Recent advances in theoretical investigation of titanium dioxide nanomaterials. A review

  • Margaret M. Blazhynska V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-0749-8772
  • Alexander V. Kyrychenko V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-6223-0990
  • Daria S. Stepaniuk V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-2629-0427
  • Oleksandr M. Korsun V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-0792-2342
  • Sergiy M. Kovalenko V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-2222-8180
  • Vladimir V. Ivanov V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-2297-9048
  • François-Alexandre Miannay University Lille, LASIR UMR8516, Cité Scientifique, 59655, Villeneuve d’Ascq Cendex, France https://orcid.org/0000-0003-1131-8287
  • Abdenacer Idrissi University Lille, LASIR UMR8516, Cité Scientifique, 59655, Villeneuve d’Ascq Cendex, France https://orcid.org/0000-0002-6924-6434
  • Oleg N. Kalugin V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-3273-9259
Keywords: titanium dioxide, rutile, anatase, brookite, dye sensitization, nanoparticle, liquid-solid interface, molecular dynamics simulations, ab initio molecular dynamics

Abstract

Titanium dioxide (TiO2) is one of the most widely used nanomaterials in many emerging areas of material science, including solar energy harvesting and biomedical implanting. In this review, we present progress and recent achievements in the theory and computer simulations of the physicochemical properties of small TiO2 clusters, middle-size nanoparticles, as well as the liquid-solid interface. The historical overview and the development of empirical force fields for classical molecular dynamics (MD) of various TiO2 polymorphs, such as rutile, anatase, and brookite, are given. The adsorption behavior of solvent molecules, ions, small organic ligands, and biomacromolecules on TiO2 interfaces are examined with the aim of the understanding of driving forces and mechanisms, which govern binding and recognition between adsorbate and surfaces. The effects of crystal forms, crystallographic planes, surface defects, and solvent environments on the adsorption process are discussed. Structural details and dynamics of adsorption phenomena, occurring at liquid-solid interfaces, are overviewed starting from early empirical potential models up to recent reactive ReaxFF MD simulations, capable of capturing dissociative adsorption of water molecules. The performance of different theoretical methods, ranged from quantum mechanical (QM) calculations (ab initio and the density functional theory) up to classical force field and hybrid MM/QM simulations, is critically analyzed. In addition, the recent progress in computational chemistry of light-induced electronic processes, underlying the structure, dynamics, and functioning of molecular and hybrid materials is discussed with the focus on the solar energy applications in dye-sensitized solar cells (DSSC), which are currently under development. Besides, dye design principles, the role of anchoring moiety and dye aggregation in the DSSC performance are crucially analyzed. Finally, we outline the perspectives and challenges for further progress in research and promising directions in the development of accurate computational tools for modeling interactions between inorganic materials with not perfect structures and natural biomacromolecules at physiological conditions.

Downloads

Download data is not yet available.

References

Bai Y., Mora-Seró I., De Angelis F., Bisquert J., Wang P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114 (19), 10095-10130.

Kapilashrami M., Zhang Y., Liu Y.-S., Hagfeldt A., Guo J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 2014, 114 (19), 9662-9707.

Zhang H., Banfield J. F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 2014, 114 (19), 9613-9644.

Fattakhova-Rohlfing D., Zaleska A., Bein T. Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 2014, 114 (19), 9487-9558.

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystall. 2011, 44 (6), 1272-1276.

YazdanYar A., Aschauer U., Bowen P. Interaction of biologically relevant ions and organic molecules with titanium oxide (rutile) surfaces: A review on molecular dynamics studies. Colloids Surf. B 2018, 161, 563-577.

Liu X., Chu P. K., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Engineer. Reports 2004, 47 (3), 49-121.

Silva-Bermudez P., Rodil S. E. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf. Coatings Technol. 2013, 233, 147-158.

Liu K., Cao M., Fujishima A., Jiang L. Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 2014, 114 (19), 10044-10094.

Casalini T., Limongelli V., Schmutz M., Som C., Jordan O., Wick P., Borchard G., Perale G. Molecular modeling for nanomaterial–biology interactions: Opportunities, challenges, and perspectives. Frontiers Bioengineer. Biotech. 2019, 7, art. no. 268.

Rajh T., Dimitrijevic N. M., Bissonnette M., Koritarov T., Konda V. Titanium dioxide in the service of the biomedical revolution. Chem. Rev. 2014, 114 (19), 10177-10216.

Akimov A. V., Neukirch A. J., Prezhdo O. V. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 2013, 113 (6), 4496-4565.

Wang Q., Wang M.-h., Wang K.-f., Liu Y., Zhang H.-p., Lu X., Zhang X.-D. Computer simulation of biomolecule–biomaterial interactions at surfaces and interfaces. Biomedical Materials 2015, 10 (3), art. no. 032001.

Matsui M., Akaogi M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol. Simul. 1991, 6 (4-6), 239-244.

Limo M. J., Sola-Rabada A., Boix E., Thota V., Westcott Z. C., Puddu V., Perry C. C. Interactions between metal oxides and biomolecules: From fundamental understanding to applications. Chem. Rev. 2018, 118 (22), 11118-11193.

Mao Q., Ren Y., Luo K. H., Li S. Sintering-induced phase transformation of nanoparticles: A molecular dynamics study. J. Phys. Chem. C 2015, 119 (51), 28631-28639.

Collins D. R., Smith W., Harrison N. M., Forester T. R. Molecular dynamics study of TiO2 microclusters. J. Mater. Chem. 1996, 6 (8), 1385-1390.

R. Collins D., Smith W., M. Harrison N., R. Forester T. Molecular dynamics study of the high temperature fusion of TiO2 nanoclusters. J. Mater. Chem. 1997, 7 (12), 2543-2546.

Naicker P. K., Cummings P. T., Zhang H., Banfield J. F. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J. Phys. Chem. B 2005, 109 (32), 15243-15249.

Koparde V. N., Cummings P. T. Molecular dynamics simulation of titanium dioxide nanoparticle sintering. J. Phys. Chem. B 2005, 109 (51), 24280-24287.

De Angelis F., Di Valentin C., Fantacci S., Vittadini A., Selloni A. Theoretical studies on anatase and less common TiO2 phases: Bulk, surfaces, and nanomaterials. Chem. Rev. 2014, 114 (19), 9708-9753.

Koparde V. N., Cummings P. T. Phase transformations during sintering of titania nanoparticles. ACS Nano 2008, 2 (8), 1620-1624.

