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Binary mixtures composed of room-temperature ionic liquids and aprotic dipolar solvents are widely used in
the modern electrochemistry. While these systems exhibit maximum electroconductivity and other changes in
diluted solutions, as confirmed by NMR and vibrational spectroscopic data, there is currently no theory that can
fully explain these phenomena. In current work twelve mixtures of ionic liquids (ILs), in particular 1-butyl-3-
methylimdazolium (Csmim®) with tetrafluoroborate (BFs), hexafluorophosphate (PF¢), trifluoromethanesulfonate
(TFO’) and bis(trifluoromethane)sulfonimide (TFSI’) with molecular solvents such as acetonitrile (AN), propylene
carbonate (PC) or gamma butyrolactone (y-BL) were studied by the molecular dynamics simulation technique.
The local structure of the mixtures was studied in the framework of radial distribution functions (RDFs) and
running coordination numbers (RCNs) that showed the particular behavior in AN and TFSI- systems. For TFSI-
system the presence of two peaks on the RDFs with similar intensities were observed. The mutual arrangement
of cation and anion corresponding to observed on the RDFs interatomic distances were investigated: they
represent the position when the nitrogen atom of the anion is close to the imidazolium ring and when nitrogen
atom of TFSI- not directly interacting with the ring, but instead the oxygen atoms do. The cation-anion
coordination numbers changed for mixtures with AN from ~1.2 to ~3.6, for PC — from 0.6 to 3.0 and for y-BL —
from 0.8 to 3.1 with the increasing mole fraction of the ILs. Also, the association analysis was conducted using
two different distance criteria. The results showed the formation of large clusters at approximately 0.15, 0.20,
and 0.25 IL mole fractions for AN, PC, and y-BL, respectively, based on the first criterion. However, this criterion
tends to overestimate the extent of aggregation. In contrast, the second, stricter criterion indicates that the
formation of large aggregates begins at IL mole fractions similar to where the experimental conductivity curves
reach their maximum. To analyze the transport properties the diffusion coefficients of all the components and
shear viscosity for all binary mixtures were obtained. The diffusion coefficients show good agreement with
experimental data.

Keywords: 1-butyl-3-methylimdazolium, ionic liquids, aprotic dipolar solvents, local structure, transport
properties, ionic aggregation

Introduction

Ionic liquid (IL) mixtures with molecular solvents can be considered as electrolyte solutions, for
which their structure and properties are determined by the balance of types of interactions between all
particles in the solution (cation, anion and solvent), which determine the existence of ionic associates
and high-order aggregates . In this context, the main feature of binary systems based on IL is that the
constituent ions are polyatomic and, as a rule, asymmetric. As a result, the interactions mentioned
above should be considered as anisotropic, having a predominant localization around some molecular
fragment (center of interaction) . Another important feature of these systems in comparison with
ordinary solutions of electrolytes is the complete miscibility of IL with many molecular solvents,
which makes it possible to obtain mixtures corresponding to either a solution of such a liquid in a
molecular solvent or a solution of a molecular solvent in an ionic liquid.

Intermolecular interactions in mixtures of two liquids of different nature can be showed as a
gradual transition from the “first pure liquid” to the “second pure liquid” through intermediate
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compositions. Thus, the task boils down to the following question: which ranges of composition
correspond to the above-mentioned areas, and which intermolecular interactions are decisive .

For pure ILs, there is currently no generally accepted picture of their structure due to the indirect
nature of the methods used. It is widely believed that in the liquid state the structure of imidazolium
ionic liquids is determined by strong interionic Coulomb interactions, which are relatively effectively
shielded away from the central ion (i.e., are quite local). It is also assumed that a significant
contribution is made by the three-dimensional network of hydrogen bonds between counterions . The
strength and structure of this network are determined by the nature (polarizability, polarizing action,
size, etc.) of the anion .

The above-mentioned considerations about the structure of pure components indicate the pres-
ence of two main phenomena in which a redistribution of the equilibrium between possible ion-ion,
ion-molecular and intermolecular interactions can be manifested when the composition changes. These
are ionic association and ionic solvation .

These phenomena can be explained as the gradual breakdown of large ionic aggregates, which are
the fundamental structural units of pure ionic liquids, into smaller aggregates and eventually into ion
pairs. This process occurs as the system transitions from a concentrated ionic liquid to a more dilute
solution. In dilute solutions, ion pairs completely dissociate into "free" ions due to interactions with
the solvent. These interactions can be specific, involving localized ion-molecular interactions, or non-
specific, resulting from the presence of a large amount of solvent that creates an environment similar
to that of a pure solvent. .

The phenomena of ionic association and solvation are manifested at the microscopic level in the
redistribution of electron density in the corresponding areas of interaction and, therefore, in changes in
the corresponding force constants. Among the currently known experimental methods that can detect
such effects, NMR and vibrational (IR and Raman) spectroscopy should be singled out. The first can
reveal information about the change in the electronic microenvironment of each chemically non-equiv-
alent nucleus and the relative location for some nuclei, while the second investigates changes in the
constants of the dipole moment, polarizability, changes in the microenvironment of atoms participat-
ing in the studied vibrational mode .

The association and solvation are also reflected in the “statistical” microstructure of such binary
mixtures. Currently, only various methods of diffraction of X-rays and neutrons can provide
experimental data on the such microstructure in different time and size scales. Also, they are quite
expensive and not always available, as well as difficult from the point of view of data processing. As
well, usually there is only one IL-solvent system under investigation which means that the approach
for studying such objects should be wider and more universal. Molecular dynamics (MD) simulation
can help solve these problems, and this method can also complete the picture with information not
available from experiment .

In this work MD simulation of twelve mixtures of ILs (1-butyl-3-methylimdazolium (C4smim") with
tetrafluoroborate (BFs), hexafluorophosphate (PFs), trifluoromethanesulfonate (TFO’) and
bis(trifluoromethane)sulfonimide (TFSI)) with molecular solvents (acetonitrile (AN), propylene
carbonate (PC) or gamma butyrolactone (y-BL)) of six IL mole fractions were performed. The
molecular structures of the objects are presented at Figure 1. The microstructure, clusterization and,
finally, the transport properties of the systems have been studied.
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Figure 1. Structure of the ions and molecular solvents considered in this study
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Methodology

Details of molecular dynamics simulation. MD simulations have been performed at the temperature
of 298.15 K. To set the size of the cubic simulation box, a short (i.e., 1 ns) run has been performed on
the isothermal-isobaric NPT ensemble at 1 bar. All simulations have been carried out using the
GROMACS 2019.4 software package . The temperature and the pressure have been kept constant by
means of the velocity-rescaling thermostat with the relaxation time of 0.1 ps, and the Berendsen
barostat with the relaxation time of 0.5 ps, respectively. Equations of motion have been integrated
using the leap-frog algorithm with a time-step of 0.5 fs. All interactions have been truncated to zero
beyond the center-center cut-off distance of 1.2 nm. The long-range part of the electrostatic interaction
has been accounted for by the particle mesh Ewald method , while that of the Lennard-Jones
interaction has been treated by the conventional shifted force technique. The Lennard-Jones
parameters corresponding to unlike pairs of atoms have been calculated by the standard Lorentz-
Berthelot combination rules . After equilibrating the systems in the NPT ensemble, simulations of
10 ns have been performed in the NVT ensemble using the equilibrium density obtained from the
constant pressure run. Each set of systems was simulated five times, starting from independently
generated random configurations. These parallel calculations were then used to average the data for all
structural and transport properties. The last 1 ns of the trajectories from these simulations were used
for detailed structural analyses, while the full 10 ns trajectories were utilized for calculating transport
properties.

The simulations of the binary mixtures (total of twelve systems) of four ILs of Csmim" cation with
different anions (BF4, PFs, TFO™ and TFSI) in three aprotic dipolar molecular solvents (AN, PC and
y-BL) have been performed. Six different compositions of the mole fraction of the ILs from 0.05 to
0.30 for each binary mixture were selected in a way that the total number of ion pairs for each
composition was always equal to 100. The number of the different particles of the ILs in the simulated
systems are collected in Table 1.

Table 1. Composition of the systems simulated.

IL mole fraction Number of cations Number of anions Number of solvent
molecules
0.05 1900
0.10 900
0.15 566
0.20 100 100 400
0.25 300
0.30 232

The ILs have been described by the potential model of Mondal and Balasubramanian [38-39],
while for the solvent molecules the potential model of Koverga et al. [40-41] has been used.
According to classical MD formalism, these potential models have the following functional form of
the total potential energy:

bonds k . 5 angles k& " ) dihedral 5 n
— Yy i
Ui = ZT(@_”OJ) t 2 T(Hi/k_e(),iik) + 2, 2C, (eos(v)) +
i ik ik n=0

bonded 12 6 €))
nonbonde: o.. o.. ad.
4 z 4 8[/ v —| £ +ﬂ ,
i rz’j rij 4”807}/‘
where £ is the force constant for bond stretching (), angle bending (8), torsion (¢), respectively, ¢ and
o are the Lennard-Jones energy and the distance parameters, respectively, and ¢ stands for the
fractional charges of the interaction sites. For torsion angle w,,, =180° —¢,, . Indices i, j, k and / run
through the interaction sites of the particles, while the subscript ‘0’ refers to the equilibrium value of

the bond lengths and angles. The potential model of ILs can be regarded a refinement of the CLaP
force field [42-44]. Thus, while the bond and angle parameters have been retained, the torsional



Molecular dynamics study of imidazolium ionic liquids and molecular solvents ...

parameters have been adapted to the Ryckaert-Bellemans analytical expression . Further, the charge
distribution of the ions has been optimized in order to improve the agreement with the experimental
thermodynamic and transport properties of the studied ILs. Thus, the ions of the IL carry a net charge
that depends on the anion [38-39]. The potential models used here were previously validated by their
ability of reproducing the basic experimental physicochemical properties of the systems [38-39].

