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We study the relationship of the energy spectrum of finite S=1 Heisenberg antiferromagnets with their structure
in the presence of single-ion anisotropy. We show that in the limit of strong easy-plane anisotropy magnets with
the structure of adjacency cospectral graphs have equal ground state energies with magnetization M=0. We
derive additional necessary condition for equality of lowest energy levels with M=x1. For strong easy-axis
anisotropy we found that bipartite S=1 magnets with structures, for which S=1/2 Ising models have equal spectra
for arbitrary longitudinal magnetic field, have close energy spectra of S=1 antiferromagnets for arbitrary
parameter of single-ion anisotropy. For moderate easy-axis anisotropy bipartite S=1 antiferromagnets with equal
energies of spin waves in linear approximation are also approximately isoenergetic. Overall, this explains the
remarkable similarity of energy spectra in M=0 subspace for S=1 antiferromagnetic Heisenberg model on
bipartite cospectral regular graphs.
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1. Introduction

Quasi-zero-dimensional magnetic complex compounds (also termed molecular nanomagnets
(MNMs) have perspective applications in quantum computing as qubits and qudits [1,2], and in
molecular spintronics [3]. MNMs with high barriers for magnetization reversal (resulting in slow
relaxation of magnetization at low temperatures) are considered promising materials for magnetic
cooling [4,5] and are also known as single-molecule magnets (SMMs).

For polynuclear SMMs based on abundant transition metal compounds the interplay of exchange
interactions and magnetic anisotropy complicates the structural dependence of the magnetization
reversal barrier. This factor, together with quantum tunneling of magnetization and spin-phonon
relaxation [6], made a systematic increase of barrier U and blocking temperature 7, problematic, and
eventually major synthetic efforts shifted towards lanthanide-based single-ion magnets [7].

Structure optimization of MNMs for magnetic cooling was discussed, for example, in the work of
Garlatti er al. [8] for the particular case of S=3/2 SMMs. While later it was noted [9] that such
optimization should depend on the specific type of magnetic cooling cycle, we would like to stress that
in [8] only a single type of SMMs was studied. The structure of these SMMs allows to calculate
exactly the energy spectrum for the isotropic Heisenberg model with only a straightforward
application of angular momentum addition rules. The more general method to construct Hamiltonians
maximizing a specific observable using automatic differentiation and exact diagonalization was
presented in [10]. Unfortunately, for a large enough system size such direct structural optimization of
magnetic properties is unfeasible even in the approximation of Heisenberg model, because Hilbert
space dimension and computational resources necessary to calculate the energy spectrum of this model
for a single MNM grow exponentially with increase of the number # of magnetic atoms in it.

For spin models, few exact results on structure-property correspondence are known. For example,
in [11] it was proved that correlation functions of Heisenberg magnet with anisotropic exchange
completely determine its structure. Authors of [12] showed that quantum dynamics of magnetization
always allows to distinguish non-isomorphic magnets with S=1/2 in case of precise initial state
preparation. In contrast, the energy spectrum (determining magnetocaloric efficiency and
magnetization reversal barrier U) is not uniquely determined by the structure of a magnet. In [13] for
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S=1/2 XY model the existence of an infinite number of pairs of non-isomorphic systems with equal
energy spectra for some fixed magnetization M was proved. In [14] for the case of magnetization
M=M.x-2 it was shown that non-isomorphic strongly regular graphs with equal parameters possess
equal energy spectra of S=1/2 XY model. Importantly, in [15] the family of S=1/2 isotropic
Heisenberg triangles with completely equal energy spectra was constructed. Earlier one of the authors
also reported examples of antiferro- and ferrimagnets with equal energies of ground and lower excited
states of spin-S Heisenberg model in spin wave approximation [16,17].

This motivates further development of approximate structure-property relationships that allow to
group together MNMs with similar properties. In this work, we study the relation of a magnet structure
with its low-energy spectrum in the presence of single-ion anisotropy. While in the general metal
complex the local anisotropy axes can be aligned in arbitrary directions, here we adopt a simplified
picture of homogeneous single-ion anisotropy with equal strength and axis direction, which results in a
single parameter D that controls magnetic anisotropy strength. The spin quantum number of magnetic
ions is taken to be S=1 as the lowest one, which accounts for spin anisotropic effects and still allows
for the exact computation of the lower part of the energy spectrum of medium-sized MNMs.