Buesser B., Gröhn A. J., Pratsinis S. E. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics. J. Phys. Chem. C 2011, 115 (22), 11030-11035.

Alimohammadi M., Fichthorn K. A. Molecular dynamics simulation of the aggregation of titanium dioxide nanocrystals: Preferential alignment. Nano Lett. 2009, 9 (12), 4198-4203.

Filyukov D. V., Brodskaya E. N., Piotrovskaya E. M., de Leeuw S. W. Molecular-dynamics simulation of nanoclusters of crystal modifications of titanium dioxide. Rus. J. Gen. Chem. 2007, 77 (1), 10-16.

Oliver P., Watson G., Kelsey E., Parker S. Atomistic simulation of the surface structure of TiO2 polymorphs rutile and anatase. J. Mater. Chem. 1997, 7 563-568.

Swamy V., Gale J. D., Dubrovinsky L. S. Atomistic simulation of the crystal structures and bulk moduli of TiO2 polymorphs. J. Phys. Chem. Solids 2001, 62 (5), 887-895.

Bandura A. V., Kubicki J. D. Derivation of force field parameters for TiO2−H2O systems from ab initio calculations. J. Phys. Chem. B 2003, 107 (40), 11072-11081.

Bandura A. V., Sykes D. G., Shapovalov V., Troung T. N., Kubicki J. D., Evarestov R. A. Adsorption of water on the TiO2 (rutile) (110) surface: A comparison of periodic and embedded cluster calculations. J. Phys. Chem. B 2004, 108 (23), 7844-7853.

Carravetta V., Monti S. Peptide−TiO2 surface interaction in solution by ab initio and molecular dynamics simulations. J. Phys. Chem. B 2006, 110 (12), 6160-6169.

Skelton A. A., Liang T., Walsh T. R. Interplay of sequence, conformation, and binding at the peptide−titania interface as mediated by water. ACS Appl. Mater. Interfaces. 2009, 1 (7),

-1491.

Předota M., Bandura A. V., Cummings P. T., Kubicki J. D., Wesolowski D. J., Chialvo A. A., Machesky M. L. Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J. Phys. Chem. B 2004, 108 (32), 12049-12060.

Předota M., Zhang Z., Fenter P., Wesolowski D. J., Cummings P. T. Electric double layer at the rutile (110) surface. 2. Adsorption of ions from molecular dynamics and X-ray experiments. J. Phys. Chem. B 2004, 108 (32), 12061-12072.

Alimohammadi M., Fichthorn K. A. A force field for the interaction of water with TiO2 surfaces. J. Phys. Chem. C 2011, 115 (49), 24206-24214.

Foroutan M., Darvishi M., Mahmood Fatemi S., Hamideh Babazadeh K. Water chain formation on rutile TiO2 (110) nanocrystal: A molecular dynamics simulation approach. J. Mol. Liq. 2018, 250, 344-352.

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79 (2), 926-935.

Schneider J., Ciacchi L. C. A classical potential to model the adsorption of biological molecules on oxidized titanium surfaces. J. Chem. Theory Comput. 2011, 7 (2), 473-484.

Skelton A. A., Walsh T. R. Interaction of liquid water with the rutile TiO2 (110) surface. Mol. Simul. 2007, 33 (4-5), 379-389.

Kavathekar R. S., Dev P., English N. J., MacElroy J. M. D. Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface. Mol. Phys. 2011, 109 (13), 1649-1656.

Kavathekar R. S., English N. J., MacElroy J. M. D. Spatial distribution of adsorbed water layers at the TiO2 rutile and anatase interfaces. Chem. Phys. Lett. 2012, 554, 102-106.

English N. J. Dynamical properties of physically adsorbed water molecules at the TiO2 rutile-(110) surface. Chem. Phys. Lett. 2013, 583, 125-130.

Köppen S., Langel W. Simulation of the interface of (100) rutile with aqueous ionic solution. Surf. Sci. 2006, 600 (10), 2040-2050.

Senftle T. P., Hong S., Islam M. M., Kylasa S. B., Zheng Y., Shin Y. K., Junkermeier C., Engel-Herbert R., Janik M. J., Aktulga H. M., Verstraelen T., Grama A., van Duin A. C. T. The ReaxFF reactive force-field: Development, applications and future directions. NPJ: Comput. Mater. 2016, 2 (1), art. no. 15011.

Monti S., Li C., Ågren H., Carravetta V. Dropping a droplet of cysteine molecules on a rutile (110) interface: Reactive versus nonreactive classical molecular dynamics simulations. J. Phys. Chem. C 2015, 119 (12), 6703-6712.

Futera Z., English N. J. Exploring rutile (110) and anatase (101) TiO2 water interfaces by reactive force-field simulations. J. Phys. Chem. C 2017, 121 (12), 6701-6711.

Kim S.-Y., Kumar N., Persson P., Sofo J., van Duin A. C. T., Kubicki J. D. Development of a ReaxFF reactive force field for titanium dioxide/water systems. Langmuir 2013, 29 (25), 7838-7846.

Nakamura H., Ohto T., Nagata Y. Polarizable site charge model at liquid/solid interfaces for describing surface polarity: Application to structure and molecular dynamics of water/rutile TiO2 (110) interface. J. Chem. Theory Comput. 2013, 9 (2), 1193-1201.

Morita A., Kato S. Ab initio molecular orbital theory on intramolecular charge polarization: Effect of hydrogen abstraction on the charge sensitivity of aromatic and nonaromatic species. J. Am. Chem. Soc. 1997, 119 (17), 4021-4032.

Morita A., Kato S. Molecular dynamics simulation with the charge response kernel: Diffusion dynamics of pyrazine and pyrazinyl radical in methanol. J. Chem. Phys. 1998, 108 (16), 6809-6818.

Isegawa M., Kato S. Polarizable force field for protein with charge response kernel. J. Chem. Theory Comput. 2009, 5 (10), 2809-2821.

Ohto T., Mishra A., Yoshimune S., Nakamura H., Bonn M., Nagata Y. Influence of surface polarity on water dynamics at the water/rutile TiO2(110) interface. J. Phys.: Condens. Matter 2014, 26 (24), art. no. 244102.

Hosseinpour S., Tang F., Wang F., Livingstone R. A., Schlegel S. J., Ohto T., Bonn M., Nagata Y., Backus E. H. G. Chemisorbed and physisorbed water at the TiO2/water interface. J. Phys. Chem. Lett. 2017, 8 (10), 2195-2199.