Aggregate analysis. To study the association of ions, it is essential to establish a criterion by which
two ions can be considered part of the same aggregate, cluster, or associate. Such a criterion was
proposed in different works [46-47] as the distance between coordination centers of respective ions.
Thus, two ions were considered to belong to the same associate if their respective centers are located
at the equal or lower distance that was chosen as a criterion from each other .

After the definition of the criterion, the neighbor list of each cation and anion was determined for
each configuration during the simulation at each timestep. The obtained neighbor list was later used to
establish the connectivity between ions in the system. Important to note that mainly differently
charged ions are coordinating around each other (anions around cations and vice versa). This means
that the resulting clusters are constructed from the ions of altering charge that have the distance
between them that fulfill the determined criterion.

Finally, the statistical analysis was applied to determine the characteristics of clusters. One of such
statistical functions can be a size distribution of the aggregates P(n). It shows the probability of
finding an ion in an aggregate of size n:

n2.4,(J)
P(n)=—"— 2)
CN
where 4,(j) is the number of aggregates of size n for a given configuration j, C is the total number of
configurations acquired during the simulation, N is the total number of cations and anions combined in
the simulation box.

To better represent the results of the clusterization the average number of association 7 can be
obtained. In general case, one can calculate it as follows:

_ N
n=) nk(n) 3)
i=1
Aggregate analysis has been performed by AGGREGATES 3.2.0 software package .

Transport properties. The coefficient of translational self-diffusion of atoms (molecules, ions) in a
liquid can be found using the Green-Kubo relation:

.
D =§£CW (¢)dt. 4)

For the viscosity a nonequilibrium periodic perturbation method has been used . To sum it up,
molecular dynamic simulation is carried out in the 3D periodic cell with the external force in x
direction a(z). According to the Navier-Stokes’s equation:

ou
p8—+p(u-V)u:pa—Vp+nV2u, )
t
where u is the velocity of the liquid, p is pressure of the fluid, p is the density of the fluid, # is time, 7 is
viscosity. Because force is applied only in the x direction, the velocity along y and z will be zero:
ou (Z) o’u (z)
p———==pa, (z)+n—-=>. (6)
ot ( ) oz’

The velocity profile as well as acceleration should be periodic because of the periodic system in the
simulations. Thus, the cosine function can be used for this purpose:

a,(z)=Acos(kz), (7)
2w
k A )

z
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where /. is the height of the box, A is the acceleration amplitude of the external force. The viscosity
then can be obtained:

n=—-—. ©)

The measured viscosity greatly depends on the parameter A. To obtain the viscosity at zero
acceleration few viscosities for different accelerations should be obtained. Then plotting the viscosities
versus the amplitudes allows to obtain shear viscosity for A=0 via extrapolation.

Results and discussion

Structural properties. With the aim to study the cation-anion interaction, the interionic radial
distribution functions (RDFs) and running coordination numbers (RCNs) of IL-solvent binary
mixtures were analyzed. To fully consider these interactions the respective atoms for cations and
anions should be chosen. Also, these points in space need to take into consideration all the
coordination centers of cations and anions at once. For the Cymim" , the most positive charge is
localized at the hydrogen sites around the imidazolium ring. Given this fact the center of the ring
(CoR) is usually chosen as a reference point for the analysis [51-53]. Due to different structure, shape
and symmetry of the anions their positions (X) for the analysis will be the follows: B atom in BF4, P
atom in PF¢, middle of the C-S bond in TFO (takes into account both O and F coordination sites) and
N atom in TFSI (takes into account N, O and F coordination sites).

The interionic RDFs for all IL-solvent binary mixtures for all simulated systems are shown in
Figure 2.

Here the similar curves were obtained for all IL mole fractions, meaning the positions of the
peaks and minima do not depend on the concentration of the IL. Furthermore, their positions do not
vary at all for the same IL in different solvents. The first maxima for various anions occur at 0.49 nm
(BFs), 0.51 nm (PF¢) and 0.52 nm (TFO"). For the TFSI" anion the situation is more complicated as
there are two peaks at relatively low distances, 0.44 nm and 0.62 nm respectively. Also, these peaks
have lower intensity comparing to other ILs. The first maximum in this case corresponds to the CoR-N
interaction when N atom is located directly near the center of the ring or the H-atoms of the ring (the
distances in both cases are similar). At the same time the second peak indicates the CoR-N interaction
when N atom of TFSI™ not directly interacting with the ring, but instead the oxygen atoms do. The
example snapshot from the MD simulation trajectory files was obtained via VMD program package
(Figure 3). These findings prove the quantum chemical calculations from the literature data . The first
minima of RDFs for various anions are as follows: 0.70 nm (BF,), 0.74 nm (PFs), 0.73 nm (TFO’) and
0.77 nm (TFSI'). The behavior of the intensities of the peaks also changes in different ILs-solvent
combinations. For all systems with AN the intensity becomes lower with the increasing of the ILs
mole fraction. Also, for TFSI™ system these changes are the lowest. Similar situation can be observed
for all PC-containing systems where peak intensity do not change with the mole fraction of the ILs.
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Figure 2. Cation-anion (CoR-X) radial distribution functions of the mixtures at various mole fraction
of ionic liquid. The position of the cation is described with center of imidazolium ring. The positions
of anions (X) are: B atom in BF4, P atom in PFs, middle of the C-S bond in TFO™ and N atom in
TFSI'. The vertical dashed and dotted lines correspond to the first and criterion, respectively, for
aggregation analysis.

Figure 3. Example of (Csmim(TFSI),) associate in one of the C;mimTFSI system

The RCNs between cations and anions for all IL-solvent binary mixtures for all the systems
simulated are presented in Figure 4.
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Figure 4. Cation-anion (CoR-X) running coordination numbers of the mixtures at various mole
fraction of ionic liquid. The position of the cation is described with center of imidazolium ring. The
positions of anions (X) are: B atom in BF4, P atom in PF¢, middle of the C-S bond in TFO™ and N
atom in TFSI. The vertical dashed and dotted lines correspond to the first and second criteria
respectively, used for aggregation analysis.

The expected increase of the coordination number of the anion around the cation with the IL mole
fraction increase can be observed at all of the graphs. The values of the coordination numbers however
depend on the solvent. E.g., for AN it varies from ~1.2 (0.05 mole fraction of IL) to ~3.6 (0.30 mole
fraction of IL), for PC — from 0.6 to 3.0 and for y-BL — from 0.8 to 3.1 for all ILs. The coordination
numbers of AN system being the biggest indicate the lowest among other solvent molecules dipole
moment and as a result the weakest ion-solvent interaction in these systems, meaning with the ILs
fraction increase the AN molecules are actively replaced with the anions in the cation first
coordination sphere. Also, in the case of all TFSI™ systems the curves values do not increase until at
bigger distances.

Aggregate analysis. The ionic aggregates existence was analyzed via two different criteria. First
criterion is the first minimum on the cation-anion RDF (Figure 2). This distance shows the border for
the first coordination sphere where all of the anions are in strong interaction with the Cysmim" cation.
As a second criterion the minimum on the second derivative of the RCN curve was proposed
(Figure 5).
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Figure 5. Second derivatives of the cation-anion (CoR-X) running coordination numbers of the
mixtures at various mole fraction of ionic liquid. The position of the cation is described with center of
imidazolium ring. The positions of anions are: B atom in BF,, P atom in PFs, middle of the C-S bond
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in TFO and N atom in TFSI".

This minimum marks the point where the RCN curve transitions to a plateau following an initial
rapid increase. It is slightly shifted from the first peak in the RDF, or the second peak in systems
containing the TFSI" anion, as explained in the previous section. The values of the distances for this
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criterion are next: 0.53 nm (BF,), 0.56 nm (PF¢), 0.57 nm (TFO") and 0.69 nm (TFSI).

The results of the clusters formation probability for all mixtures of all mole fractions can be found

in Figures 6-17 for the first and second criteria respectively.

Figure 6. Probability distributions of aggregate sizes with first (left) and second (right) criterion of the

CsmimBF, in AN binary mixture at various mole fraction of ionic liquid.
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Figure 7. Probability distributions of aggregate sizes with first (left) and second (right) criterion of the
CsmimBF, in PC binary mixture at various mole fraction of ionic liquid.

()a

Figure 8. Probability distributions of aggregate sizes with first (left) and second (right) criterion of the
CsmimBF; in y-BL binary mixture at various mole fraction of ionic liquid.

Figure 9. Probability distributions of aggregate sizes with first (left) and second (right) criterion of the
CsmimPFg in AN binary mixture at various mole fraction of ionic liquid.
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Figure 10. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the CsmimPF; in PC binary mixture at various mole fraction of ionic liquid.

Figure 11. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the CsmimPFs in y-BL binary mixture at various mole fraction of ionic liquid.

Figure 12. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the CsmimTFO in AN binary mixture at various mole fraction of ionic liquid.
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Figure 13. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the C;mimTFO in PC binary mixture at various mole fraction of ionic liquid.

W)a
(ya

Figure 14. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the CsmimTFO in y-BL binary mixture at various mole fraction of ionic liquid.

(Wwa

Figure 15. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the C;mimTFSI in AN binary mixture at various mole fraction of ionic liquid.
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Figure 16. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the CsmimTFSI in PC binary mixture at various mole fraction of ionic liquid.

Figure 17. Probability distributions of aggregate sizes with first (left) and second (right) criterion of
the CsmimTFSI in y-BL binary mixture at various mole fraction of ionic liquid.

