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The article discusses a set of internal validation parameters that are (or can be) used to describe the quality of
regression models in quantitative structure-activity relationship problems. Among these parameters there are
well known determination coefficient, root mean square deviation, mean absolute error, etc. Also the indices
based at Kullback-Leibler divergence as a measure of distance between two sets have been investigated. All
the parameters (indices) were calculated for several regression models which describe boiling point of
saturated hydrocarbons (alkanes). Regression models include a four-component additive scheme and
equations describing the property as a function of topological indices. The two types of regressions based on
these indices are linear dependencies on only one topological index and linear dependencies on topological
index and the number of carbon atoms in the hydrocarbon. Various linear regression equations have been
described with internal validation parameters that evaluate the quality of the equations from different
perspectives. It is shown that a wide set of test parameters is not only an additional yet alternative description of
regression models, but also provides the most complete description of the predictive characteristics and quality
of the obtained regression model.

Keywords: Quantitative Structure-Activity Relationships (QSAR), regression models, internal validation,
topological descriptors

Introduction

It is easier to calculate a regression equation than to prove its predictive ability. This sentence is es-
pecially true for QSAR (Quantitative Structure-Activity Relationships) linear regression models. Ne-
cessity of proper investigation of obtained equations has been recognized during the last years. It has
been demonstrated that poorly validated regression equations can be misleading when evaluating
molecular activity/property. Several important articles discuss typical situations and difficulties in de-
scription of the predictive ability of regression models. The provocative titles of the articles — “The
importance of being earnest'...” [1] “Beware of g2!” [2], “Beware of R*....” [3] call for attention to
this problem. In the presented paper, we consider the problem of validating of QSAR regression equa-
tions from a somewhat specific point of view.

First of all, we note that, for common practice, QSAR studies involve dividing the primary data
into two data sets. These sets are the training set that is used to generate the corresponding QSAR
model, and the fest set is the data for validation of the resulting models (equations). The parameters
characterizing the description of the training set by the obtained equations are considered as internal
validation, while the parameters characterizing the quality of the description of the test set are external
validation. In recent years, significant attention has been paid to external validation, which can be con -
sidered as a model for the practical use of the obtained equations. Regarding the content of external
validation, several important issues should be noted. The primary set must be divided in a certain ratio
between the training and test sets. What is this ratio? How to specify the separation of systems (points)
between two sets? How to prove the correctness of the division? And, in the end, will such a division
lead to a decrease in the predictive ability of equations due to a decrease in the size of the training
sample? So we see that external validation leads to additional questions for which there are no general
answers yet (see, however, the article and references therein discussing this problem [4-6]). Hence

! The quote from the famous play by Oscar Wilde emphasizes the main idea of the authors of the article — "first,
validate, and then explore".
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such a procedure is not computationally well defined. In contrast to external validation, the internal
validation does not need dividing the input data into two subsets.

Without denying the necessity for an external validation procedure, in the present paper we propose
to take a closer look at the internal validation (goodness-of-fit) of QSAR regression. Usually the re-
stricted set of parameters used for the internal validation. Among these, the most important are the de-
termination coefficient (R’) and the standard deviation (root mean square deviation, RMSD). Such pa-
rameters cannot be considered as those that give a complete description of the training sample and the
corresponding regression equation. Also these parameters usually demonstrate a low sensitivity to
variation of the model. An extremal example is the classic Anscombe paper, where the very different
data unexpectedly fit the same equation, with the same R’ and the same RMSD [7,8].

In this paper, we analyze a wide set of known internal validation parameters and a few new param-
eters that we have proposed. As an example we describe boiling points (BP, C°) of saturated hydrocar -
bons (alkanes). QSAR-models of these properties include additive scheme and graph theory ap-
proaches based on known topological indices. It should be noted that the interest to topological indices
has been stable for a long time up to the present day. For instance, in the paper [9], new graph theory
model for description of boiling points of alkanes is discussed. Also graph theory approaches currently
used for description of anti-cancer activity [10] and even for description of potential anti-COVID-19
substances [11,12].