Solute ions at ice/water interface. In Ionic soft matter: Modern Trends in Theory and Applications, Henderson, D.; Holovko, M.; Trokhymchuk, A., Eds. Springer Netherlands: Dordrecht, 2005; 418 p.

Bryk T., Haymet A. D. J. Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces. J. Chem. Phys. 2002, 117 (22), 10258-10268.

Seitsonen A. P., Bryk T. Melting temperature of water: DFT-based molecular dynamics simulations with D3 dispersion correction. Phys. Rev. B 2016, 94 (18), art. no. 184111.

González Solveyra E., de la Llave E., Molinero V., Soler-Illia G. J. A. A., Scherlis D. A. Structure, dynamics, and phase behavior of water in TiO2 nanopores. J. Phys. Chem. C 2013, 117 (7), 3330-3342.

Wei M.-J., Zhou J., Lu X., Zhu Y., Liu W., Lu L., Zhang L. Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001). Fluid Phase Equilibria 2011, 302 (1), 316-320.

Zhu Y., Zhang Y., Shi Y., Lu X., Li J., Lu L. Lubrication behavior of water molecules confined in TiO2 nanoslits: A molecular dynamics study. J. Chem. Eng. Data 2016, 61 (12), 4023-4030.

Cao W., Lu L., Huang L., Dong Y., Lu X. Molecular behavior of water on titanium dioxide nanotubes: A molecular dynamics simulation study. J. Chem. Eng. Data 2016, 61 (12), 4131-4138.

Zeydabadi-Nejad I., Zolfaghari N., Mosavi-Mashhadi M., Baniassadi M. Exceptional behavior of anatase TiO2 nanotubes in axial loading: A molecular dynamics study of the effect of surface wrinkles. Comput. Mater. Sci. 2019, 158, 307-314.

Papavasileiou K. D., Makrodimitri Z. A., Peristeras L. D., Chen J., van der Laan G. P., Rudra I., Kalantar A., Economou I. G. Molecular simulation of n-octacosane–water mixture in titania nanopores at elevated temperature and pressure. J. Phys. Chem. C 2016, 120 (43), 24743-24753.

Utesch T., Daminelli G., Mroginski M. A. Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance. Langmuir 2011, 27 (21), 13144-13153.

Mancardi G., Hernandez Tamargo C., Terranova U., de Leeuw N. H. Calcium phosphate deposition on planar and stepped (101) surfaces of anatase TiO2: Introducing an interatomic potential for the TiO2/Ca-PO4/water interface. Langmuir 2018, 34 (34), 10144-10152.

Zheng T., Wu C., Zhang Y., Chen M., Cummings P. T. Molecular investigation of the initial nucleation of calcium phosphate on TiO2 substrate: The effects of surface nanotopographies. Cryst. Growth Des. 2018, 18 (6), 3283-3290.

Zheng T., Wu C., Chen M., Zhang Y., Cummings P. T. Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2(110) surface mediated by calcium ions. Phys. Chem. Chem. Phys. 2016, 18 (29), 19757-19764.

Monti S., Walsh T. R. Free energy calculations of the adsorption of amino acid analogues at the aqueous titania interface. J. Phys. Chem. C 2010, 114 (50), 22197-22206.

Sushko M. L., Gal A. Y., Shluger A. L. Interaction of organic molecules with the TiO2 (110) surface: Ab inito calculations and classical force fields. J. Phys. Chem. B 2006, 110 (10), 4853-4862.

Yang L., Tunega D., Xu L., Govind N., Sun R., Taylor R., Lischka H., DeJong W. A., Hase W. L. Comparison of cluster, slab, and analytic potential models for the dimethyl methylphosphonate (DMMP)/TiO2(110) intermolecular interaction. J. Phys. Chem. C 2013, 117 (34), 17613-17622.

Hamad S., Sánchez-Valencia J. R., Barranco A., Mejías J. A., González-Elipe A. R. Molecular dynamics simulation of the effect of pH on the adsorption of rhodamine laser dyes on TiO2 hydroxylated surfaces. Mol. Simul. 2009, 35 (12-13), 1140-1151.

Fortunelli A., Monti S. Simulations of lipid adsorption on TiO2 surfaces in solution. Langmuir 2008, 24 (18), 10145-10154.

Předota M., Vlček L. Comment on parts 1 and 2 of the series “electric double layer at the rutile (110) surface”. J. Phys. Chem. B 2007, 111 (5), 1245-1247.

Předota M., Cummings P. T., Wesolowski D. J. Electric double layer at the rutile (110) surface. 3. Inhomogeneous viscosity and diffusivity measurement by computer simulations. J. Phys. Chem. C 2007, 111 (7), 3071-3079.

Předota M., Machesky M. L., Wesolowski D. J., Cummings P. T. Electric double layer at the rutile (110) surface. 4. Effect of temperature and pH on the adsorption and dynamics of ions. J. Phys. Chem. C 2013, 117 (44), 22852-22866.

Předota M., Machesky M. L., Wesolowski D. J. Molecular origins of the Zeta potential. Langmuir 2016, 32 (40), 10189-10198.

Biriukov D., Kroutil O., Předota M. Modeling of solid–liquid interfaces using scaled charges: Rutile (110) surfaces. Phys. Chem. Chem. Phys. 2018, 20 (37), 23954-23966.

Biriukov D., Kroutil O., Kabeláč M., Ridley M. K., Machesky M. L., Předota M. Oxalic acid adsorption on rutile: Molecular dynamics and ab initio calculations. Langmuir 2019, 35 (24), 7617-7630.

Machesky M. L., Ridley M. K., Biriukov D., Kroutil O., Předota M. Oxalic acid adsorption on rutile: Experiments and surface complexation modeling to 150 °C. Langmuir 2019, 35 (24), 7631-7640.

Nada H., Kobayashi M., Kakihana M. Anisotropy in conformation and dynamics of a glycolate ion near the surface of a TiO2 rutile crystal between its {001} and {110} planes: A molecular dynamics study. J. Phys. Chem. C 2016, 120 (12), 6502-6514.

Nada H., Kobayashi M., Kakihana M. Anisotropy in stable conformations of hydroxylate ions between the {001} and {110} planes of TiO2 rutile crystals for glycolate, lactate, and 2-hydroxybutyrate ions studied by metadynamics method. ACS Omega 2019, 4 (6), 11014-11024.

Costa D., Garrain P.-A., Baaden M. Understanding small biomolecule-biomaterial interactions: A review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces. J. Biomed. Mater. Res. 2013, 101A (4), 1210-1222.