The aggregates increase in size with the increasing of the IL mole fraction for each system. The
small clusters are dominating in the most diluted systems when using the first criteria. As the mole
fraction of IL increases up to 0.10 for AN mixtures, 0.15 for PC mixtures, and 0.20 for y-BL mixtures,
transition systems are formed in which a large number of aggregates of different types are present.
With the further increase of mole fraction of the ILs all the systems start to form large aggregates that
include most of the ions in the mixture can be observed. The existence of such huge continuous polar
network, however, still allows small clusters or even isolated ions to exist in systems. Most probably
these small aggregates lose the connectivity with the huge cluster, but their low probabilities of
formation prove that it is a temporary phenomenon. At the highest observed concentration,
nevertheless, the ions are part of one massive associate.

It shows that at the first distance criterion (minimum on the interionic RDF) the aggregate
formation is overestimated in the mixture as there are no charge carriers left in this case and thus there
should be no conductivity at these mole fraction of the ILs. However, the experimental results show
otherwise [55-58].

As for the second criteria, it shows that transition to the massive association occurs only at the
highest IL. mole fraction of 0.30 (for TFSI" — at 0.20-0.25). However, for the binary mixtures with AN
the tendency for larger clusters formation appears at lower IL mole fraction compared to PC and y-BL
mixtures. This shows that AN demonstrates a weaker ion-solvent interaction, allowing ions at lower
concentration form a continuous polar network regardless of the chosen criteria.
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To better illustrate the clusterization processes the average numbers of associations were obtained
for all systems (Figure 18). The figure displays in more compact way the same results that were
discussed earlier. Here for the first criterion ions in AN systems form massive aggregates at 0.15 mole
fraction of ILs already, in y-BL and PC mixtures — at 0.20 and 0.25 respectively. For the second
criterion the ions in the systems are separated from each other or forming small aggregates until
~0.15-0.20 mole fraction of the ILs. After that value of mole fraction ILs in mixtures tend to form
bigger aggregates. For the BF,” PFs and TFO™ in PC this trend is not so pronounced. The massive
aggregation process occurs only in TFSI™ systems for the second criterion and only at highest
concentration of 0.30. The AN systems at this concentration at the transition stage, however for the
CsmimTFSI in AN mixture almost all ions are part of the big associate even at the mole fraction of ILs
of 0.25.
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Figure 18. Average numbers of association with first minima on the RDFs (1st criteria) and with the
minima on the second derivative on the RCN (2nd criteria) of the mixtures at various mole fraction of
ionic liquid.

Nernst-Einstein relation postulates that conductivity depends on the concentration of the charge
carriers in the solution :
eZ
Vk,T
where e is the elementary charge, kz — Boltzmann constant, /' — volume of the system, 7'— temperature
of the system, z. — charge of the ion, N. — number of cations and anions.

Ionic aggregation reduces its concentration and effectively causes the drop in the conductivity
value. As seen from the Figure 18, the mole fractions of rapid increase in the aggregates formation are
the same as the conductivity maxima are located: at ~0.10 for AN systems and at ~0.20 for PC and y-
BL ones [55-58].

Transport properties. The diffusion coefficients and shear viscosities were obtained for all the IL
mole fractions for all systems. The results are presented at Figures 19 and 20 respectively.

K (N.Z2D.+N 2’D-) (10)
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Figure 19. Diffusion coefficients for cation, anions and solvent molecules in comparison with the experimental
data of the mixtures at various mole fraction of ionic liquid.

The diffusion coefficients were compared to the experimental data for cations and solvent
molecules (and also for anions for the systems with PF¢) . For the binary mixtures with AN the
obtained coefficients are very close to the experimental ones for all of the components of the analysis.
For the systems with PC and y-BL the obtained diffusion coefficients have in general higher values
comparing to the experiment by 20%, especially for the higher concentrations.

For all systems the diffusion coefficients of the solvent molecules are higher than of the cation or
anions, while the latter are close to each other for almost all systems and IL mole fractions. Also, the
coefficients of the components in the systems with AN molecules are 3-5 times higher than with other
two solvent molecules. For all PC systems the general trend is almost similar diffusion coefficient for
anion and solvent molecule. For the CsmimBF, in PC simulated system the anion diffusion coefficient
is even higher in the most diluted solution. On the other hand, this behavior cannot be observed in the
experimental data.
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Figure 20. Viscosities of the mixtures at various mole fraction of ionic liquid

The viscosities at Figure 20 are increasing with the IL mole fraction increase by a non-linear
dependance. Although, the values for all systems do not show any drastic changes at respective mole
fractions where the experimental conductivity has maximum.

As the Nernst-Einstein relation shows (Equation 10), not only concentration of the charge carriers
influence the conductivity but the diffusion coefficients as well . The behavior of calculated diffusion
coefficients from the simulation for ions is in agreement with this statement.
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Conclusions

In current work twelve ILs (Csmim* with BF,, PFs, TFO and TFSI) with molecular solvents
(acetonitrile, propylene carbonate, and gamma butyrolactone) binary mixtures were studied by the
molecular dynamics simulation technique.

The microstructure of the mixtures was studied in the framework of radial distribution functions
and running coordination numbers. The RDFs and RCNs show the particular behavior in AN and
TFSI" systems. For TFSI- system the cation-anion (CoR-N) RDFs curves showed two peaks with
similar intensities. It was shown that they represent the position when the nitrogen atom of the anion is
close to the imidazolium ring and when nitrogen atom of TFSI" not directly interacting with the ring,
but instead the oxygen atoms do. The cation-anion coordination numbers changed in similar values for
the same ionic liquids in different solvents: for AN it varies from ~1.2 to ~3.6, for PC — from 0.6 to
3.0 and for y-BL — from 0.8 to 3.1 with the increasing mole fraction of the ILs. Also, data obtained
were used to conduct a quantitative aggregate analysis with two different distance criteria (first
minimum of RDF and minimum of the second derivative of the RCN respectively) to compare the
results with each other. The analysis with the first criterion shows the formation of the massive cluster
at ~0.15, 0.20 and 0.25 IL mole fraction for AN and for with y-BL respectively. Thus, this criterion
seems to overrate the aggregation process in the mixtures. With the second, shorter distance criterion
the formation of big aggregates in the systems starting to occur at the same mole fractions of the ILs
where the experimental conductivity curves change their behavior and the maximum occurs. It proves
that the reason of such drastic changes in the conductivity particular lies in the local structure of the
ILs and solvent molecules.

To evaluate the transport properties, we obtained the diffusion coefficients for all components and
the shear viscosity for all binary mixtures. The diffusion coefficients closely align with experimental
data, demonstrating excellent accuracy, particularly for systems containing AN. Although the viscosity
measurements did not reveal any distinct trends at the mole fraction range of ILs corresponding to the
experimental conductivity maximum, these findings provide valuable insights into the complex
interactions within these mixtures.
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0.c. ,D,yuapeB", A.B. Konechuk', A. lapicci ", O.M. Kanyrin". MonekynsapHo-guHamMiyHe A0CHIAKEHHS IOHHUX PiaunH
Ha OCHOBI iMiga30nito Ta MOMEKYNAPHMUX PO3YMHHUKIB: MIKPOCTPYKTypa Ta TPaHCMOPTHI BNaCTUBOCTI

"Xapkiecbkuli HauioHanbHUl yHieepcumem imeHi B.H. KapasiHa, ximidHul ¢bakynsmem, maidaH Cgo6odu, 4,
Xapkis, 61022, YkpaiHa

+YHiBepCI/ITeT Jlinto, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la
Réactivité et I'environnement, 59000 Jlinb, ®paHuisa

BiHapHi cymiLi, WO cknagatTbCH 3 IOHHUX PIAWH MPU KIMHATHIA TeMnepaTtypi Ta anpOTOHHUX AUMNOSNSPHUX
PO3UYMHHUKIB, LUMPOKO BUMKOPUCTOBYKTLCS B CyYacHil ernekTpoximii. Xova Ui CUCTEMM [EMOHCTPYIOTb
MaKCUMYMW eNeKTPOonpoBiAHOCTI Ta iHWi 0cOBNUBOCTI B po3BEAEHNX po34MHax, nigTBepaxeHi AaHumm AMP i
BiOpauiiHOi crnekTpockonii, Ha CbOroAHIlWHIN AeHb BiOCYTHA Teopis, sika morna 6 nosicHUTU ui sieMwa. Y
OaHin poboTi MeTogoM MOMNEKYNsipHO-ANMHAMIYHOrO MOAENOBaHHA OOCNIAXEHO ABaHAAUSATb CyMillen iOHHUX
piamH  (IP)  3okpema  1-6ytun-3-metunimgasonito  (C.mim*) 3  TeTpadnyopbopatom  (BF.),
rekcaconyopgoccatom (PFg), TpucdnyopmetaHcynbgoHatom (TFO") i Gic(TpudnyopmeTtaH)cynbdhoHiMigom
(TFSI')), y noegHaHHi 3 MOMEKYNSAPHUMM PO3YMHHMKaMK, TakuMmn sk aueToHiTpun (AN), nponineHkapboHat
(PC) abo ramma-6ytmponaktoH (y-BL). JlokanbHy CTpyKTypy CyMillen gocnigxysanu 3a AoNOMOror yHkuin
pagianbHoro posnoginy (®PP) Ta notouyHmx koopauHauiinux uyucen (MKY), wo BuABmMnmM ocobnuBocCTi
nosegiHkn B cuctemax 3 AN Ta TFSI". Ina cuctemn 3 TFSI- cnocTepiranucs gea niku Ha ®PP 3 ogHakoBoto
iHTeHCUBHICTIO. Byno gocnigxeHo B3aeMHe po3TallyBaHHSA KaTiOHIB Ta aHiOHIB, dKe BiANOBiAaE MiKaTOMHUM
BiACTaHsAM, WO cnocTepiraloTecss Ha ®OPP: BoHM BigobGpaxalTb KOHirypauii, kKonu atom as3oTy aHioHy
3HaxoauTbcs Nobnuay imigasonieBoro kinbls, i konv atom as3oTy TFSI- 6Ge3nocepenHbo He B3aemogie 3
KinbLeMm, HaTOMIiCTb Le pobnsaTb aToMu KUCHK. KaTioH-aHiOHHI KoopAMHauiiHi Yucna 3MiHBanucs ang
cymiwen 3 AN Big ~1,2 po ~3,6, ona PC — Big 0,6 po 3,0 Ta ans y-BL — Big 0,8 go 3,1 3i 36inbweHHsaM
monspHoi yactku IP. Kpim Toro, aHani3a acouiauii 6yB npoBeeHnn 3 BUKOPUCTaHHAM OBOX Pi3HUX KpUTepiiB
BiACTaHi. Pe3ynbTatn nokasanu yTBOpeHHS Benukux knactepis npu npnbnusHo 0,15, 0,20 ta 0,25 monbHuX
yacTkax ioHHoi pignHu ana AN, PC Tta y-BL BignoBigHoO, Ha OCHOBI nepLuoro kpuTepito. OgHak uew kputepin
Ma€e TeHAEeHUil nepeouiHBaTM CTyMiHb arperauii. Ha BigMiHy Big HbOro, Apyrui, CyBOpPIlUMIA KpuUTepin
BKa3ye, L0 YTBOPEHHS BENUKWUX arperaTtiB NMOYMHAETLCS NMPU MOJSIbHUX YacTkax iOHHOI pianHW, NoAibHUX Ao
TUX, [[€e eKCnepuMeHTalnbHi KpuBi MPOBIAHOCTI JocArawTb Makcumymy. [ns aHanisy TpaHCnopTHUX
Bnactusocten Oynu oTpumaHi koediuieHTV AMdY3ii BCIX KOMMOHEHTIB Ta B'A3KICTb ANs BCix GiHapHMX
cymiwein. KoediuieHTn andysii fobpe y3roaxyoTeCa 3 eKkcnepuMeHTanbHUMU AaHUMMN.

