
Вісник Харківського національного університету, серія "Хімія", вип. 42 (65), 2024

TOWARDS THE DISCOVERY OF MOLECULES WITH ANTI-COVID-19 ACTIVITY: 
RELATIONSHIPS BETWEEN SCREENING AND DOCKING RESULTS

D. O. Anokhin*,a, S. M. Kovalenko*,b, P. V. Trostianko*,c, A. V. Kyrychenko*,d, 
A. B. Zakharov*,e, T. O. Zubatiuk†,f, V. V. Ivanov*,g, O. M. Kalugin*,h

*V. N. Karazin Kharkiv  National  University,  School  of  Chemistry,  4  Svobody sqr.,  Kharkiv,  61022 
Ukraine
†Mellon College of Science, Carnegie Mellon University, Department of Chemistry, Pittsburgh, 
Pennsylvania 15213, USA

a)  dmitriy25102002@gmail.com  https://orcid.org/0000-0002-4958-2692
b)  kovalenko.sergiy.m@gmail.com    https://orcid.org/0000-0003-2222-8180  
c)  trostianko.p.v@gmail.com  https://orcid.org/0000-0002-1333-9375
d)  a.v.kyrychenko@karazin.ua  https://orcid.org/0000-0002-6223-0990
e)  abzakharov@karazin.ua    https://orcid.org/0000-0002-9120-8469  
f)  tetiana@zubatyuk.com    https://orcid.org/0000-0002-2866-7849  
g)  vivanov@karazin.ua    https://orcid.org/0000-  0  003-2297-9048  
h)  onkalugin@gmail.com    https://orcid.org/0000-0003-3273-9259  

The study presents the results of a combined approach to the theoretical description of potential antiviral 
activity against COVID-19. We found that pharmacophore screening based on limited experimental data on 
"protein-ligand" binding complexes might have low predictive ability. Therefore, in this study, we build a model  
based on the statistical  description  of  QSAR for  data  obtained from docking which serves as  a  basis  for  
adequate prediction of ligand activity. We use the logistic regression to construct the predictive model for the  
main protease Mpro inhibitors.
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Introduction

The problem of drug discovery against COVID-19 disease still actual. As of 25.03.2024, there are 
110 565 new infection cases per week and 1141 deaths worldwide. [1]. The experimental evaluation of 
therapeutic  compounds  for  in  vivo  COVID-19  antiviral  efficacy  based  ortant  to  achieve  a  high 
selectivity,  which  can  be  achieved  by advanced  data  analysis  and  drug  design  techniques. 
Computational chemistry provides a set approaches implemented in corresponding programme code 
for this purpose. Among them, there are chemoinformatic methods in the general machine learning 
frameworks as well as molecular modelling approaches, which include molecular dynamic simulation 
and docking.

First  of  all,  these methods  can  be  applied  to  database  of  perspective  compounds.  Preliminary 
evaluation includes ligand and protein preparation, pharmacophore set generation which characterises 
essential features generation for protein-ligand binding site, and pharmacophore screening. of large 
database.  Consequently,  the  selected molecules will  be  used  for  direct  docking  for  evaluation  of 
efficiency of ligand-protein interaction. Hit identification and the lead generation are the consequent  
stages of computer modelling during drug discovery.

Essential  question  arises  at  the  stage  of  pharmacophore  screening.  Usually,  information  about 
possible ligands is restricted by available experimental data (X-Ray, NMR). It is why the structure of 
pharmacophore set,  which is  formed by restricted numbers of  active ligands,  cannot  describe full 
possible interactions within the binding site. In the present article we examined correspondence of 
pharmacophore  screening  results  and  docking  results.  Essentially,  we  are  interested  in  possible 
statistical qualitative model, which can give an additional information about prognostic abilities of  
pharmacophore model.