Schwaminger S., Blank-Shim S. A., Borkowska-Panek M., Anand P., Fraga-García P., Fink K., Wenzel W., Berensmeier S. Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials. Engineer. Life Sci. 2018, 18 (2), 84-100.

Kyrychenko A. NANOGOLD decorated by pHLIP peptide: Comparative force field study. Phys. Chem. Chem. Phys. 2015, 17 (19), 12648-12660.

Kyrychenko A., Blazhynska M. M., Kalugin O. N. Protonation-dependent adsorption of polyarginine onto silver nanoparticles. J. Appl. Phys. 2020, 127 (7), art. no. 075502.

Brandt E. G., Lyubartsev A. P. Systematic optimization of a force field for classical simulations of TiO2–water interfaces. J. Phys. Chem. C 2015, 119 (32), 18110-18125.

Brandt E. G., Lyubartsev A. P. Molecular dynamics simulations of adsorption of amino acid side chain analogues and a titanium binding peptide on the TiO2 (100) surface. J. Phys. Chem. C 2015, 119 (32), 18126-18139.

Monti S., Walsh T. R. Molecular dynamics simulations of the adsorption and dynamical behavior of single DNA components on TiO2. J. Phys. Chem. C 2011, 115 (49), 24238-24246.

Neria E., Fischer S., Karplus M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105 (5), 1902-1921.

Sultan A. M., Hughes Z. E., Walsh T. R. Binding affinities of amino acid analogues at the charged aqueous titania interface: Implications for titania-binding peptides. Langmuir 2014, 30 (44), 13321-13329.

Shchelokov A., Palko N., Potemkin V., Grishina M., Morozov R., Korina E., Uchaev D., Krivtsov I., Bol’shakov O. Adsorption of native amino acids on nanocrystalline TiO2: Physical chemistry, QSPR, and theoretical modeling. Langmuir 2019, 35 (2), 538-550.

Monti S., Carravetta V., Zhang W., Yang J. Effects due to interadsorbate interactions on the dipeptide/TiO2 surface binding mechanism investigated by molecular dynamics simulations. J. Phys. Chem. C 2007, 111 (21), 7765-7771.

Tirrell M., Kokkoli E., Biesalski M. The role of surface science in bioengineered materials. Surf. Sci. 2002, 500 (1), 61-83.

Wu C., Chen M., Guo C., Zhao X., Yuan C. Peptide−TiO2 interaction in aqueous solution: Conformational dynamics of RGD using different water models. J. Phys. Chem. B 2010, 114 (13), 4692-4701.

Song D.-P., Chen M.-J., Liang Y.-C., Bai Q.-S., Chen J.-X., Zheng X.-F. Adsorption of tripeptide RGD on rutile TiO2 nanotopography surface in aqueous solution. Acta Biomater. 2010, 6 (2), 684-694.

Wu C., Skelton A. A., Chen M., Vlček L., Cummings P. T. Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: The effect of Na+ on peptide adsorption. J. Phys. Chem. C 2011, 115 (45), 22375-22386.

Wu C., Skelton A. A., Chen M., Vlček L., Cummings P. T. Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: The effect of cation mediation on Asp adsorption. Langmuir 2012, 28 (5), 2799-2811.

Wagstaffe M., Hussain H., Taylor M., Murphy M., Silikas N., Thomas A. G. Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO2(110) and model dental implant surfaces. Mater. Sci. Eng. C 2019, 105, art. no. 110030.

Wu C., Chen M., Skelton A. A., Cummings P. T., Zheng T. Adsorption of arginine–glycine–aspartate tripeptide onto negatively charged rutile (110) mediated by cations: The effect of surface hydroxylation. ACS Appl. Mater. Interfaces 2013, 5 (7), 2567-2579.

Zhang H.-p., Lu X., Leng Y., Watari F., Weng J., Feng B., Qu S. Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation. J. Biomed. Mater. Res., Part A 2011, 96A (2), 466-476.

Liang Y.-C., Song D.-P., Chen M.-J., Bai Q.-S. Adsorption mechanism of Arg-Gly-Asp on rutile TiO2 (110) surface in aqueous solution. J. Vac. Sci. Technol. B 2009, 27 (3), 1548-1554.

Sultan A. M., Westcott Z. C., Hughes Z. E., Palafox-Hernandez J. P., Giesa T., Puddu V., Buehler M. J., Perry C. C., Walsh T. R. Aqueous peptide–TiO2 interfaces: Isoenergetic binding via either entropically or enthalpically driven mechanisms. ACS Appl. Mater. Interfaces 2016, 8 (28), 18620-18630.

Walsh T. R. Pathways to structure–property relationships of peptide–materials interfaces: Challenges in predicting molecular structures. Acc. Chem. Res. 2017, 50 (7), 1617-1624.

Mao C. M., Sampath J., Sprenger K. G., Drobny G., Pfaendtner J. Molecular driving forces in peptide adsorption to metal oxide surfaces. Langmuir 2019, 35 (17), 5911-5920.

Kang Y., Li X., Tu Y., Wang Q., Ågren H. On the mechanism of protein adsorption onto hydroxylated and nonhydroxylated TiO2 surfaces. J. Phys. Chem. C 2010, 114 (34), 14496-14502.

Puddu V., Slocik J. M., Naik R. R., Perry C. C. Titania binding peptides as templates in the biomimetic synthesis of stable titania nanosols: Insight into the role of buffers in peptide-mediated mineralization. Langmuir 2013, 29 (30), 9464-9472.

Sultan A. M., Hughes Z. E., Walsh T. R. Effect of calcium ions on peptide adsorption at the aqueous rutile titania (110) interface. Biointerphases 2018, 13 (6), art. no. 06D403.

Polimeni M., Petridis L., Smith J. C., Arcangeli C. Dynamics at a peptide–TiO2 anatase (101) interface. J. Phys. Chem. B 2017, 121 (38), 8869-8877.

Hogan B. L. M. Bone morphogenetic proteins in development. Curr. Opin. Gen. Develop. 1996, 6 (4), 432-438.

Yang C., Peng C., Zhao D., Liao C., Zhou J., Lu X. Molecular simulations of myoglobin adsorbed on rutile (110) and (001) surfaces. Fluid Phase Equilibria 2014, 362, 349-354.

Keefe A. D., Pai S., Ellington A. Aptamers as therapeutics. Nat. Rev. Drug Discovery 2010, 9 (7), 537-550.

Habibzadeh Mashatooki M., Rastkar Ebrahimzadeh A., Jahanbin Sardroodi J., Abbasi A. Investigation of TiO2 anatase (101), (100) and (110) facets as immobilizer for a potential anticancer rna aptamer: A classical molecular dynamics simulation. Mol. Simul. 2019, 45 (11), 849-858.