Knroyoei cnoea:. 1-6ymun-3-memunimOasonit, ioHHi piOuHU, anpoOmoOHHI OunOnsapHi PO3YUHHUKU,
JflI0KanbHa cmpykmypa, mpaHCropmHi eracmugocmi, ioHHa agpeaauis
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This paper reports the results on obtaining and investigation of functional parameters of CszZnCls crystals
grown using Bridgman method from the melts of 3CsCl-2ZnCl; and 3CsCl-1.995ZnCl,-0.005 EuCl,
compositions. The study of photoluminescence spectra obtained at 237 nm excitation shows the presence of
the following emission bands: one at 325 nm caused by the defects or impurities, slightly pronounced band at
ca. 450 nm caused by the presence of Eu® ions and a series of bands in 590+700 nm range due to the
presence of Eu® in the crystals. The presence of said Eu ions is confirmed by the luminescent studies with the
use of excitation at wavelengths proper to Eu?*" (340 nm) and Eu® (465 nm). X-ray luminescence spectra
include the bands with maxima of 235 nm and 285 nm which are caused by the core-valence luminescence, the
band with the maximum at 320 nm caused by the defects and impurities and two bands with the maxima at 400
and 520 nm which nature is not clear (probably, it can be connected with the presence of Eu® in the samples).
The study of light yield performed at the light collection time of 2 ys showed that for all the samples its value is
ca. 6% vs. BGO crystal (BisGes;O+.) and the form of the pulse-height spectra for the crystals grown from both
melts practically coincide. This leads to the conclusion that the transfer of excitation from the matrix to Eu?* ions
is absent and, according to the photoluminescence studies it can be assumed that Eu? exists in the said
crystals as inclusions of CsCl:Eu? solid solution.

Keywords: cesium chloride, zinc chloride, europium chloride, luminescence, scintillation, light yield.

Introduction

The recent progress of material science of halide scintillation materials is connected with the
development of rare-earth activated (Eu?*’, Ce™) simple and complex compounds and their solid
solutions. Some of the recently discovered materials are already established trademarks (LaCl;:Ce** —
BrilLanCe™350 [1, 2] and LaBr;:Ce’* — BrilLanCe™380 [2, 3]) and others (Srl:Eu** [4] and
Cs:LiYClg:Ce* (CLYC) [5]) are efficiently developed and also are commercially available [6,7]. The
said materials are solid solutions of halides formed by perfectly isomorphic cations, e.g., LaCl;:Ce**
means La;«CexCl; and so on.

The search for new activated halide luminescent materials is performed among solid solutions
formed by restrictedly isomorphic cations, e.g., for Eu**-activated materials compounds formed by
Ca’* [8] and Mg** [9] have been investigated.

This work presents an attempt to obtain Eu**-activated material on the basis of Cs;ZnCls compound
formed by Zn*" cation restrictedly isomorphic to Eu®". According to [10] the difference of the

© Yurchenko O., Rebrov O., Cherginets V., Boyarintseva 1., Rebrova T., Ponomarenko T., Lebedinsky O.,
Zelenskaya O., 2023
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Luminescence and scintillation properties of Cs;ZnCls and Cs;ZnCls (Eu) single crystals

electronegativities of Eu and Zn is 0.4 that is the limiting value for the perfect isomorphism (The
Goldschmidt rule), as for the difference of the ionic radii [11] it considerably exceeds 15%.

It should be noted that the said non-activated material is also referred to scintillators for detection
of X-ray irradiation [12].

The results of our study are presented below.

Experimental part

Reagents. Extra pure cesium chloride was used for the crystal growth of crystals on the basis of
Cs3ZnCls.

Zinc chloride was obtained by the dissolution of metallic zinc of reagent grade in extra pure
hydrochloric acid according to well-known routine [13]. Obtained ZnCl, was grinded in glow box and
kept there.

Charge for the growth of Cs;ZnCls was prepared by mixing of CsCl with ZnCl, in glow box in the
mass ratio of 3,71:1.

The charge for the preparation of the growth melt of Cs;ZnCls melt with addition of 0.5 mol. % of
Eu”* with respect to Zn** was prepared in such a manner. Primarily solid solution of CsCI-EuCl,
composition was prepared by the dissolution of 0.0882 g of Eu,O; in 50 g of molten CsCl by the
carbohalogenation process at 700 °C:

2 Eu,0, 4 +3CCl, =4 EuCL, +3CO, T +2CI, T (1)

The primarily formed suspension of Eu,O; disappeared after 1h treatment the melt became
transparent and further it was treated for 1 h, cooled, grinded and kept in glow box. The temperature of
the carbohalogenation provided practically complete reduction of EuCls into EuCl..

For the preparation of Cs;ZnCls:0.5 mol. % of Eu*" charge 19.72 g of CsCl:Eu*" powder was mixed
in the glow box with 5.282 g of ZnCl,.

The growth procedure. The charge was placed in quartz ampoule of 12 mm diameter and 500 mm
height. Before the growth the ampoule with the charge was kept under vacuum (1 Pa) for 24 h at
700 °C.

The growth of the crystals was performed by Bridgman method in two-zone furnace, the difference
of temperature between the zones was 80 °C, temperature gradient was ca. 40 °C/cm, the rate of the
dropping of the ampoule was 3.2 mm/h. After the finishing of the ampoule broaching the furnace was
cooled to room temperature during 72 h.

After the cooling, ampoule was placed in the glow box where it was broken down and the ingot
was removed. The transparent part of the ingot was cut, polished and kept in polyethylene batch in the
glow box. The samples presented cylinders of 610 mm diameter and 1 mm height.

The obtained samples were practically non-hygroscopic, therefore, they were not packed into
containers at all the investigations.

Investigation of the obtained samples. The phase composition of the parts of the obtained ingot
was determined using X-ray diffractometer DRON with Cu-Ka radiation.

The study of luminescent properties of the obtained samples was performed using a combined
fluorescent lifetime and steady-state spectrometer FLS 920 (Edinburgh Instruments) equipped with a
xenon Xe 450 W and hydrogen filled nF 900 nanosecond flashlamp for time correlated single photon
counting measurements. Photoluminescence excitation (PLE) spectra were corrected on the incident
photon flux. Photoluminescence emission (PL) spectra were corrected for the spectral sensitivity of the
detection system.

The spectra of X-ray excited luminescence were obtained under X-ray (Cu, 40 kV, 40 pA)
excitation in transmission mode and were not corrected for the spectral sensitivity of the detection
system.

Scintillation decay time profiles of Cs;ZnCls-based samples were obtained as follows. The samples
were placed on the photocathode of Hamamatsu R6231 PMT. Scintillations were excited with
662 keV gammas from ’Cs source. Signal from PMT anode was fed to the input of Rigol DS6064
oscilloscope. Decay curves were calculated by averaging of several hundreds of recorded pulses with
amplitudes approximately corresponding to the full absorption peak.

The light yield and the energy resolution of the obtained samples were determined by the method
of comparison [14]. The measurements were recorded using a pulse processing chain consisting of an

26



0. Yurchenko, O. Rebrov, V. Cherginets, 1. Boyarintseva, T. Rebrova, T. Ponomarenko, et al.

R1307 SU 0192 PMT (Hamamatsu, Japan), a charge-sensitive preamplifier BUS 2-95, a custom
shaping amplifier and a multichannel analyzer AMA-03F. Relative light yield was determined by
comparing the peak position (abscissa) of the grown crystals and that of a BGO (BisGe;O1,) crystal
(10,000 photons/MeV and energy resolution of 10 %). All measurements were done under the same
conditions using the shaping time of 8 ps. The error of the light yield and energy resolution
measurements was less than 5 %.