We analyzed two limiting cases of strong easy-plane (D>0) and easy-axis (D<0) anisotropy using
perturbation theory. In the first case (Section 3) the ground state energy with M=0 depends only on the
spectrum of J matrix, the energies of M=1 excited states depend only on the matrices J and W=2d-J°.
We have found finite S=1 antiferromagnets possessing equal moments of these matrices and
confirmed that indeed for D>0 they have numerically close lowest parts of energy spectra.

For the case of strong easy-axis anisotropy low-energy spectrum in the first order of perturbation
theory is determined by S=1/2 Ising model. In Section 4 we demonstrate numerically that a known
pair of bipartite S=1 antiferromagnets with equal spectra of S=1/2 Ising model (in every subspace with
fixed M) have remarkably numerically close energy spectra for arbitrary anisotropy parameter D.

Additionally, we used linear spin wave theory to find bipartite isomers of MNMs that have equal
magnon energies for arbitrary spin quantum number S. Examples of S=1 antiferromagnets with such
structures are approximately isoenergetic for moderate easy-axis anisotropy (D = —|]|).

2. Model, Definitions and Methods

Here we study S=1 antiferromagnetic Heisenberg model with homogeneous single-ion anisotropy
with Hamiltonian
H = Z;z=_11 _;;l'!=i+1fi_;l'5i 'S_;l' + DZ:;J.(SLZj: = st + D Hmz* (1)
Where J;> 0 — parameter of magnetic exchange interaction between ions 7 and j, D — parameter of

single-ion anisotropy, §; - §; = p- wyz 5i 5; — operator of isotropic exchange between magnetic

ions i and j. Both operators commute with 3. §* and thus conserve total magnetization M.
Eigenstates of H., are product states [m ,m.,, ... m, ) with local z-projection of spin m; = 0, +1. We

will also use short notation |£) for product states with m; = 0 for all j except i, where m; = 1.

If not stated otherwise, we will identify matrix J of exchange parameters that has elements
(J); = Jy, Ji = 0 with adjacency matrix A of undirected unlabeled graph G. We will also refer to matrix

L = d — J as a Laplacian of graph, where diagonal matrix (d); P §; i d; contains vertex valences

d; = ij:l Ji;. Adjacency cospectral graphs share eigenvalues of adjacency matrices. Graphs with

equal eigenvalues of Laplacians are also called L-cospectral [18]. In the following we will denote as
(4, B)-cospectral pairs of graphs which have equal spectra (sets of eigenvalues 4) of two matrices, i.e.
fori=1, 2, ... n L(A(G))) = L(A(G>)) and A(B(G))) = (B(G>)).

Expressions for effective Hamiltonians and energy values in the main text are presented for case of
unweighted graphs (where elements of J matrix equal 0 or 1), expressions for weighted graphs are
listed in the Appendix.

In this work we use Lanszos exact diagonalization (ED) as implemented in ALPS 2.0 package [19]
to calculate the energy spectrum of anisotropic Heisenberg model (1). For the generation of non-
isomorphic graphs we used package nauty [20]. Analysis of structural dependence of MNM low-
energy spectra was done using Brillouin-Wigner (BW) perturbation theory and second-order
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degenerate perturbation theory (PT) with exchange operator H_,. as a perturbation and //D as a small

parameter. Linear spin wave theory (LSWT) is used in its matrix formulation for bipartite
antiferromagnets [21,22].

3. Analysis of strong easy-plane anisotropy limit (D > 0)

Large easy-plane anisotropy is typically associated with ferromagnetic Ni complexes (for example
[23]), but antiferromagnets with I = J (e.g. one-dimensional chains in [Ni(HF,)(pyz).]SbFs [24]) and

D == [ (zero-dimensional NigCr nanowheels [25]) are also known.
For D > 0 the unperturbed ground state of H,, |m; = 0} is non-degenerate and has M=0, first
excited states |+1,) are n times degenerate and have M = +1. So, in this limit MNMs are not suited

for magnetic cooling, as zero-field low-temperature magnetic entropy is negligible.
In the third order of BWPT the expression for ground state energy depends only on

Tr]™ m=2,3:
Ey = (Ey — 2D) 'TrJ* + (E, — 2D) " *(Tr]* — Tr]*) ()
Expression (2) depends only on the number of edges and triangles in a graph. Fourth-order
expression for £, also depends only on the spectrum of J matrix (see Appendix).