Cölfen H. A crystal-clear view. Nat. Mater. 2010, 9 (12), 960-961.

Nudelman F., Pieterse K., George A., Bomans P. H. H., Friedrich H., Brylka L. J., Hilbers P. A. J., de With G., Sommerdijk N. A. J. M. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 2010, 9 (12), 1004-1009.

Zheng T., Wu C., Chen M. Early adsorption of collagen on the reduced rutile (110) surface mediated by water: A molecular dynamics study. Surf. Sci. 2013, 616, 51-59.

Chen M., Zheng T., Wu C., Xing C. Molecular dynamics simulations of collagen adsorption onto grooved rutile surface: The effects of groove width. Colloids Surf. B 2014, 121, 150-157.

Alamdari S., Pfaendtner J. Impact of glutamate carboxylation in the adsorption of the α-1 domain of osteocalcin to hydroxyapatite and titania. Mol. Syst. Des. Eng. 2020, 5 (3), 620-631.

Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984, 309 (5963), 30-33.

Guo C., Wu C., Chen M., Zheng T., Chen N., Cummings P. T. Molecular modeling of fibronectin adsorption on topographically nanostructured rutile (110) surfaces. Appl. Surf. Sci. 2016, 384, 36-44.

Gamucci O., Bertero A., Gagliardi M., Bardi G. Biomedical nanoparticles: Overview of their surface immune-compatibility. Coatings 2014, 4 (1), 139-159.

Kyrychenko A., Korsun O. M., Gubin I. I., Kovalenko S. M., Kalugin O. N. Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length. J. Phys. Chem. C 2015, 119 (14), 7888-7899.

Kyrychenko A., Pasko D. A., Kalugin O. N. Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: The role of polymer size and structure. Phys. Chem. Chem. Phys. 2017, 19 (13), 8742-8756.

Blazhynska M. M., Kyrychenko A., Kalugin O. N. Molecular dynamics simulation of the size-dependent morphological stability of cubic shape silver nanoparticles. Mol. Simul. 2018, 44 (12), 981-991.

Kyrychenko A., Blazhynska M. M., Slavgorodska M. V., Kalugin O. N. Stimuli-responsive adsorption of poly(acrylic acid) onto silver nanoparticles: Role of polymer chain length and degree of ionization. J. Mol. Liq. 2019, 276 243-254.

Borodin O., Smith G. D., Bandyopadhyaya R., Byutner O. Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 2003, 36 (20), 7873-7883.

Melis C., Mattoni A., Colombo L. Atomistic investigation of poly(3-hexylthiophene) adhesion on nanostructured titania. J. Phys. Chem. C 2010, 114 (8), 3401-3406.

Jokerst J. V., Lobovkina T., Zare R. N., Gambhir S. S. Nanoparticle pegylation for imaging and therapy. Nanomedicine 2011, 6 (4), 715-728.

Mano S. S., Kanehira K., Sonezaki S., Taniguchi A. Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines. Int. J. Mol. Sci. 2012, 13 (3), 3703-3717.

Sun J., Petersen E. J., Watson S. S., Sims C. M., Kassman A., Frukhtbeyn S., Skrtic D., Ok M. T., Jacobs D. S., Reipa V., Ye Q., Nelson B. C. Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomaterialia 2017, 53, 585-597.

Lee Y.-G., Park S., Cho W., Son T., Sudhagar P., Jung J. H., Wooh S., Char K., Kang Y. S. Effective passivation of nanostructured TiO2 interfaces with PEG-based oligomeric coadsorbents to improve the performance of dye-sensitized solar cells. J. Phys. Chem. C 2012, 116 (11), 6770-6777.

Jung M.-H., Ko K. C., Lee J. Y. Single crystalline-like TiO2 nanotube fabrication with dominant (001) facets using poly(vinylpyrrolidone) for high efficiency solar cells. J. Phys. Chem. C 2014, 118 (31), 17306-17317.

Selli D., Valentin C. D. Ab initio investigation of polyethylene glycol coating of TiO2 surfaces. J. Phys. Chem. C 2016, 120 (51), 29190-29201.

Selli D., Tawfilas M., Mauri M., Simonutti R., Di Valentin C. Optimizing pegylation of TiO2 nanocrystals through a combined experimental and computational study. Chem. Mater. 2019, 31 (18), 7531-7546.

Luan B., Huynh T., Zhou R. Simplified TiO2 force fields for studies of its interaction with biomolecules. J. Chem. Phys. 2015, 142 (23), art. no. 234102.

Gindri I. M., Frizzo C. P., Bender C. R., Tier A. Z., Martins M. A. P., Villetti M. A., Machado G., Rodriguez L. C., Rodrigues D. C. Preparation of TiO2 nanoparticles coated with ionic liquids: A supramolecular approach. ACS Appl. Mater. Interfaces 2014, 6 (14), 11536-11543.

Schiffmann F., Hutter J., VandeVondele J. Atomistic simulations of a solid/liquid interface: A combined force field and first principles approach to the structure and dynamics of acetonitrile near an anatase surface. J. Phys.: Cond. Mat. 2008, 20 (6), art. no. 064206.

Singh R., Rajput N. N., He X., Monk J., Hung F. R. Molecular dynamics simulations of the ionic liquid [EMIM+][TFMSI−] confined inside rutile (110) slit nanopores. Phys. Chem. Chem. Phys. 2013, 15 (38), 16090-16103.

Yan T., Wang S., Zhou Y., Cao Z., Li G. Adsorption of CO2 on the rutile (110) surface in ionic liquid. A molecular dynamics simulation. J. Phys. Chem. C 2009, 113 (45), 19389-19392.

Dai Z., Shi L., Lu L., Sun Y., Lu X. Unique structures and vibrational spectra of protic ionic liquids confined in TiO2 slits: The role of interfacial hydrogen bonds. Langmuir 2018, 34 (44), 13449-13458.

Weber H., Salanne M., Kirchner B. Toward an accurate modeling of ionic liquid–TiO2 interfaces. J. Phys. Chem. C 2015, 119 (45), 25260-25267.

Weber H., Bredow T., Kirchner B. Adsorption behavior of the 1,3-dimethylimidazolium thiocyanate and tetracyanoborate ionic liquids at anatase (101) surface. J. Phys. Chem. C 2015, 119 (27), 15137-15149.