Results and discussion
As it was mentioned in the previous section all the ingots consisted of lower opaque part and upper
transparent one. Taking into account that Eu®" is slightly isomorphic to Zn** we performed
examination of both parts of the ingot. The X-ray diffraction patterns of the said samples coincide.
The X-ray diffraction pattern of the samples grown from Cs3;ZnCls melt containing EuCl, is
presented in Fig. 1. It is seen that the ingots consist of Cs;ZnCls (tetragonal unit cell, a=0.926 nm,
c=1.450 nm, space group [4/mcm) [15].

8000
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Figure 1. The X-ray diffraction pattern of the sample grown from Cs;ZnCls (Eu) melt (thick line) and the
database data for Cs;ZnCl;s (thin line)

It means that there was no selective accumulation in the opaque part of CsCl or its compounds with
EuCl, of CsEuCl; composition (tetragonal unit cell, a=0.5588(4) nm, ¢=0.5619(8) nm, space group
P4 mm) [16]. It may be concluded that Eu*" is distributed throughout all the ingot.

The excitation and photoluminescence spectra of the transparent part of the sample are presented in
Fig. 2.

Excitation Emission
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Figure 2. Excitation (a, A.»=325 nm) and emission (b, A=237 nm) spectra of sample grown from Cs;ZnCls (Eu)
melt

It can be seen that the main luminescence band at excitation wavelength of 237 nm is placed at
310 nm. Authors [12] found that similar band with the emission band 290 nm was obtained under
excitation at 70+90 nm and it was ascribed to Auger-free luminescence (AFL). In [17] the same
authors studied luminescence of crystals of Cs(Ca;xMgy)Cl; composition and found that at the
excitation at 240 nm the luminescence for all the studied materials is observed in 350+390 nm range.
Taking into account the excitation wavelength (240 nm) the authors assumed that this luminescence is
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caused by defects or impurity sites. It is very probable that the emission band at 310 nm is also due to
impurities or defects. The decay profile for the luminesce excited at 237 nm is monoexponential and
the decay constant is estimated as 260 ns.

The beside of the above-discussed band in the emission spectra there is also the band proper to Eu?*
(~430 nm, slightly pronounced) and Eu®" (three bands in 590+700 nm region).

To check whether the 430 nm band is caused by the presence of Eu®* we recorded the
photoluminescence spectra using excitation at 340 nm proper for Eu®*. These spectra are shown in Fig.

3.
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Figure 3. Excitation (a, Aen=440 nm) and emission (b, A.=340 nm) spectra of sample grown from Cs;ZnCl;s (Eu)
melt

The excitation spectrum includes bands at 260 nm and wide band at 330+400 nm that is proper to
excitation of Eu*" ions and the emission band at 442 nm. We can assume that the 442 nm band can be
ascribed to the formation of CsCl:Eu*" solid solution since the same wavelength was obtained by the

authors of [18].
As for the luminescence decay curve, it is presented in Fig. 4 and can be described by three

components with decay constants of 17, 68 and 360 ns.

10" =R
f \ A =340 nm, »_=440 nm

10" 4

0+——— —
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time, ns
Figure 4. The decay curve (Aex=340 nm, Aen=440 nm) for the sample grown from Cs;ZnCls (Eu) melt

It is interesting that authors [18] estimated the decay constant of longer component as 360 nm.
As for the presence in the sample of Eu®", it is easily confirmed by the data of Fig. 5.
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Figure 5. Excitation (a, An=590 nm) and emission (b, A=465 nm) spectra of sample grown from Cs;ZnCls (Eu)
melt

The emission spectrum includes bands at 590, 612 and 700 nm which are referred to luminescence
of Eu’*. So, at least the traces of EuCl; are present in the sample. This is proper to other chloride
materials doped with Eu®* since the decomposition temperature of EuCl; to EuCl, is close to 700 °C
and even long-term keeping of the growth melt under vacuum does not provide the complete
decomposition of EuCl; to EuCl,.

Now let us consider results connected with the scintillation properties of the obtained crystals. The
X-ray luminescence spectrum is presented in Fig. 6.

According to [12] the bands with maxima of 235 nm and 285 nm can be referred to core-valence
luminescence, the band with the maximum at 320 nm according to the description of Fig. 1 is caused
by the defects and impurities. As for the band with the maximum at 520 nm its nature is unknown, it
may be caused by the presence of Eu’" in the samples.
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Figure 6. X-ray luminescence spectrum of sample grown from Cs;ZnCls (Eu) melt (reflectance mode, silver

anode, [=40 pA, U=40 kV)

As for the light yield and energy resolution the light collection time of 2 pus was chosen going from
the luminescence decay constants, the pulse-height spectra of the obtained crystals are presented in
Fig. 7.

From Fig. 7a it follows that the light yield of Cs;ZnCls(Eu) is equal to 5.8 % against BGO, i.e., ca.
580 photons per MeV. As for undoped Cs;ZnCls its light yield achieves 6 % against BGO (600
photons MeV), that agrees with the data of [12]. Due to complex structure of the photopeaks of the
obtained crystals (Fig. 7b) any estimations of the energy resolution would be incorrect.
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So, the light yield of Cs;ZnCls is not dependent on the presence or absence of Eu®* ions in the
sample and the pulse-height spectra are identical (Fig.7b). It means that the transfer of the excitation
from matrix to Eu*" ion is negligible or absent due to restricted isomorphism of Eu®" and Zn*" ions,
which is confirmed by the data of Fig. 6. The most possible form of Eu?" existence in the grown
crystals considered in this paper may be CsCl:Eu* inclusions or traces of CsEuCl; (see Fig. 3 and
description for it).
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Figure 7. Pulse height spectra of: 1 — Cs;ZnCls:(Eu) sample vs. BGO (BisGe;O1», standard), 2 — a comparison
of the spectra for undoped Cs;ZnCls and Cs;ZnCls :(Eu)

Conclusions

In this study crystals on the basis of Cs;ZnCls were grown by Bridgman method from the melts of
3CsCl-2ZnCl; and 3CsCl-1.995ZnCl,-0.005 EuCl, compositions.

The luminescence spectra of the Cs;ZnCls samples obtained at A.x=237 nm include bands caused by
defects or admixtures (325 nm), Eu*" ions (450 nm) and Eu*" ions (in the range of 590700 nm). The
presence of both Eu ions was confirmed by luminescence investigations at excitation at wavelengths
proper for the corresponding ions. The X-ray luminescence spectra did not include the bands proper
for Eu ions.

The study of light yield performed at the light collection time of 2 us showed that the light yield of
the crystals grown from both melts is ca. 6% vs. BGO (Bi4Ge;O1;) and the shapes of the pulse-height
spectra are practically the same that confirms the negligible excitation transfer from the matrix to Eu*"
ions. Taking into account the results of photoluminescence studies it can be assumed that Eu*" ions
exist in the grown Cs;ZnCls crystals as inclusions of CsCl:Eu** solid solution.
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"Xapkicbkuii HauioHanbHuit yHiBepcuteT im. B.H. KapasiHa, ximiunuini dpakynster, nn. CeoGoau, 4, 61022,
XapkiB, YkpaiHa
TIHCTUTYT CUMHTUNAUIMHMX MaTepianiB HauioHanbHoi akagemii Hayk YkpaiHu, np. Hayku, 60, 61072, Xapkis,
YkpaiHa
*HTK “IHcTuTyT MOHOKpucTanis” HauionanbHoi akagemii Hayk Ykpainm, np. Hayku, 60, 61072, Xapkis, YkpaiHa
HaBepeHo pesynbTatu pobiT 3 OTPpUMAHHA | [OCNISKEHHS (YHKUIOHaNbHUX BNAcTUMBOCTEN KpucTanis
Cs3sZnCls, BupowleHux 3 posnnasiB cknagis 3CsCl-2ZnCl; i 3CsCl-1.995ZnCl;-0.005 EuCl,. Y cnektpax
doTonoMiHecUeHLUIT KpucTanis, ogepXaHux Npu Aen=237 HM, CNOCTEpPIraeTbCs CMyra 3 MakCMMyMom npu 325 HM,
sKka Moxe Oyt obymMoBneHa HasiBHICTIO AedekTiB i JoMiWwok, cnabka cmyra npu ~450 HM, WO BigHOCUTBLCS A0
noMiHecueHuii Eu®, a Takox cepia cmyr B iHTepsani 590-700 HM, siki BigHOCATbCS 00 nOMiHecueHuii Eu®.
MpucyTHiCTb ioHIB eBponito Eu Gyno goBedeHO AOCHIMKEHHAMM MOMIHECLEHUii Npu 30ymKeHHi Ha OOBXMHAaX
XBUMb MpuTaMaHHux ans Eu? (340 Hm) i Eu®" (465 HM). CnekTpu peHTreHomtoMiHecUeHuii MiCTaTb cMmyr 3
mMakcumymamun npu 235 HM i 285 HM, WO BIiAMOBIAAOTb OCTOBHO-BaneHTHIN noMiHecueHuil, npu 320 Hm
(MoxnuBo, aedekTu i gomilwku) i ABi cmyrm 3 makcumymamu npu 400 i 520 HM, npypogda Skux He 3'sicoBaHa
(MOXIMBO, BOHM MOB’sI3aHi 3 MPUCYTHICTIO ioHiB Eu® y 3paskax). [docnigkeHHsI CBITIIOBOrO BMXOMY OOEpXaHuxX
KpucTanis, NpoBeaeHi Npu Yaci cBiTno3bumpaHHsa 2 MKC, nokasanu, Wo Kpuctanu obox cknagis MatoTb CBITNOBUXIA,
npubnusHo 6% sigHocHo kpuctanis BGO (BisGesO12), a hopma iX amnniTyaAHUX CNeKTPiB NPaKkTUYHO OAHAaKOBa,
WO CBiOYMTb NPO He3HauyHun nepeHoc 30yMKeHHs Big mMaTtpuui Ao ioHiB Eu®. Buxogsuu 3 pesynbrartis
JOCTMIMKEeHHs1 (POTOMOMIHECLEHLIIT, MOXHAa MpuUnycTUTW, Wwo Eu® icHye y BMPOLLEHWX KpucTanax y BUrmsigi
BKIMHOYEHb TBEpAoro po3unHy CsClEu?*.
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The method of binary additive quasi-solvates (BAQS) a new approach for analyzing the physicochemical
properties of solutions is proposed. Quasi-solvate Qj is a hypothetical two-particle structure in which one
particle i is the ‘solute’ and the other particle j is the ‘solvent’. A set of similar quasi-solvates has the
macroscopic property Fj. The solution is an additive mixture of quasi-solvates with weight functions wj. Two
models have been developed within the BAQS method: with symmetric weight functions (BAQS/S) and with
asymmetric weight functions (BAQS/A). On the example of volumetric properties of non-electrolyte solutions the
possibilities of the method are shown. Effective limiting partial molar volumes of components for mixtures of
non-electrolytes are determined. The possibility of predicting the properties of multicomponent solutions from
data for two-component systems is considered. Applications to other solution properties are shown. Each of the
proposed models has its own advantages and limitations.