As the objects of our investigation, we used SARS-CoV-2 main protease (Mpro). SARS-CoV-2 Mpro 

is  a  key  enzyme  of  coronaviruses  which  has  a  function  of  mediating  DNA  replication  and 

© Anokhin D. O., Kovalenko S. M., Trostianko P. V., Kyrychenko A. V., Zakharov A. B., Zubatiuk T. O., 
Ivanov V. V., Kalugin O. M., 2024

 This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0.  
6

https://doi.org/10.26565/2220-637X-2024-42-01
УДК: 544.16+577.29

ISSN 2220-637X

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3273-9259
https://orcid.org/0000-0003-2297-9048
mailto:vivanov@karazin.ua
https://orcid.org/0000-0002-2866-7849
https://www.scopus.com/redirect.uri?url=https://orcid.org/0000-0002-9120-8469&authorId=53864282200&origin=AuthorProfile&orcId=0000-0002-9120-8469&category=orcidLink
https://orcid.org/0000-0002-6223-0990
https://orcid.org/0000-0002-1333-9375
mailto:trostianko.p.v@gmail.com
https://orcid.org/0000-0003-2222-8180
https://orcid.org/0000-0002-4958-2692
https://doi.org/10.26565/2220-637X-2023-41-01
http://creativecommons.org/licenses/by/4.0/


Towards the discovery of molecules with anti-COVID-19 activity ...

transcription.  SARS-CoV-2  Mpro  inhibitors are  investigated  in  numerous  articles  (see  for  instance 
[2-7]). Because of importance in viral replication, this protein is a common target for drug discovery.

For the building of corresponding chemoinformatic models we used pharmacophore screening and 
docking  by  AutoDock  4.2  and  AutoDock  Vina  1.1  programs.  All  of  mentioned  programs  are 
integrated in LigandScout software suite [8].  All proteins, complexes and pharmacophore structures 
illustrations  were  done  within  LigandScout.  BIOVIA Draw 2018 program was  employed for  the 
ligands formulas representation [9].

All calculations were performed for rather small dan large-scale screening in vitro. To maximize 
the  likelihood  of  successful  screening,  it  is  impotabase  composed  of  424  5-(phenylsulfonyl)-4-
pyrimidone derivatives.  Pharmacophore screening and followed by docking respective to all  three 
investigated complexes has been performed.

Target proteins and inhibitors

The  structures  of  protein-inhibitor  complexes  SARS-CoV-2  main  protease  Mpro (PDB code  of 
complexes 6lu7 and 7vh8) are presented in Fig. 1 A and B. The structure of corresponding inhibitors 
N3/PRD_002214 (6lu7), PF-07321332/nirmatrelvir (7vh8) presented in Fig. 2. The inhibitors of main 
proteases are oligopeptides. The PDB structures of protein complexes were taken from the RCSB 
database [10].

a b
Figure 1. A schematic structure of SARS-CoV-2 main protease 6lu7 (a) and 7vh8 (b).

a b

Figure 2. Structural formulas for inhibitors: N3 (a) and PF-07321332 (b).

Ligand library

The  library  of  424  molecules,  which  are  2-(5-arylsulfonyl-4-oxo-3,4-dihydro-2-
pyrimidinethio)acetamide derivatives (see Fig. 3) was used. Here Ar corresponds to aryl substituent 
containing alkyl-, halogen-, methoxygroups,  etc. The R substituent can be a simple aryl, benzyl, N-
aryl-N`-piperidyl, etc. A variety of polar and non-polar groups, hydrogen bond donors and acceptors, 
hydrophobic sites,  and a number of rotatable bonds make these molecules potentially biologically 
active.
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Figure 3. A general structural formula for investigated ligands examples of typical systems.