Kelkar M. S., Maginn E. J. Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations. J. Phys. Chem. B 2007, 111 (18), 4867-4876.

Sambasivarao S. V., Acevedo O. Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 2009, 5 (4), 1038-1050.

Malali S., Foroutan M. Study of wetting behavior of BMIM+/PF6– ionic liquid on TiO2 (110) surface by molecular dynamics simulation. J. Phys. Chem. C 2017, 121 (21), 11226-11233.

Mohammadpour F., Heydari Dokoohaki M., Zolghadr A. R., Ghatee M. H., Moradi M. Confinement of aqueous mixtures of ionic liquids between amorphous TiO2 slit nanopores: Electrostatic field induction. Phys. Chem. Chem. Phys. 2018, 20 (46), 29493-29502.

Kislenko S. A., Amirov R. H., Samoylov I. S. Effect of cations on the TiO2/acetonitrile interface structure: A molecular dynamics study. J. Phys. Chem. C 2013, 117 (20), 10589-10596.

Nikitin A. M., Lyubartsev A. P. New six-site acetonitrile model for simulations of liquid acetonitrile and its aqueous mixtures. J. Comput. Chem. 2007, 28 (12), 2020-2026.

Liu Z., Huang S., Wang W. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B 2004, 108 (34), 12978-12989.

Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J. D., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L., Wesolowski D. J. Ion adsorption at the rutile–water interface: Linking molecular and macroscopic properties. Langmuir 2004, 20 (12), 4954-4969.

Yildirim H., Greeley J. P., Sankaranarayanan S. K. R. S. Localized order–disorder transitions induced by Li segregation in amorphous TiO2 nanoparticles. ACS Appl. Mater. Interfaces 2014, 6 (21), 18962-18970.

Mahjouri-Samani M., Tian M., Puretzky A. A., Chi M., Wang K., Duscher G., Rouleau C. M., Eres G., Yoon M., Lasseter J., Xiao K., Geohegan D. B. Nonequilibrium synthesis of TiO2 nanoparticle “building blocks” for crystal growth by sequential attachment in pulsed laser deposition. Nano Lett. 2017, 17 (8), 4624-4633.

Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. Dye-sensitized solar cells. Chem. Rev. 2010, 110 (11), 6595-6663.

Ooyama Y., Harima Y. Molecular designs and syntheses of organic dyes for dye-sensitized solar cells. Eur. J. Org. Chem. 2009, 2009 (18), 2903-2934.

Beljonne D., Cornil J. Multiscale modelling of organic and hybrid photovoltaics. Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; Vol. 352, 394 p.

Würfel P. Physics of solar cells. From principles to new concepts. Wiley-VCH Verlag: London, 2005; 186 p.

Luque A., Hegedus S. Handbook of photovoltaic science and engineering. John Wiley & Sons, Ltd: London, 2003; 1138 p.

Sharma K., Sharma V., Sharma S. S. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res. Lett. 2018, 13 (1), art. no. 381.

Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48 (5), 53-229.

Gałyńska M., Persson P. Quantum chemical calculations of the structural influence on electronic properties in TiO2 nanocrystals. Mol. Phys. 2017, 115 (17-18), 2209-2217.

Labat F., Baranek P., Domain C., Minot C., Adamo C. Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals. J. Chem. Phys. 2007, 126 (15), 154703.

Fazio G., Ferrighi L., Di Valentin C. Spherical versus faceted anatase TiO2 nanoparticles: A model study of structural and electronic properties. J. Phys. Chem. C 2015, 119 (35), 20735-20746.

Morita K., Yasuoka K. Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO2 nanocrystals. AIP Advances 2018, 8 (3), art. no. 035119.

Selli D., Fazio G., Seifert G., Di Valentin C. Water multilayers on TiO2 (101) anatase surface: Assessment of a DFTB-based method. J. Chem. Theory Comput. 2017, 13 (8), 3862-3873.

Selli D., Fazio G., Di Valentin C. Using density functional theory to model realistic TiO2 nanoparticles, their photoactivation and interaction with water. Catalysts 2017, 7 (12), art. no. 357.

Selli D., Fazio G., Di Valentin C. Modelling realistic TiO2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT. J. Chem. Phys. 2017, 147 (16), 164701.

Berardo E., Hu H.-S., Shevlin S. A., Woodley S. M., Kowalski K., Zwijnenburg M. A. Modeling excited states in TiO2 nanoparticles: On the accuracy of a TD-DFT based description. J. Chem. Theory Comput. 2014, 10 (3), 1189-1199.

Labat F., Le Bahers T., Ciofini I., Adamo C. First-principles modeling of dye-sensitized solar cells: Challenges and perspectives. Acc. Chem. Res. 2012, 45 (8), 1268-1277.

Le Bahers T., Labat F., Pauporté T., Lainé P. P., Ciofini I. Theoretical procedure for optimizing dye-sensitized solar cells: From electronic structure to photovoltaic efficiency. J. Am. Chem. Soc. 2011, 133 (20), 8005-8013.

Duncan W. R., Prezhdo O. V. Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Ann. Rev. Phys. Chem. 2007, 58 (1), 143-184.

Oprea I. C., Gîrțu A. M. Structure and electronic properties of TiO2 nanoclusters and dye–nanocluster systems appropriate to model hybrid photovoltaic or photocatalytic applications. Nanomaterials 2019, 9 (3), art. no. 357.

Oprea I. C., Panait P., Cimpoesu F., Ferbinteanu M., Gîrţu A. M. Density functional theory (DFT) study of coumarin-based dyes adsorbed on TiO2 nanoclusters—applications to dye-sensitized solar cells. Materials 2013, 6 (6), 2372-2392.

O'Rourke C., Bowler D. R. DSSC anchoring groups: A surface dependent decision. J. Phys.: Condens. Matter. 2014, 26 (19), art. no. 195302.

Mowbray D. J., Migani A. Optical absorption spectra and excitons of dye-substrate interfaces: Catechol on TiO2(110). J. Chem. Theory Comput. 2016, 12 (6), 2843-2852.

Feng J., Jiao Y., Ma W., Nazeeruddin M. K., Grätzel M., Meng S. First principles design of dye molecules with ullazine donor for dye sensitized solar cells. J. Phys. Chem. C 2013, 117 (8), 3772-3778.

De Angelis F., Fantacci S., Selloni A., Nazeeruddin M. K., Grätzel M. Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: The role of sensitizer protonation. J. Am. Chem. Soc. 2007, 129 (46), 14156-14157.

Labat F., Adamo C. Bi-isonicotinic acid on anatase (101): Insights from theory. J. Phys. Chem. C 2007, 111 (41), 15034-15042.