BAQS/S: describes molar volumes of mixtures, especially for aprotonic systems, can be used to predict
properties of multicomponent systems, effective on small datasets. Limitations: applicability to other solution
properties remains questionable, model parameters differ from those obtained by the independent method,
approximation accuracy is inferior to empirical models.

BAQS/A: applicable for any solution properties, informative and illustrative. Limitations: very sensitive to the
choice of approximating equation, difficult to interpret results, developed only for two-component systems.

Keywords: physicochemical analysis, molar volume, limiting partial molar volume, Redlich-Kister equation,
non-electrolyte solutions, multicomponent mixtures, binary additive quasi-solvates.

Introduction

Solutions play a significant role in all areas of chemistry. One of the most important
thermodynamic characteristics of solutions are volumetric properties: density, molar volume, excess
molar volume[1]. A great number of data on volumetric properties of solutions have been collected[2]
and they continue to be actively studied[3-6]. The properties of solutions are determined by the
specifics of interparticle interactions. Therefore, analyzing the influence of the composition and nature
of components on the physicochemical properties of solutions is an actual problem. In many cases,
this requires special experiments. Which significantly limits the range of systems to be investigated.

Volumetric properties are usually considered in terms of molar volumes. For example, analysis of
the dependence of molar volume on composition for two-component solutions. Excess molar volume
is a measure of the deviation of molar volume from additivity:

VE =V —Vix =V, ()
Traditionally, the dependence of excess molar volume on composition is described by the
empirical Redlich-Kister equation[7]:

VE :Xlxz(Ao +2A(X1—X2)ij (2)

Each system is characterized by a set of empirical parameters Ai.
Another approach is the partial molar volume method:
V =V, X +V,X, (3)
Of particular interest are the limiting partial molar volumes. Within the framework of the
Redlich-Kister model, limiting partial molar volumes are determined:

VE=W+§A(4J (4)
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Vo=V, + ; A (5)

A large amount of data in the dilute region of compositions is needed to correctly determine the
limiting partial molar volumes. At the same time, most non-electrolyte solutions have been studied
with a typical composition scale step of ~0.1 mole fraction units, which is only a dozen points for each
system. Thus, using equation (2) with a large number of parameters seems incorrect. Despite the
colossal number of systems studied (about a hundred thousand datasets, more than a million
experimental points[2]), the vast majority of data more than to determine the excess molar volume is
not used in any way.

This paper proposes a method to analyze the physicochemical properties of solutions within a
single dataset. This will allow the extensive material collected in the scientific literature to be utilized.

Method

Binary Additive Quasi-Solvates (BAQS).

Let's introduce some definitions.

D1: Quasi-solvate Qjj is a hypothetical two-particle structure in which one particle i is the ‘solute’
and the other particle j is the ‘solvent’.

D2: A set of similar quasi-solvates has the macroscopic property Fi.

D3: The solution is an additive mixture of quasi-solvates with weight functions w;.

From D2 and D3, it follows that the property F of an n-component solution is composed of Fij with

weight functions wij:
n n
F= ZZ FijW; (6)
i=1l j=1
n n
2.2 Wy =1 (7)
i=1j=1
Four types of quasi-solvates are possible for a two-component solution;
Q11 — component 1 particle is the ‘solute’, component 1 particle is the ‘solvent’;
Q22 — component 2 particle is the ‘solute’, component 2 particle is the ‘solvent’;
Q12 — component 1 particle is the ‘solute’, component 2 particle is the ‘solvent’;
Q21 — component 2 particle is the ‘solute’, component 1 particle is the ‘solvent’.
Thus, the molar volume of the two-component solution is

V =V Wig +VioWao +Vo Wo, +VooWs0, (8)
Cases Vi1 and V2, — correspond to pure components. Based on D1, it can be assumed that
Viz2+V V321+V.

It remains only to set the weight functions. Two approaches to solving this problem are proposed.

Binary Additive Quasi-Solvates with Symmetric weight functions (BAQS/S)
Let the quasi-solvates be randomly distributed in the solution. Then the weight function is equal to
the probability of choosing two particles:

Wy = X12 and Wy, = X22 (10)
Wyp +Wsp = 2% X, (11)
On the other hand, by definition
Viz =V, - Z:(/l x=0 and V21=Vi;— 2)\(/2 x2=0 (12)
Conditions (8-12) satisfy the formulas:
W, = 2X1X§ and Wa; = 2X7%, (13)

This suggests that the distribution of the quasi-solvates Q> and Q1 cannot be completely random,
but depends on the environment. Conditions (10, 13) satisfy the formula:
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2%,X}
Wi = (14)
X +X;
Thus, the weight functions are symmetric with respect to substitution of indices.
From (8-10, 13) it follows that
V =V (L4 % )+ Viax xE +V 53X +V,,x2 L+, ) (15)
The values of the molar volumes of pure components are assumed to be known. The limiting molar
partial volumes are unknown and are calculated as fitting parameters. A special deviation function is
used for approximation:
_ 2 2 _\/* 2 /¥ 2
AV =V -V, X (1+ X, )—szx2 (1+ X )_Vllex2 +V 1 XX, (16)
Normalized deviation function assumes linear dependence and allows visual assessment of model
adequacy:
AV 7k 7k
AV, = =V L, X +V 5 X
N XX, 1272 21 @an
The coefficients of the two-parameter Redlich-Kister equation are related to the effective limiting
partial molar volumes:

A - (\/21 -V, )"‘ (VIZ _Vll) _ Vzli* +V15* (18)

2 2
A = (\/21 _\/22)_6/12 _V11) _ Vo —Vi; (19)
2 2
The BAQS/S model can also describe multi-component systems:
_N N XX}
v —;;(\/u +V”)Xi+X,— (20)
The applicability of this model is discussed below.
Binary Additive Quasi-Solvates with Asymmetric weight functions (BAQS/A).
Assume that the equilibrium between quasi-solvates is established:
Qu+Qp <> Q,+Qy (21)
Qi <> Qz (22)
Then
Wy =X~ (23)
W =X, —&X (24)
W, =a—f (25)
Wy =a+f (26)

where a and g are the mole fractions of the particles involved in processes (21) and (22),
respectively.
From (3, 8, 9, 23-27) it follows that

V = Vll[x1 5 + 'g) +V 12(2 - g) +V 21(2 + gj +V22(x2 5 gj =ViX +V, %, (27)
Suppose it can be divided into two component parts:
(04 —o [ X —
Vll(Xl —2+§)+V12(2—2j =V1Xl (28)
o — o O _
sz(x2 —2—§)+V 21(2+'§) =V, X, (29)

After simple transformations the system of equations has the form:
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Vi-V
a—pB=2%——= 11 30
V-V, (30)
V., -V
a+pf=2x, 2 -2 31
From (23-26, 30, 31) it follows that
—E —E
\Y/ V
12 21
W, +W. W, , +W.
Wy =X -2 2 5 2L and Wy, =X, — 122 5 = (33)

Thus, a set of weight functions of quasi-solvates for any composition of the system is obtained. The
weight functions in model BAQS/A are asymmetric with respect to index substitution.

Let us determine the excess partial molar volumes using the tangent to the excess volume function
(1). If we use (2), the weight functions are determined using the coefficients of the Redlich-Kister
equation and special polynomials (x=x):

2 APR;
Wi, = 21-x) 10— (34)
; A-(-1)
2 APy
Wy, = 2x =0 (35)

i=1
The following are special polynomials:

P = x? (36)

Py =3x" —4x> (37)

P, =5x* —16x° +12x* (38)

P =7x% —36x3 +60x* —32x° (39)

P4 =9x% —64x> +168x"* —192x° +80x° (40)

P s =11x* —100x® +360x"* —640x° +560x° —192x’ (41)

P =13x* —144x° + 660x"* —1600x° +2160x° —1536x" -+ 448x" (42)
Py =1—2X+ X2 (43)

Py, =1—6x+9x* —4x3 (44)

P, =1-10x+29x° —32x° +12x* (45)

P,; =1-14x+61x* —116x> +100x* —32x° (46)

P,, =1-18x+105x* — 288x° + 408x* — 288x° +80x° (47)

Ps =1—22x+161x* —580x° +1160x"* —1312x° + 784x°® —192x7 (48)

Pps =1—26X+229x% —1024x> +2660x* —4192x° +3952x° —2048x7 +448x°  (49)

For the two-parameter Redlich-Kister equation considering (18, 19), where ¢ is the ratio of the
effective excess limiting partial molar volumes:

W, = X7 +4x7x2 -(1— f12 7621 ;gﬂj (50)
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+
W,, = X2 +4X7X2 _(1_g12 > §21j (51)
W, =2% X22 + 4X12X22 '(gzl _1) (52)
Wy = 2X12X2 + 4)(12)(22 '(glz _1) (53)
Restriction on the ratio of excess limiting partial molar volumes:
1
2 <6 = 2 (54)

When the excess limiting partial molar volumes are equal, the weight functions correspond to
equations (10) and (13).