QSAR modelling: pharmacophore screening and docking

A pharmacophore screening was performed onto 424 molecules by LigandScout 4.4, the program 
suite with inbuilt pharmacophore creating and matching programs. The pharmacophore screening was 
performed by  “first  fitting”  mode,  i.e.  calculation  stops  after  the  first  fitting,  a  further  geometry 
modification  is  not  carried  out.  This  mode  allows  fast  screening  a  large  number  of  molecules.  
According to LigandScout suite for screened molecules pharmacophore-fit score (PFS) is calculated:

(1)

where  n is  a  number of  matched pharmacophore features,   is  a  root  mean square 

deviation (RMSD) of pharmacophores and corresponding ligand,  ri – Euclidian distances between 
matched pair of pharmacophores and ligand features.

After virtual screening we also performed docking procedure for whole library  against 6lu7  and 
7vh8 protein structures using AutoDock 4.2 and AutoDock Vina 1.1,  incorporated in LigandScout. 
According to AutoDock Vina ideology, there is an exhaustiveness parameter specified as the number 
of binding modes for one ligand. Exhaustiveness defines a number of parallel searching runs. This 
parameter usually has been set to 8 and 9 conformations. 

When analysing the docking results, we examine the Binding Affinity Score (BAS) and the binding 
affinity (kcal/mol). The last parameter is a target parameter for docking optimisation procedure. Due 
to stochastic nature of search algorithm of docking, the results obtained from each run are random and 
have a different energy. In order to calculate probability of definite random state with defined energy

( ), the Boltzmann weight factor is calculated

(2)

Therefore, the total binding energy of the ligand can be estimated as a weighted sum of the  
obtained binding energies of the modes. 

(3) 

We will denote the corresponding approach as Boltz.
Since  pharmacophore  matching  is  not  an  absolute  criterion  for  activity,  we  also  consider 

additional QSAR (Quantitative Structure-Activity Relationship) modelling to accurately predict the 
biological  activity  of  a  compound.  For  all  the  molecules  we  have  calculated  1974  2D  and  3D 
molecular descriptors by using PaDEL-Descriptor program [11]. The logistic classification regression 
model  [12,13]  has been used for description of activity against Mpro.  In logistic regression (strictly 
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speaking, it is a non-linear least squares method, NLS, for a logistic function), the dependent variable  
has only two outcomes (true/false, active/inactive, etc.). This binary variable can be represented as '0'  
or '1'. To solve the NLS equations for the logistic function, we use the Levenberg-Marquardt approach 
to Newton's method, which makes it possible to solve the NLS problem even when the matrix is close  
to degeneracy [14]. The logistic function has the following form

(4)

Where  the  Y  is  the  classification  response  (inactive-active: )  and   are 
descriptors  of  molecular  systems.  Corresponding computer  program has  been implemented in  the 
FORTRAN language.

Results of calculations

We employed a  LigandScout  suite  to  create  the  pharmacophore  structures  for  6lu7 and 7vh8 
protein shown in Fig. 4. Here, the red arrows correspond to H-bond acceptor, green arrows are H-bond 
donors  and  yellow  regions  are  hydrophobic  fragments.   The  amino  acids  which  give  dominant 
contributions  to  ligand-protein  interactions  designated  along  with  numerations  in  corresponding 
protein link.

6lu7 7vh8
Figure 4. 2D structure of pharmacophores.

Fig. 5  shows  the  pharmacophore  screening  results  for  our  molecular  library  vs  the  obtained 
pharmacophore for all two complexes. According to the diagrams, one can divide molecules onto low-
active  (PFS < 39,  i.e. 3  or  less  pharmacophore  matches);  medium-active  (40 < PFS < 49,  i.e. the 
molecules have 4 pharmacophore matches); and high-active (PFS > 50, the molecules with 5 or more 
pharmacophore matches). On the other hand, one can consider molecule with PFS > 50 as similar to 
reference only conditionally since a reference molecule contains ten pharmacophore features. All the 
presented results based on the structures shown in Fig. 4.

a b
Figure 5.  PFS  distribution  for  three  complexes  under  investigation.  p is  a  probability  of  certain  PFS 
(pi=(Ni/Ntotal)·100%)