Labat F., Ciofini I., Hratchian H. P., Frisch M. J., Raghavachari K., Adamo C. Insights into working principles of ruthenium polypyridyl dye-sensitized solar cells from first principles modeling. J. Phys. Chem. C 2011, 115 (10), 4297-4306.

Labat F., Ciofini I., Hratchian H. P., Frisch M., Raghavachari K., Adamo C. First principles modeling of eosin-loaded ZnO films: A step toward the understanding of dye-sensitized solar cell performances. J. Am. Chem. Soc. 2009, 131 (40), 14290-14298.

Jungsuttiwong S., Tarsang R., Sudyoadsuk T., Promarak V., Khongpracha P., Namuangruk S. Theoretical study on novel double donor-based dyes used in high efficient dye-sensitized solar cells: The application of TDDFT study to the electron injection process. Org. Electron. 2013, 14 (3), 711-722.

Zheng J., Zhang K., Fang Y., Zuo Y., Duan Y., Zhuo Z., Chen X., Yang W., Lin Y., Wong M. S., Pan F. How to optimize the interface between photosensitizers and TiO2 nanocrystals with molecular engineering to enhance performances of dye-sensitized solar cells? ACS Appl. Mater. Interfaces 2015, 7 (45), 25341-25351.

Hara K., Sato T., Katoh R., Furube A., Ohga Y., Shinpo A., Suga S., Sayama K., Sugihara H., Arakawa H. Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2003, 107 (2), 597-606.

Liu H., Li B., Xue B., Liu E. Theoretical design of high-performance boron dipyrromethenes dyes by introducing heterocyclics to tune photoelectric properties. J. Phys. Chem. C 2019, 123 (43), 26047-26056.

Agrawal S., Leijtens T., Ronca E., Pastore M., Snaith H., De Angelis F. Modeling the effect of ionic additives on the optical and electronic properties of a dye-sensitized TiO2 heterointerface: Absorption, charge injection and aggregation. J. Mater. Chem. A 2013, 1 (46), 14675-14685.

Le Bahers T., Pauporté T., Scalmani G., Adamo C., Ciofini I. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2009, 11 (47), 11276-11284.

Luppi E., Urdaneta I., Calatayud M. Photoactivity of molecule–TiO2 clusters with time-dependent density-functional theory. J. Phys. Chem. A 2016, 120 (27), 5115-5124.

Yang Z., Liu C., Li K., Cole J. M., Shao C., Cao D. Rational design of dithienopicenocarbazole-based dyes and a prediction of their energy-conversion efficiency characteristics for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2018, 1 (4), 1435-1444.

Estrella L. L., Balanay M. P., Kim D. H. The effect of donor group rigidification on the electronic and optical properties of arylamine-based metal-free dyes for dye-sensitized solar cells: A computational study. J. Phys. Chem. A 2016, 120 (29), 5917-5927.

Wen Y., Yang H., Zheng D., Sun K., Wang L., Zhang J. First-principles and molecular dynamics on A–D(π)–A type sensitizers for dye-sensitized solar cells: Effects of various anchoring groups on electronic coupling and dye aggregation. J. Phys. Chem. C 2017, 121 (26), 14019-14026.

Gao Y., Lockart M., Kispert L. D., Bowman M. K. Photoinduced charge separation in retinoic acid on TiO2: Comparison of three anchoring modes. J. Phys. Chem. C 2019, 123 (40), 24634-24642.

Mosconi E., Selloni A., De Angelis F. Solvent effects on the adsorption geometry and electronic structure of dye-sensitized tio2: A first-principles investigation. J. Phys. Chem. C 2012, 116 (9), 5932-5940.

Seo K. D., Choi I. T., Park Y. G., Kang S., Lee J. Y., Kim H. K. Novel D–A–π–A coumarin dyes containing low band-gap chromophores for dye-sensitised solar cells. Dyes and Pigments 2012, 94 (3), 469-474.

Hara K., Sayama K., Ohga Y., Shinpo A., Suga S., Arakawa H. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Commun. 2001, (6), 569-570.

Hara K., Miyamoto K., Abe Y., Yanagida M. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes. J. Phys. Chem. B 2005, 109 (50), 23776-23778.

Wang Z. S., Cui Y., Hara K., Dan-oh Y., Kasada C., Shinpo A. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv. Mater. 2007, 19 (8), 1138-1141.

Wang Z.-S., Cui Y., Dan-oh Y., Kasada C., Shinpo A., Hara K. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid. J. Phys. Chem. C 2007, 111 (19), 7224-7230.

Zhang X., Zhang J.-J., Xia Y.-Y. Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells. J. Photochem. Photobiol. A 2008, 194 (2), 167-172.

Roy J. K., Kar S., Leszczynski J. Electronic structure and optical properties of designed photo-efficient indoline-based dye-sensitizers with D–A−π–A framework. J. Phys. Chem. C 2019, 123 (6), 3309-3320.

Sánchez-de-Armas R., Oviedo J., San Miguel M. Á., Sanz J. F. Direct vs indirect mechanisms for electron injection in dye-sensitized solar cells. J. Phys. Chem. C 2011, 115 (22), 11293-11301.

Pastore M., Fantacci S., De Angelis F. Modeling excited states and alignment of energy levels in dye-sensitized solar cells: Successes, failures, and challenges. J. Phys. Chem. C 2013, 117 (8), 3685-3700.

De Angelis F., Fantacci S., Mosconi E., Nazeeruddin M. K., Grätzel M. Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models. J. Phys. Chem. C 2011, 115 (17), 8825-8831.

De Angelis F., Fantacci S., Selloni A., Nazeeruddin M. K., Grätzel M. First-principles modeling of the adsorption geometry and electronic structure of Ru(II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J. Phys. Chem. C 2010, 114 (13), 6054-6061.

Oviedo M. B., Zarate X., Negre C. F. A., Schott E., Arratia-Pérez R., Sánchez C. G. Quantum dynamical simulations as a tool for predicting photoinjection mechanisms in dye-sensitized TiO2 solar cells. J. Phys. Chem. Lett. 2012, 3 (18), 2548-2555.

Negre C. F. A., Fuertes V. C., Oviedo M. B., Oliva F. Y., Sánchez C. G. Quantum dynamics of light-induced charge injection in a model dye–nanoparticle complex. J. Phys. Chem. C 2012, 116 (28), 14748-14753.