Model testing

BAQS/S: Two-component systems.

Let us consider the applicability of the model for the well-studied Ethanol-Water system. Data on
the density of water-alcohol mixtures at 298.15 K and atmospheric pressure are taken from [8]. Based
on these data, the 4 functions were calculated and approximated by equation (16). (Fig. 1). As fitting
parameters, the limiting partial molar volumes of Ethanol in Water and Water in Ethanol were
determined (Table 2, 2 parameters). The values obtained are slightly different from the traditional
values 55.195 and 13.904 cm®mol, respectively [9]. Thus, the calculated limiting partial molar
volumes should be considered as effective within the model.

The data are presented more clearly in the form of linearized equation (17). Figure 2 also shows the
values for binary mixtures of Water, Acetonitrile and DMSO at 293.15 K and pressure of 81.5 kPa
calculated from [10].

10 4
AV,em’/mol

0
0 02 04 0.6 08 X(Ethanol) |

Fig. 1 Dependence of the function 47 on the composition of the mixture of Water and Ethanol. The dots show
experimental data, the line — calculation by equation (16).

It can be seen that the model describes the experimental data quite satisfactorily. Small deviations
are observed for water-organic systems in the region of low water content.

AVy, em’/mol

0 0.2 0.4 0.6 0.8 1

Fig. 2 Dependence of the function AVy on the content of the second component of the mixture. Dots —
experimental data. Lines — calculations according to equation (17): Ethanol-Water (red), Water-Acetonitrile
(blue), Water-DMSO (purple), DMSO-Acetonitrile (green). See text for explanations.
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However, it should be noted that BAQS/S is equivalent to the two-parameter Redlich-Kister
equation and is inferior in accuracy to higher order equations. Nevertheless, it is reasonable to use it
for small datasets and data visualization.

BAQS/S: Three-component systems.

The BAQS/S model can be used for multicomponent systems. The molar volumes of the three-
component Water-Acetonitrile-DMSO system were calculated from the above data of the two-
component systems and compared with experimental data [10]. Table 2 summarizes the parameters
obtained for the two-component systems. Similar parameters determined only for three-component
systems are also given.

Table 1. Effective limiting partial molar volumes Vi; (cm%mol) for two- and three-component systems.

i | 2 components 3 components
Water Acetonitrile 17.60+0.17 17.40£0.12
Acetonitrile Water 48.43+0.17 48.82+0.11
Water DMSO 15.7740.16 15.6310.11
DMSO Water 65.90+0.16 65.91+0.11
Acetonitrile DMSO 52.07+0.04 52.08+0.11
DMSO Acetonitrile 70.08+0.04 68.97+0.12

The differences between the parameters obtained from different data are insignificant. The standard
deviation for a three-component system is of the same order of magnitude as for two-component
systems. Thus, the BAQS/S model can be applied to predict the properties of multicomponent
systems.

BAQS/A: Molar volume.
The data of molar volumes of Water-Ethanol mixtures [8] were approximated by Redlich-Kister
equations of different orders. The calculated parameters are summarized in Table 2.

Table 2. Parameters of equation (2), limiting partial molar volumes and sum of squares of deviations.

2 parameters | 3parameters | 4 parameters | 5 parameters | 6 parameters | 7 parameters
Ao -4.44+0.04 -4.29+0.03 -4.27+0.03 -4.20+0.02 -4.23+0.01 -4,26+0.01
A 1.29+0.09 1.10+0.06 1.34+0.10 1.16+0.08 0.77+0.06 0.88+0.03
A -1.08+0.13 -1.23+0.13 -2.51+0.22 -2.01+0.13 -0.95+0.10
As -0.74+0.26 -0.21+0.20 2.82+0.35 1.97+0.17
A4 2.42+0.39 1.46%0.23 -3.2340.40
As -4.06+0.44 -2.91+0.22
As 4.81+0.40
V12

52.94+0.09 52.20 52.58 53.42 54.37 55.10
V 21

14.9240.11 13.80 13.17 14.72 12.82 14.38
G 0.0574 0.0203 0.0166 0.0079 0.0023 0.0004

As the number of parameters increases, the approximation accuracy improves. However, the
uncertainty of the limit values increases. Figures 3, 4, 5 show the dependences of weight functions for
the two-, three-, and four-parameter Redlich-Kister equation calculated from equations (34, 35) and
parameters of Table 3. Index 1 refers to Ethanol, index 2 to Water. The calculated weight functions
depend significantly on the number of parameters of the approximating equation. Moreover, negative
values of weight functions are observed for five and more parameters. However, qualitatively, the
dependencies in Figs. 3-5 are similar. Thus, the question of choosing an approximating equation for
the dependence of molar volume on composition remains open. Other approximating functions are
also found in the literature[11]. For example, the Padé approximation or orthogonal Legendre
polynomials are used.
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Figure 3. Dependence of weight functions on mixture composition for the two-parameter Redlich-Kister

equation (see text for notations).
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Figure 4. Dependence of weight functions on mixture composition for the three-parameter Redlich-Kister

equation (see text for notations).

0.8
0.6
0.4 4

0.2 4

0

—wll
—w22
—w2l
—wi2

0

0.2

0.4

Figure 5. Dependence of weight functions on mixture composition for the four-parameter Redlich-Kister

equation (see text for notations).

The difference in weight functions for BAQS/S and BAQS/A models characterizes the specificity

of interparticle interactions:

Opp =Wy — X12
Sy =Woy— X5
O1p = Wyp — leng
Sp1 = Wy —2X7X,
what accounts for the deviations from linear dependence in equation 17.
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Fig. 6 shows the differences of the weight functions for the four-parameter model.

0.1

0.05

-0.1

-0.15

Figure 6. Dependence of the weight function difference on the mixture composition (see text for explanations).

Weight function differences for a two-parameter model:

+
511 = 522 = 4X12X22 . [1— 79[2 5 ngJ (59)
o = 4X12X22 '(§21 _1) (60)
Oy = 4)(12)(22 '(§12 _1) (61)

Parameters o show which interactions between components predominate. However, the
interpretation of the results obtained requires special caution. It should be remembered that we are not
talking about real particles, but about hypothetical quasi-solvates, and the results obtained are only a
method for describing the effects of interparticle interactions. The relationship of the BAQS method
with other approaches remains to be studied.

BAQS/A. Molar heat capacity.

The BAQS/A model can also be used to analyze other properties of solutions. From the data [12] of
molar heat capacity of Water-Ethanol solutions at 298.15K and atmospheric pressure, the parameters
of the Redlich-Kister equation were calculated. Based on these parameters, weighting functions (32-
35) and deviation parameters (55-58) are determined. Figure 7 shows the deviation functions
calculated from the three-parameter Redlich-Kister model.

-0.4

Figure 7. Dependence of the weight function difference on the mixture composition (see text for explanations).

Comparison with similar data for molar volumes (Fig. 6) shows that, despite the difference in the
amplitude of deviations, general regularities in the distribution of weight functions of quasi-solvates
are observed.

Conclusions

The method of binary additive quasisolvates is proposed. Two models considering in different
aspects interparticle interactions in solutions are developed. Each of the proposed models has
advantages and limitations.
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BAQS/S: describes molar volumes of mixtures, especially for aprotonic systems, can be used to

predict properties of multicomponent systems, effective on small datasets. Limitations: applicability to
other solution properties remains questionable, model parameters differ from those obtained by the
independent method, approximation accuracy is inferior to empirical models.

BAQS/A: applicable for any solution properties, informative and illustrative. Limitations: very

sensitive to the choice of approximating equation, difficult to interpret results, developed only for two-
component systems.

1.

2.
3.

Nomenclature

p — solution density (g/cm?);

pi — density of i-th component (g/cm?);

M; — molar mass of i-th component (g/mol);

xi — mole fraction of i-th component in solution;

X — mole fraction of the second component in the two-component solution (x=x2);
Vi — molar volume of pure i-th component (cm®/mol)

Pi
V — molar volume of the n-component solution (cm®mol)
n
2 Mix;
V = i=1 ;
Yo

Vi partial molar volume of i-th component in solution (cm*mol);

Vi — limiting partial molar volume of solute i in solvent j (cm*/mol);

Vij — effective limiting partial molar volume of solute i in solvent j (cm®/mol);

Vi —excess partial molar volume of i-th component in solution (cm®mol)
Vi =Vi-V,

\% i?oo — excess limiting partial molar volume of solute i in solvent j (cm*/mol)
\7500 =Vij —Vi;

/i " — effective excess limiting partial molar volume of solute i in solvent j (cm*mol)
—Ex %
Vi =Vi-Vi;

gij — ratio of the effective excess limiting partial molar volumes

_ Vi

\7|JEI* ’

Vij — molar volume of quasi-solvate Q;; (cm®mol);

A; — parameter of the Redlich-Kister equation (cm®mol);

AV — special deviation function (cm*mol);

AVy — normalized special deviation function (cm*mol);

wij — weight function of the quasi-solvate Qj;
oij — difference of weight functions of the quasi-solvate Qj;;

Siij
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M.B. €dimoB. AHania BOMIOMOMETPUYHUX BraCTUBOCTEN pigkMx cymiwen. |. Metog 6iHapHUX aguTUMBHKX
KBasiconbBariB