For excited states with M=1 the second order of degenerate perturbation theory gives the following
effective Hamiltonian in the basis of states |+1,}:

H,., =]+ (2D)'TrJ* — (2D)™'W 3)
Matrix elements of effective Hamiltonian (3) depend only on the matrices J and W=2d-J*. Equality
of spectra of effective Hamiltonians for pair of graphs (G, G;) is achieved if
Tr (Hsff(slj}m =Tr {HEH(G:))m for m=0, 1, ... n [26]. Each moment Tr [Hsﬁtsij}mis a polynomial in
powers of 1/D, and equality of spectra for arbitrary D is achieved only if all coefficients of these
polynomials are equal. As every such moment contains terms 7(J(G,))" and rr(w(c))"/(2D)™, (J,
W)-cospectrality is the necessary condition for equality of lowest energy levels with M = +£1.
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Figure 1. Left panel: example of (J, W)-cospectral graphs G; and G,. Right panel: dependence of excitation
energies AE, = E, — E;, of Gi (black) and G: (red) on anisotropy parameter D, and difference

AE; = Ey(G,) — Ey(G,) of ground state energies of G, and G, (blue). Solid lines correspond to M=0 states,
dashed to M=1 states.

Using nauty, we generated all non-isomorphic graphs with #n < 11 vertices and found all (J, W)-
cospectral graph groups (pairs, triples etc). We computed moments of these matrices instead of direct
calculation of matrix spectra in order to avoid floating-point errors.

Number of found (J, W)-cospectral groups quickly grows with increase of n: for n<9 there are no
(J, W)-cospectral graphs, for n=9 there are 30 pairs, while for #=10 there are 5172 pairs, 5 triples and
4 quadruples.

For graphs in these groups we computed energies of the lowest 10 eigenstates for values of
anisotropy parameter D € [0, 5]. Typical example of such pair is shown on Figure 1 (left). Note that
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energies are visually indistinguishable, so only ground state energy differences AE) = Eo(G,) — Eo(G,)
between two MNMs and excitation energies 4E; = E; — E, for individual MNMs are shown. Ground
state energies of S=1 AFM Heisenberg model on G; and G, are numerically close down to D ~ 2.5 Jin
M=0 subspace. For M=1 the numerical equality of ground and excited state energies is achieved for
much larger D ~ 5, where second order of PT is valid.

4. Analysis of strong easy-axis anisotropy limit (D < 0)

Strong easy-axis anisotropy limit is relevant to multiple Ni-based SMMs [27, 28]. In this limit the
ground state of H,, with M=0 is 2"-times degenerate. In the second order of degenerate perturbation
theory the effective Hamiltonian acting on this 2"-dimensional subspace is

Hp=-nD + X, J,;S757+ (2D)~* Zi{j,ri}.[—s.f +P,—m; 4)

where operator P;; permutes S° projections for atoms i and j (Pm.|m=-,ma-} = |m3-,m:-}), m; ;
projects onto subspace with m,; # 0,m; # 0.
This expression can be rewritten using the Dirac identity |mi,mJ-} {m,m;| =0, ‘o; +1/2

as a Hamiltonian of highly anisotropic S=1/2 XXZ model:
Hopy = const + 5,c;(4);; = 51,,°/D) 70} + (2D) ™ Eic J5(07 0 + 076f)  (9)

4.1. Magnets with equal spectra of S=1/2 Ising model
In the first order of perturbation theory effective Hamiltonian (4) is simply proportional to
Hamiltonian of S=1/2 Ising model:
H=-nD + L,.;(4),; — 5J,;,°/D)S7S; (6)
Examples of MNMs with equal spectra of S=1/2 Ising model are known from studies of graph
polynomials. In [30] it was demonstrated that Tutte polynomial 7 of underlying graph G is related to
zero-field partition function Z() of S=1/2 Ising model:

z(p) = 25v" T (22 v + 1) (7)

where f=1/ksT is the inverse temperature, ks — Boltzmann constant, v = ¢B — 1, k is the number

+
W

of connected components of graph G. Combinatorial properties of Tutte polynomial are well-known. It
represents a generalization of chromatic polynomial and can be generated using a recursive deletion-
contraction procedure [29].