Some examples of pharmacophore alignment of our sample are presented in Fig. 6. The first case 
(Fig. 6, a) corresponds to a value of PFS = 56.59, i.e. 5 pharmacophore matches, such as two hydrogen 
bond donors, one hydrogen bond acceptor and two hydrophobic interactions. The second case (Fig. 6, b) 
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corresponds  to  PFS = 24.91.  In  this  case  only  two  features  matched:  H-bond  acceptor  and 
hydrophobicity. This molecule is expected to show lower activity compared to the first one.

a b
Figure 6.  Pharmacophore  alignment  (6lu7  complex)  with  a  PFS = 56.6 (a)  and  24.9 (b).  Yellow  spheres 
designate hydrophobic features, green arrows designate H-bond donors and red arrows – H-bond acceptors.

Docking  of  the  reference  ligand  PRD_002214  (or  N3  in  another  designation)  with  an 
exhaustiveness parameter equal to 8 (ex = 8) gave a weighted-mean binding affinity score -25.97. 
Nine ligands with greater activity than N3 have been identified (Fig. 7). We refer these molecules as 
active.

 
1 2 3

4 5 6

7 8 9
Figure 7. Structure formulas of ligands with higher activity than reference N3 ligands against SARS-CoV-2 Mpro 

(6lu7).

These nine molecules were re-docked by AutoDock Vina with exhaustiveness parameter (ex) equal 
to 32 and by AutoDock 4. Weighted sums of conformation binding affinities calculated with Eq. (2) 
are shown in Table 1. In this table, values in the Mean column are Boltzmann-weighted average of the 
binding affinities according to Eq. (2).

It should be noted that no clear relationship or correlation was found between certain structural  
features of the molecules and their activity. This can also be confirmed by the lack of significant  
correlation between molecular descriptors obtained with PaDEL-Descriptor and the molecular activity. 
Indeed,  from the Table  1 one can see that  there  are  no noticeable  correlations between PFS and 
different variant BAS (R2  0.02)! 
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Table 1. PFS and Binding Affinity Score of active molecules

Molecule PFS
Binding Affinity Score (BAS)

Vina, ex = 8 Vina, ex = 32 AutoDock 4 Boltz

1 36.55 -31.01 -25.90 -30.27 -30.34

2 35.96 -29.14 -19.76 -19.27 -28.70

3 35.84 -28.94 -21.56 -19.69 -28.32

4 37.22 -28.21 -20.56 -18.24 -27.65

5 45.59 -28.11 -17.87 -21.47 -27.47

6 35.63 -27.97 -8.33 -16.22 -27.83

7 44.70 -27.29 -17.43 -19.05 -26.77

8 36.53 -26.85 -20.23 -19.27 -26.04

9 35.68 -26.15 -18.43 -18.47 -25.44

N3 – -25.97 -27.47 -19.43 -26.72

Table 1  shows  good  correlation  between  different  BASs,  despite  the  stochastic  nature  of  the 
algorithms. The  best  correspondence  is  obtained  between  mean  value  (2)  and  Vina,  ex = 8.  The 
determination  coefficient,  which  can  be  calculated  from  the  corresponding  columns,  is  equal  to 
R² = 0.99. The results obtained with the Vina program (ex=8) also showed good agreement with the  
results obtained with the AutoDock program.

From the Table 1, one can consider the first molecule, as active because the BAS values are high. 
Therefore, an investigation of molecule 1 (Fig 7.) as an alternative to N3 might could be perspective.

In  connection  with  the  results  collected  in  the  Table 1  we have  analysed  the  distribution  and 
clustering of the docking and pharmacophore screening results. Corresponding graphs presented in the 
Fig. 8. The distribution of the dependence of BAS vs PFS (Figure 8a) and Affinity vs PFS (Figure 8b) 
are  similar.  It  is  evident  that  there  is  not  only  a  lack  of  noticeable  correlation  between docking 
parameters and PFS, but also that the data for the four groups are clearly clustered. "Each cluster 
contains definite number of active and inactive molecules. Furthermore, according to our calculations 
there are  seven active molecules with  PFS within range 30 <PFS <39, two active molecules with 
40<PFS<49  and  neither  active  molecule  with  PFS>50.  Consequently,  if  we  select  ligands  only 
according to the pharmacophore matching parameter, we will have to deal with low- and moderately- 
active ligands. In this case, ligands with the highest binding affinity will be excluded.

