 2013, 260, 53–60. https://doi.org/10.1016/j.jhazmat.2013.05.007.

Gonzáles, E. R.; Peterson, D. S. Rapid Radiochemical Sample Preparation for Alpha Spectrometry Using Polymer Ligand Films. J. Radioanal. Nucl. Chem. 2009, 282 (2), 543–547. https://doi.org/10.1007/s10967-009-0218-0.

Almeida, M. I. G. S.; Cattrall, R. W.; Kolev, S. D. Recent Trends in Extraction and Transport of Metal Ions Using Polymer Inclusion Membranes (PIMs). J. Membr. Sci. 2012, 415-416, 9–23. https://doi.org/10.1016/j.memsci.2012.06.006.

Bell, K.; Geist, A.; McLachlan, F.; Modolo, G.; Taylor, R.; Wilden, A. Nitric Acid Extraction into TODGA. Procedia Chem. 2012, 7, 152–159. https://doi.org/10.1016/j.proche.2012.10.026.

Sengupta, A.; Ali, S. M.; Shenoy, K. T. Understanding the Complexation of the Eu3+ Ion with TODGA, CMPO, TOPO and DMDBTDMA: Extraction, Luminescence and Theoretical Investiga-tion. Polyhedron. 2016, 117, 612–622. https://doi.org/10.1016/j.poly.2016.06.037.

Adsorption from Solution at the Solid/liquid Interface; Parfitt, G. D., Rochester, C. H., Eds.; Aca-demic Press: London ; New York, 1983.

Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156 (1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013.

Published
2020-12-29
Cited
How to Cite
Varchenko, V., Bunina, Z., Bryleva, K., Belikov, K., Shcherbakov, I., Drapailo, A., & Kalchenko, V. (2020). Sorption properties of polymeric beads and films containing tetraoctyl diglycolamide towards europium (III) ions. Kharkiv University Bulletin. Chemical Series, (35), 7-16. https://doi.org/10.26565/2220-637X-2020-35-01