From (6) we can conclude that finite graphs with equal Tutte polynomials must have equal partition
functions of S=1/2 Ising model for arbitrary inverse temperatures f and zero external magnetic field,
and so equal energy spectra. This is not sufficient for equality of spectra of effective Hamiltonian (5),
because it’s restricted to M=0 subspace, as co-Tutte graphs may have equal energies from subspaces
with different M. However, such M-restricted polynomials are unknown to authors. To achieve
spectrum equality of S=1/2 Ising model for the arbitrary homogeneous magnetic field along z-
direction graphs must share U-polynomials [30, theorem 5.2].

We have conducted ED study of known graph pairs with S=1/2 Ising models being isoenergetic for

arbitrary external z-field. The first example is pair (Gi3,Gis) from [31] (see Fig. 2), for which ground
state energy differences are not monotonic, but small (< 102 J) in the whole investigated interval of D
parameter values (Fig. 2, right pane, blue line). It is expected from the 1* order of perturbation theory
that equality of excited state energies (for example, E> and Ejs) is achieved only for D << J (in this
case D < -2J), and for larger D the level crossings induce significant energy differences. But the
remarkable numerical equality of energy spectra for D > 0 is unexpected, as these graphs are not J-

cospectral. This suggests the existence of additional invariants of low-energy theory, which are
preserved by the transfer of a single pendant atom (Fig. 2, left, red ellipse). It should be noted that

graphs Giz and Gia are bipartite. On the contrary, non-bipartite pair of graphs with equal U-
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polynomials from [32], while being (J, L, H.)-cospectral, have multiple energy crossings and so large
energy differences for intermediate D € [—2,2]
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Figure 2. Left panel: pair of graphs from [32] that have S=1/2 Ising model with equal energies in the presence of
arbitrary magnetic field, oriented along z-axis. Red ellipse indicates location of differing edge. Right panel: de-
pendence on anisotropy parameter D of excitation energies AE, = E; — Ej for G, (black) and G, (red), and
difference of ground state energies E (G5 ) — E, (G, ) (blue) calculated for S=1 AFM Heisenberg model on

these graphs.

4.2. Application of linear spin wave approximation to bipartite magnets

For bipartite antiferro- and ferrimagnets spin wave theory is a good approximation for the energy
of ground and lowest excited states. The accuracy of this approach grows with the increase of atomic
spin quantum number S and system dimensionality. In linear spin wave (LSW) approximation the spin
Hamiltonian is mapped to the quadratic boson Hamiltonian. Energies ¢, of spin waves can be found
by solving its equations of motion, which results in a non-symmetric eigenproblem for so-called grand
canonical matrix [21].

Earlier [16] we calculated wj, for the isotropic Heisenberg model as eigenvalues of non-symmetric

matrices H. = S*(d® — J* + [d, J]). Traces t,, = TrHT are polynomials of Jj, S;, and can be used as
structural invariants of LSW spectrum.

For regular graphs [d, J] = 0, magnon energies are simplified to wi = d- — A3, so the spectrum of
H. is determined by eigenvalues A, of J, and adjacency cospectral graphs have equal LSW spectra.
For D < 0 direct account for H,, results only in the addition of the constant term —2D to diagonal

matrix d. Moreover, LSW approximation can be written for effective Hamiltonian (4) in M=0
subspace. In this case for unweighted graphs matrix d becomes (2 — 5/2D)d, and matrix J becomes
J/D. In result, for both cases the spectrum of H, of cospectral regular graph is determined by

eigenvalues of J. This, together with results of Section 3, explains the remarkable similarity of energy
spectra of cospectral regular graphs in the whole investigated range of parameter D (see Figure 3).
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Figure 3. Left panel: pair of J-cospectral cubic graphs [:GlE.r Giej — a pair of S=1 AFMs with equal energies of
LSW and D => J approximations. Right panel: dependence of excitation energies and difference of ground
state energies in M=0 subspace.
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Discussion

Here we presented a simple method to derive relationships of structure with energy spectrum for
correlated lattice models:
1. with the help of PT, LSWT or other theories derive matrix functions F; from which approximate

energies of ground state and/or lowest excitations can be calculated,
2. generate non-isomorphic finite graphs G and group them according to moments Tr[:fri(s))m

(m=0, 1, ... dim(F(G))) of matrix functions.
Importantly, to make computations of all moments practical, the dimensions of matrices F,(G)
should scale linearly with system size.