An additional and alternative approach to build a predictive model of activity can be based on  
regression analysis of the functional dependence of docking results on a set of possible molecular 
parameters (descriptors). However, as our analysis has shown, it is impossible to construct a simple 
multiple linear regression for this sample even using the partial least squares method. Therefore, we 
focused our choice on a qualitative logistic regression (4). The results of our calculations for logistic  
functions based at Vina and Boltz collected in the Table 2 – 3. Using these equations one can classify 
all molecules onto two categories: active and inactive. As a measure of activity, we were using the  
affinity of reference ligand for each complex. 

a b
Figure 8. A dependence docking results (BAS, Affinity) vs PFS for 6lu7
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We selected four parameters as descriptors, which are briefly described in the Table 2. Among the 
descriptors,  the  Broto-Moreau  autocorrelation  function,  also  known  as  the  autocorrelation  of  a 
topological structure, is presented here [15]. The autocorrelation descriptors (AATSC3v and AATS7s) 
describe how a property is distributed along the topological structure. For the indices AATSC3v and 
AATS7s the lag parameter is the topological distance between a pair of atoms (3 and 7 respectively in  
our equations).

Table 2. Parameters of Logistic regression (eq. 4) for sample under consideration (protein 6lu7)
Params Vina, ex=8 Boltz, eq. (2) Description

164.9 157.8 –

ASP-1 -374.8 -352.7 Average simple path, order 1

nRotB -0.1975 -0.5768
Number of rotatable bonds, excluding terminal 
bonds

AATSC3v 0.0764 0.0799
Average centered Broto-Moreau autocorrelation – 
lag 3 / weighted by van der Waals volumes

AATS7s 0.7734 0.9828
Average centered Broto-Moreau autocorrelation – 
lag 7 / weighted by Sanderson electronegativity

calc/LOO  (%) 75.9/75.7 79.2/78.3 Percentage of correctly classified molecules

TA/TI 63/259 124/212 Confusion matrix. True active / True inactive 
FA/FI 71/31 48/40 False Active / False Inactive
C(A)/C(I) 0.13/-1.68 0.73/-1.67 Centroids: Active / Inactive

More information about the descriptors used can be found in the PaDEL-Descriptor manual [11] 
and in [16,17]. In the table, one can note a fairly good separation of active/inactive molecules both 
when using the derived logistic equations calc and the Leave-One-Out procedure [18] LOO. A slightly 
better result was shown by the Boltz approach ~ LOO  73.8%. More detailed information about the 
accuracy of the calculated logistic equations can be obtained from the confusion matrix (TA/TI, FA/FI 
in the Table 2).  The confusion matrix [19] (sometimes called the error matrix) provides additional 
information  about  the  accuracy  of  the  classification  function.  Namely,  this  2x2  matrix  contains 
information about the number of active systems (molecules) recognized as active (true active, TA). In 
the  same  way,  true  inactive  systems  (TI)  were  determined.  Calculations  of  the  number  of  false 
classifications of molecules as active (FA) and inactive (FI) give information about the total false 
recognition.  It can be noted that the recognition of active compounds in Boltz is noticeably more  
accurate (TA=124) than in Vina, ex=8 (TA=63). Also, the distance between the centroids is larger for 
the  Boltz  approach,  which  indicates  that  the  method  more  clearly  separates  active  and  inactive  
molecules.

For  the  7vh8  protein complex,  the  corresponding  logistic  parameters  shown  in  Table 3 
demonstrated  more  accurate  selection  of  inactive  molecules  than  active  ones 
(calc/LOO (%) = 96.9/96.5 for the Vina, ex=8 calculations). 