XapkiecbKull HayioHanbHUU yHieepcumem imeHi B. H. KapasiHa, matidaH Ceobodu 4, Xapkie, 61022, YkpaiHa

3anponoHoBaHO HOBWW MigXiA A0 aHanidy isuKo-XiMiYHUX BNacTMBOCTEW PO34YMHIB — MeToh OGiHapHuX
aanTmBHMX kBasiconbBatiB (BAQS). KeasiconbBat Qj —TinoTeTMyHa ABOYACTMHKOBA CTPYKTYpa, B SKi ogHa
YaCTMHKa | € «PO34YMHEHOK PEYOBUHOIOY, A iHLIA YacTUHKa | — «pO34YMHHUKOMY. Habip nomibHmx kBasiconbBarTis
Ma€e MaKpOCKOMiYHy BnacTuBicTb Fi. PO34MH € aanTUBHOIO CyMILLILLIIO KBA3iCONMbBATIB 3 BAaroBUMM yHKUIAMU Wij. Y
pamkax metogy BAQS pospobneHo aBi mopgeni: i3 cumeTpuyHMMM BaroBumm yHkuigammn (BAQS/S) Ta 3
acumeTpudHumn Barosumm dyHkuismu (BAQS/A). Ha npuknagi 06'eMHUX BNacTMBOCTEN PO34MHIB HEENEKTPOITIB
nokasaHO MOXNMBOCTI MeToay. BusHayeHo edeKTMBHI rpaHunyHi napuianbHi MONSpHi 06'€My KOMMOHEHTIB Ans
CyMilLie HeeneKTponiTiB. PO3rnsHyTO MOXNUBICTb MPOrHO3yBaHHS BracTMBOCTEN 6araTOKOMMNOHEHTHNX PO34MHIB
3a AaHUMK NSt JBOKOMIMOHEHTHMX cuctem. [Noka3aHo 3aCTOCyBaHHSA A0 iHLWMX BMacTMBOCTEN po3ynHy. KoxHa i3
3anpornoHOBaHUX MoerNen Mae CBOi NepeBary Ta HeosMiKu.

BAQS/S: onucye monspHi 06’emu cymiluen, 0cobnmBo Anst anpoTOHHMX CUCTEM, MOXe ByTu BUKOopuCTaHa And
NMPOrHO3yBaHHA BMAacTMBOCTEN 6araTOKOMMOHEHTHUX cucTeM, edeKkTMBHa Ha HeBenukux Habopax OaHuX.
OO6MeXeHHS: 3aCTOCOBHICTb A0 iHLWMX BNAcTMBOCTEN PO3YMHIB 3anMaETbCsa Nif NMUTaHHAM, napameTpu Mogeni
BiOPI3HAIOTECA BiA OTPMMaHMX He3aneXHWM MEeTOAOM, TOYHICTb anpokcMmauii NMoCTynaeTbCs eMnipuyHUM
MOAENSM.

BAQS/A: 3actocoBHa ans Oyab-sKMX BNacTMBOCTEN PO34MHY, iH(opMaTMBHA Ta inoctpatuBHa. OBMexXeHHs:
OyXe 4yTnvBa 4O BUMOOPY anpOKCUMYKYOro PiBHSIHHS, BaXKKO iHTEPNpeTyBaTW pesynbTaT, POo3poOneHo nuwie
NSt ABOKOMMOHEHTHUX CUCTEM.

Knro4woei cnoea: @izuko-ximiyHUl aHania, MonspHuli ob'em, epaHUYHUU napuianbHUU MOSPHUU 06°eMm,
pigHsIHHSI  Pednixa-Kicmepa, posqyuHu Heenekmponimie, 6a2amoKOMIOHEHMHI cymiwi, 6iHapHi adumugHi
Keasicoribeamu.

HadicnaHo 0o pedakuii 03.10.2023 lMputiHamo do dpyky 17.11.2023
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ETAYHI HOPMHU NYBJIKAIIII HAYKOBHUX PE3VYJBTATIB TA iX NOPYIIEHHA.
Penaxmiitna kojeris poOWTh Bce MOXJIHMBE ISl JOTPUMAHHA ETHYHHX HOPM, MPUAHATHX MIX-
HAPOJHUM HaYKOBHM TOBAPHCTBOM, 1 17151 3amo0iranHs Oy Ib-SIKHX nopyens ux Hopm. Taka MOJIITH-
Ka € BOXJIMBOIO YMOBOIO TUTITHOT y4acTi KYPHaIy B PO3BUTKY LITICHOT CHCTEMH 3HaHb B ramysi Ximii
Ta CyMDKHHUX Taiy3sx. JispHICTh peAakuiiHoi KoJerii 3HaYHO0 MIpOIO CIIMPA€ETHCS Ha peKOMeH,I[aLIll
Kowmitery 3 etmkn HaykoBumx myOumikariii (Committee of Publication Ethics), a Takoxx Ha miHHUI
JOCBiI MDKHapOTHHMX >KypHaliB Ta BUAABHUUTB. llomaHHs cTaTTi Ha pO3INIAL O3HAyae, IO BOHA
MICTUTh OTPHMaHI aBTOpaMH HOBI HETPWBIalbHI HAyKOBI pe3yJbTaTH, AKi paHime He Oyiu omyOri-
KoBaHi. KokHy CTaTTIO peleH3yI0Th MIOHaWMEHIIE 1Ba €KCIIEPTH, SIKi MalOTh YCi MOKJIMBOCTI BIJIBHO
BHCJIOBUTH MOTHBOBaHI KPUTHYHI 3ayBa)KEHHS IIOJI0 PIBHS Ta SICHOCTI MIPEJICTaBICHHS MaTepiay, Ho -
ro BIiAMOBIZHOCTI MpPOQiN0 XypHaly, HOBH3HHM Ta JOCTOBIPHOCTI pe3yibraTiB. Pexomenmamii pe-
IIEH3CHTIB € OCHOBOIO ISl MPUHAHATTS OCTATOYHOTO PIMICHHS MO0 IMyOiKaIlii cTaTTi. SIKIo cTaTTio
MPUAHSTO, BOHA PO3MILIYETHCS Y BIAKPUTOMY JOCTYIIi; aBTOPCHKi MpaBa 30epiraloTbes 3a aBTOPaMH.
3a HasgBHOCTI Oyb-sKUX KOH(DIIIKTIB iHTepeciB ((piHAHCOBUX, aKaJeMIYHUX, IEPCOHATBFHIX Ta 1HIINX),
YHacHUKH IPOLIECY PELEH3YBAHHA MaloTh CHOBICTHTH pPEAaKUiiHy Kouyerito mpo ne. Bei nmuranns,
IIOB’sI3aHI 3 MOXJIMBUM IDIariatoM abo daascudikariero pezyanaTlB peTenbHO 06I‘0BOpIOIOTLC$I
PEMAKIIHOIO KOJIETIEI0, PIBHO K CIIOPH OO aBTOPCTBA Ta IOLLIBHICTH PO3POOICHHS PE3yIbTaTiB
Ha HeBeNnuyKi crarti. JloBeneHi muiariat 4 Qanscudikariis pe3yiabTaTiB € mijgcTaBaMu ajsi 6e3yMOBHO -
ro BIAXHWJIEHHS CTATTI.

STATEMENT ON THE PUBLICATION ETHICS AND MALPRACTICE. The Editorial
Board has been doing its best to keep the ethical standards adopted by the world scientific community
and to prevent the publication malpractice of any kind. This policy is considered to be an imperative
condition for the fruitful contribution of the journal in the development of the modern network of
knowledge in chemistry and boundary fields. The activity of the Editorial Board in this respect is
based, in particular, on the recommendations of the Committee of Publication Ethics and valuable
practice of world-leading journals and publishers. The submission of a manuscript implies that it con-
tains new significant scientific results obtained by authors that where never published before. Each pa-
per is peer reviewed by at least two independent experts who are completely free to express their moti-
vated critical comments on the level of the research, its novelty, reliability, readability and relevance
to the journal scope. These comments are the background for the final decision about the paper. Once
the manuscript is accepted, it becomes the open-access paper, and the copyright remains with authors.
All participants of the review process are strongly asked to disclose conflicts of interest of any kind
(financial, academic, personal, etc.). Any indication of plagiarism or fraudulent research receives ex-
tremely serious attention from the side of the Editorial Board, as well as authorship disputes and
groundless subdivision of the results into several small papers. Confirmed plagiarism or fraudulent re-
search entail the categorical rejection of the manuscript.
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ITHO®OPMAULISA AJS1 ABTOPIB. XypHran my0iikye cTaTTi pociiChKOI0, aHTIIIHCHKOO Ta yKpai-
HChKOIO MoBamu. Jlo myOumikamii mpuiMaroOThCS: OTIsAAM (32 MOTOMKEHHSIM 3 PEIKOJIETIEr0); OpH-
riHaNmbHI cTaTTi, 00CcAT 6-10 XypHATFHUX CTOPIHOK; KOPOTKI MOBIIOMIIEHHS, 00CST 0 3 )KypHAITBHUX
cTopiHok. KpiMm 3BHUaiiHOTO CITUCKY JIiTEpaTypH, B CTATTi 0OOB'SI3KOBO TIOBUHEH OYyTH JPYTHiA CIHUCOK,
BCl TIOCWJIAHHS SKOTO JaHl JiaTUHMIICIO. [IpaBuia MiAroTOBKM IHOTO CIMCKY HAaBEICHI B PO3ILIi
«TpancniTeparis» Ha caiiti )xypHairy. OOuaBa CIIMCKK TIOBWHHI OyTH TOBHIiCTIO ineHTnyHi. [lpu pe-
[IEH3yBaHHI CTaTeil OMH 3 KPHUTEPIiB - HASBHICTh NMOCWJIAHb HA IyOJiKallii ocTaHHIX pokiB. CraTTs
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