Using this approach we have found novel approximately isoenergetic isomers of S=1 Heisenberg
model. While approximately isoenergetic isomers can be also constructed using energy gradient

dE,/ d]; ; = {Si - SJ-} (such that ¥, {J.{sz. . SJ-}& Jo; = 0), this method requires computation of exact

correlation functions {S . ,-} and should be valid only for small changes in structure.

Our considerations give additional arguments for remarkable closeness of energy spectra of S=I
Heisenberg model on J-cospectral regular graphs for arbitrary D.

Despite that we have demonstrated smallness of energy differences for a few pairs of (J, W)- and
H.-cospectral MNMs, the results must be compared with AE; for magnets that do not share spectra of

these matrices. We have calculated |4Ey(D = 4)| for all pairs of J-cospectral graphs with n=9. Also, it
can be noted that H. = (d-J)(d+J) is a product of Laplacian L and signless Laplacian d + J. So, to

test whether Laplacian cospectrality can be used a proxy for H.-cospectrality, we calculated
|[4Ey(D = -1)| in subspace with magnetization M=0 for all pairs of L-cospectral bipartite graphs with
n=12. Note that the number of graphs in larger cospectral groups (triples, quadruples etc) is negligible.
The total number of pairs of (J, W)- and H.--cospectral graphs is small (17 and 139), but the number of
J- and L-cospectral graphs grows very quickly with n, so we could not compute E, for all graphs with

n =9

The distributions of energy differences per bond |4E/N. (Figure 4) show that accounting for
structural invariants arising from PT and LSWT allows to filter out pairs with significantly different
ground state energies, but many pairs with small |4E|/N. are filtered too. Per-pair inspection shows
that larger |[4E)|/N. for (J, W)-and L-cospectral pairs is due to energy level crossings and intruder
states.
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Figure 4. Distributions of ground state energy differences of S=1 MNMs sharing graph spectra. Left panel:
histogram of |[4E«D = 4)| for all pairs of magnets with n=9, which are J-cospectral (gray for M=0, violet for
M=1) or (J, W)-cospectral (black for M=0, red for M=1). Right panel: histogram of |4E«(D = -1, M = 0)) for all
pairs of L-cospectral magnets (black) and for all pairs of H:-cospectral magnets (gray) with n=12 atoms.

Unfortunately, the presented approach does not allow to find magnets with extremal properties (for
example, energy gap AE = E; — E, or magnetic cooling efficiency). Moreover, equality of energy
spectra is not necessary for equal low-temperature magnetization, entropy and specific heat, as these
require only equality of excitation energies. This approach is also not total, as there are more magnets
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with small of [4F,| for a given D value, but we’re unable to find them due to the limits of used
approximate methods. It’s also well known that perturbation theory is prone to intruder state problem.
Level crossings are typical for non-bipartite graphs, which exhibit larger ground state energy
differences.

The set of generated graphs with numerically close energy spectra contains a variety of high- and
low-valence graphs, including ones that can correspond to real quasi-zero-dimensional transition metal
complexes. Here we used the simplest method of exhaustive graph enumeration to find H. and (J, W)-
cospectral graphs. However, graph-theoretic methods similar to Godsil-McKay switching to construct
adjacency cospectral graphs [33] should be possible.