Table 3. Parameters of Logistic regression (eq. 4) for sample under consideration (protein 7vh8)
Params Vina, ex=8 Boltz, eq. (2) Description

276.3 215.5 –

ASP-1 -636.2 -492.3 Average simple path, order 1

nRotB 0.2621 -0.5857
Number of rotatable bonds, excluding terminal 
bonds

AATSC3v 0.2306 0.1389
Average centered Broto-Moreau autocorrelation – 
lag 3 / weighted by van der Waals volumes

AATS7s 0.4514 0.4091
Average centered Broto-Moreau autocorrelation – 
lag 7 / weighted by Sanderson electronegativity

calc/LOO (%) 96.9/96.5 94.8/93.6 Percentage of correctly classified molecules
TA/TI 12/399 13/389 Confusion matrix. True active / True inactive 
FA/FI 10/3 20/2 False Active / False Inactive
C(A)/C(I) -0.74/-4.71 -1.00/-3.75 Centroids: Active / Inactive
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Conclusion

In this article, we investigated the predictive ability of the pharmacophore concept on the activity 
of  a  given  library  of  424  derivatives  of  2-(5-(arylsulfonyl)-4-oxo-3,4-dihydro-2-
pyrimidinethio)acetamide against COVID-19. As target receptors, we used the SARS-CoV-2 main 
protease. We utilized pharmacophore screening and docking were employed for the selection of active 
molecular  systems.  Pharmacophore  screening  provides  a  similarity  measure  between  an analyzed 
ligand and a reference one. Since a reference ligand  is selected to have proven activity, one might 
consider such similarity as a promising indicator of biological activity. However, an objective (more  
physical) measure of biological activity is a binding affinity energy obtained by docking. For a given 
library, we performed docking against main protease (Mpro) using a structure of its complex with the 
oligopeptide inhibitor N3 by AutoDock Vina program. It identified nine ligands with higher affinity 
than the reference ligand. These molecules were re-docked by Vina with a higher exhaustiveness  
parameter and then by AutoDock 4. The ligand N-(2-(5-(4-metoxyphenylsulfonyl)-4-oxo-3,4-dihydro-
2-pyrimidinesulfo)acetyl-N’-(2-fluorophenyl)piperazine exhibited the highest binding affinity and can 
be considered as an alternative to N3. We compared pharmacophore screening results and docking 
results. No correlation between these two values was found.  The most active molecules by binding 
affinity criteria have not so high pharmacophore-fit scores. Therefore, pharmacophore screening is not 
always an effective method for drug discovery.

QSAR modeling presents an alternative to pharmacophore screening. We constructed a qualitative 
logistic regression model using a sample of 424 molecules, capable of predicting whether a molecule 
is active or not. In our approach, we utilized the AutoDock Vina program, which generates multiple 
conformations  for  each  molecule.  We employed the  average  affinity  weighted  by  the  Boltzmann 
probability factor for regression analysis. This methodology has demonstrated a high level of accuracy 
in predicting molecular activity.
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Дослідження  представляє  результати  комбінованого  підходу  до  теоретичного  опису  потенційної 
противірусної  активності  проти  COVID-19.  Виявлено,  що  фармакофорний  скринінг,  заснований  на 
обмежених  експериментальних  даних  щодо  комплексів  «білок-ліганд»,  може  мати  погану 
передбачувану  здатність.  Разом із  тим побудова  моделі  на  основі  статистичного  опису  QSAR для  
даних,  отриманих  в  результаті  докінгу,  може  служити  основою  для  адекватного  прогнозу. 
Використання  логістичної  регресії,  як  варіанту  класифікаційної  функції,  дозволило  побудувати 
прогностичну модель для основної протеази Mpro.

Ключові слова:.QSAR, докінг, фармакофор, логістична регресія.
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