Negre C. F. A., Young K. J., Oviedo M. B., Allen L. J., Sánchez C. G., Jarzembska K. N., Benedict J. B., Crabtree R. H., Coppens P., Brudvig G. W., Batista V. S. Photoelectrochemical hole injection revealed in polyoxotitanate nanocrystals functionalized with organic adsorbates. J. Am. Chem. Soc. 2014, 136 (46), 16420-16429.

Marquez D. M., Sánchez C. G. Quantum efficiency of the photo-induced electronic transfer in dye–TiO2 complexes. Phys. Chem. Chem. Phys. 2018, 20 (41), 26280-26287.

Ronchi C., Selli D., Pipornpong W., Di Valentin C. Proton transfers at a dopamine-functionalized TiO2 interface. J. Phys. Chem. C 2019, 123 (13), 7682-7695.

Zhang L., Cole J. M. Adsorption properties of p-methyl red monomeric-to-pentameric dye aggregates on anatase (101) titania surfaces: First-principles calculations of dye/TiO2 photoanode interfaces for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6 (18), 15760-15766.

Monti S., Pastore M., Li C., De Angelis F., Carravetta V. Theoretical investigation of adsorption, dynamics, self-aggregation, and spectroscopic properties of the D102 indoline dye on an anatase (101) substrate. J. Phys. Chem. C 2016, 120 (5), 2787-2796.

Marx D., Hutter J. Ab initio molecular dynamics: Basic theory and advanced methods. Cambridge University Press: Cambridge, 2009; 567 p.

Car R., Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 1985, 55 (22), 2471-2474.

Tuckerman M. E., Parrinello M. Integrating the Car–Parrinello equations. I. Basic integration techniques. J. Chem. Phys. 1994, 101 (2), 1302-1315.

Doltsinis N. L., Marx D. First pprinciples molecular dynamics involving excited states and nonadiabatic transitions. J. Theory Comput. Chem. 2002, 01 (02), 319-349.

Stier W., Prezhdo O. V. Thermal effects in the ultrafast photoinduced electron transfer from a molecular donor anchored to a semiconductor acceptor. Isr. J. Chem. 2002, 42 (2‐3), 213-224.

Stier W., Prezhdo O. V. Nonadiabatic molecular dynamics simulation of light-induced electron transfer from an anchored molecular electron donor to a semiconductor acceptor. J. Phys. Chem. B 2002, 106 (33), 8047-8054.

Stier W., Prezhdo O. V. Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer. J. Mol. Struct.: Theochem. 2003, 630 (1), 33-43.

Alvarez-Ramirez F., Ruiz-Morales Y. Ab initio molecular dynamics calculations of the phase transformation mechanism for the formation of TiO2 titanate-type nanosheets from anatase. Chem. Mater. 2007, 19 (12), 2947-2959.

Fischer S. A., Duncan W. R., Prezhdo O. V. Ab initio nonadiabatic molecular dynamics of wet-electrons on the TiO2 surface. J. Am. Chem. Soc. 2009, 131 (42), 15483-15491.

Vogel D. J., Kilin D. S. Electron dynamics of solvated Ti(OH)4. MRS Proceedings 2014, 1647, art. no. mrsf13-1647-gg08-07.

Brandt E. G., Agosta L., Lyubartsev A. P. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations. Nanoscale 2016, 8 (27), 13385-13398.

Dubot P., Boisseau N., Cenedese P. Large scale full qm-md investigation of small peptides and insulin adsorption on ideal and defective TiO2 (100) surfaces. Influence of peptide size on interfacial bonds. Appl. Surf. Sci. 2018, 440 614-626.

Fazio G., Selli D., Ferraro L., Seifert G., Di Valentin C. Curved TiO2 nanoparticles in water: Short (chemical) and long (physical) range interfacial effects. ACS Appl. Mater. Interfaces 2018, 10 (35), 29943-29953.

Byrne A., English N. J. A systematic study via ab-initio MD of the effect solvation by room temperature ionic liquid has on the structure of a chromophore-titania interface. Comput. Mater. Sci. 2018, 141 193-206.

Tateyama Y., Sumita M., Ootani Y., Aikawa K., Jono R., Han L., Sodeyama K. Acetonitrile solution effect on Ru N749 dye adsorption and excitation at TiO2 anatase interface. J. Phys. Chem. C 2014, 118 (30), 16863-16871.

Monti A., de Ruiter J. M., de Groot H. J. M., Buda F. A dynamic view of proton-coupled electron transfer in photocatalytic water splitting. J. Phys. Chem. C 2016, 120 (40), 23074-23082.

Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B. F. E., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M. K., Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6 (3), 242-247.

Ambrosio F., Martsinovich N., Troisi A. What is the best anchoring group for a dye in a dye-sensitized solar cell? J. Phys. Chem. Lett. 2012, 3 (11), 1531-1535.

Zhang L., Cole J. M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7 (6), 3427-3455.

Smith J. L. On the simultaneous staining of neutral fat and fatty acid by oxazine dyes. J. Pathol. Bacteriol. 1908, 12 (1), 1-4.

Heinz H. Adsorption of biomolecules and polymers on silicates, glasses, and oxides: Mechanisms, predictions, and opportunities by molecular simulation. Curr. Opin. Chem. Engineer. 2016, 11 34-41.

Heinz H., Ramezani-Dakhel H. Simulations of inorganic-bioorganic interfaces to discover new materials: Insights, comparisons to experiment, challenges, and opportunities. Chem. Soc. Rev. 2016, 45 (2), 412-448.

Liu J., Wang Z., Zeng J., Heinz H. Molecular structure and assembly of peptide-derived nanomaterials. Curr. Opin. Green Sustainable Chem. 2018, 12 38-46.

De Angelis F. Modeling materials and processes in hybrid/organic photovoltaics: From dye-sensitized to perovskite solar cells. Acc. Chem. Res. 2014, 47 (11), 3349-3360.

Casida M. E., Huix-Rotllant M. Progress in time-dependent density-functional theory. Annu. Rev. Phys. Chem. 2012, 63 (1), 287-323.

Published
2020-06-29
Cited
How to Cite
Blazhynska, M. M., Kyrychenko, A. V., Stepaniuk, D. S., Korsun, O. M., Kovalenko, S. M., Ivanov, V. V., Miannay, F.-A., Idrissi, A., & Kalugin, O. N. (2020). Recent advances in theoretical investigation of titanium dioxide nanomaterials. A review. Kharkiv University Bulletin. Chemical Series, (34), 6-56. https://doi.org/10.26565/2220-637X-2020-34-01

Most read articles by the same author(s)