Conclusions

We analyzed the structural dependence of the lowest energy levels of finite S=1 Heisenberg
antiferromagnets with single-ion magnetic anisotropy using perturbation theory and linear spin wave
approximation. Obtained invariants of approximate low-energy theories allow us to find multiple S=1
MNMs with numerically close low-energy spectra. This approach can be straightforwardly generalized
to higher-spin and mixed-spin systems, non-equal values of exchange coupling parameters and other
types of magnetic anisotropy. Our method can be used to guide the synthesis of perspective magnets
with diverse structures and sufficiently similar low-temperature properties (magnetic entropy, specific
heat, magnetization etc) that depend on excitation energies.
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Appendix. Results of perturbation theory for molecular nanomagnets
with general exchange parameters J;;

For D > J limit equation (2) for ground state energy with M=0 has the form:
Ey = (Ey —2D) ' X o Ji; + (B, —2D)2(TrJ? — 2Tr/diag(N) — Z;;J2;)  (AD)
The 4th order BWPT correction to Ej is:

i -1 _
564) = [:(Eu - 25)(50 - 45)) E(z‘,j,k,:)f:',jfk,:[zfe,jfk,: +fj,k :',:] + (Eo - ZD) : [:E':i,}')fi‘,;j -
- 4EEi,_;',k)ff,_;‘ff,kfk_,j) + 4(5[:- - ZD) - E'Zi,_;u',k,l)fi,_:'fi,kfkﬁ-”l;}'

where summations are carried over subsets of distinct atom indices.
Matrix elements of effective Hamiltonian (3) in M=1 subspace are

{+li |H9ff| + 1_;!'} = -'ri,_;l' + [Eﬂj_l[aig‘ Z::z‘ Zp ::,z‘.f:::p + [l - 'Sz',_;u') Zp :i,_;‘.-ri,pfp,_;') (A3)

(A2)
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B. B. TOKapeB*f, M. A. ®depopeHko’. Llogo CTPYyKTYypHUX iHBapiaHTIB eHepreTuyHoro cnektpy S=1
aHTudepomarHeTukis NeiseHbepra 3 0AHOIOHHO aHi3oTponiEto.

"Xapkiecbkuli HauioHanbHUl yHieepcumem imeHi B.H. KapasiHa, ximidHul ¢hakynbmem, maiidaH Ceo6odu, 4,
Xapkis, 61022, YkpaiHa
’,ﬂHy «IHecmumym moHokpucmanie» HAH Ykpainu, np. Hayku, 60, Xapkig, 61070, YkpaiHa.

Mwu pocnigunu 38’930k eHepreTUYHOro CNekTpy CKiHYEeHHUX aHTudepomarHeTukis enseHbepra 3 S=1 Ta
iXHbO By[0BOK B MPUCYTHOCTI OOHOIOHHOT aHi3oTponii. Byno nokasaHo, Wwo niMiTi cunbHOI aHisoTponii Tuny
«nerka nnowmHa» marHeTuku 3 OynoBol, WO BignosigawTe rpadam 3 O4HAKOBMM CMEKTPOM MaTtpuui
CYMIXHOCTI, MaloTb OAHaKOBi eHeprii OCHOBHOro cTaHy 3 HamarHiveHicTio M=0. Mu oTpumanu gopaTtkoBy
yMOBY, HEOoBXigHy Ans piBHOCTI HWXHiIX piBHis 3 M = +1. [Ona cunbHOI aHisoTponii TUNy «nerka Bicb»

OBOAOMbHI MarHeTukn 3 S=1 Ta OyaoBot, AN KO AOCSAraeTbCsA PiBHICTb €HEpPreTUYHUX crnekTpie S=1/2
Mogenen I3iHra npwu [OBINbHOMY 3HAYEHHI MNPOOOMBHOrO MArHiTHOrO MNOMsi, TakoX MakwTb O6nu3bki
€HepreTMYHi CnekTpu pAns [OBINbHOIO 3HA4YeHHsa napameTpa adidoTponii. [Ons NpOMiXHMX 3HayYeHb
aHizoTponii TMNy «nerka BiCb» ABOAONbHI S=1 aHTUdepomMarHeTukm 3 ogHaKOBMMMW EHeprisMu CniHOBUX B
NiHINHOMY HabnNMXeHHi TakoX € HabnMXKeHo i3oeHepreTuyHMMK. B uinomy, ue NosiCHE 3HaYHy ONU3bKICTb
eHepreTMyHuX cnekTpie B nignpocTtopi 3 M=0 gns S=1 aHTudepomarHeTukiB 3 OyOooBOK ABOOOIBbHUX
i3ocnekTpanbHUX perynsipHux rpagis.

Knroyoei cnoea: monekynspHUli HaHoMazHemuk, Modesb eliseHbepea, Modesb I3iHea, meopisi criiHo8ux
X8Urlb.
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