All the calculations were performed by using Python3 script language. RDKit package was used
for manipulations with chemical structures and calculations of molecular descriptors. [13] The experi-
mental data for BP of the alkanes were obtained from [14]. When information about the physicochem-
ical properties of alkanes includes several values, we used the average values. In total, the training set
contains information on 39 different saturated hydrocarbons with 1 to 9 carbon atoms.

Linear regression models and internal validation parameters
For the physical-chemistry property of alkanes we consider three types of linear regression models.
The first one is correspond to simple additive scheme.
Y =nx +n,x, + nyx; +n,x, (1)
Where Y is the dependent variable — the physicochemical property of alkanes is a function of four

parameters (71, 12, 13, n4) that describe the molecular structure. The partial values (increments) x, xa,
X3, X4 are contributions from elements of the molecular structure (Table 1).

Table 1. Parametrization of additive scheme for alkane molecules

Number of
Fragment . Increments
Fragments in the molecule
H,C— n, X,
H,c_ n, X,
~
HC< n, X,

‘g n, X,

Also we consider fwo regression models based on graph theory. The topological indices
X = { 2", ZM,, ZM,, ZM,, IC,, Igf]_)} (see Table 2) were used in the calculations as the molecular

descriptors. For a detailed descriptions of the indexes presented in the Table 2, see for example
[15,16].
The first graph theory based model is single-parameter equations:
Y=a,+aX )
where X is the descriptor from Table 2. The second equation includes descriptor X and the number of
carbon atoms (N¢) in the hydrocarbon:
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Y=a,+aN, +aX 3)
The regression coefficients (ao, a1, @») as well as partial values for additive scheme (x;, x5, X3 x4)
were obtained using the Ordinary Least Squares (OLS) method (see for example [17]).

Table 2. Topological indices used in the present article (vi— order of vertex i, (i, j) are pairs of con-
nected by edges carbon atoms)

Ne Topological Index Definition
M _ /
1 | First order Randich index x = (Z; 1/ ViV
L]
2 | First Zagreb index M, = Z 4
3 | Second Zagreb index M, = Z”
4 | Third Zagreb index (so called “forgotten index™) M, = Z Vi
First order informational content. n,- number of vertices 7 n
5 1 1 — ’ 1IC =— Kk log ke
with definite v, N Z n, 1 ; N 2N
Informational index of distances in graph. 7— number v, 7,
6 | of routs with topological dist ok, N, =S r, InfD =) ——log,——
of routs with topological distances equal to k, N ,Z A Zk: N, 2 N,

The residuals between given (experimental) values Y and those obtained by using regression equa-
tions (1-3) for training set (¥, are calculated as follow:

ei — Y _ iL'u/u (4)

Also, the correspondence between the calculated and given values of the variable Y is usually de-
scribed as a linear form which can be presented by two equivalent, but not identical, equations:

Y = /Bu + ﬁ]Y &)

V=7, + ¥ ©)

Of course, for the absolute (or “ideal”) correspondence between Y and Y*“ values, one can write
(By=7,=0, f =y, =1):

V=Y and y“ =y Q)

However, for the typical (realistic) situation of QSAR investigations, for the equation (5) one can
write
Y =(1-R*)Y +R*Y (®)

Where R is Pearson correlation coefficient, ¥ = Z Y /n is mean value, and 7 is size of sample.

Further, according to known expression f3y, = R* [18] for the eq. (6) we always have absolute corre-
spondence in the sense of least square method (, =0, 7, =1).

Y _ Y(‘LII(‘ (9)
However, note that both equations (8) and (9) must be interpreted in the spirit of OLS and, of course,
have the same coefficient of determination, R*. A discussion of these issues can be found in [18, 19].
Hence, in the general case, the deviation of Y** from Y can be expressed in the following most for-
mal way

n=FY,Y"). (10)
Where the parameter # describes the quality of approximation for the selected regression model. Gen-
erally speaking, expression (10) implies the use of different metrics F.

The set of 17 — parameters calculated for the presented regression models based at (1-3) is presented
in Table 3.
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Table 3. Internal Validation parameters

Ne Parameter Description Best equation
Root Mean Square Deviation, 3 e

U RusD RMSD = anp RMSD — 0
Determination Coefficient, , Zef

2 | R’ For the LOO procedure R=l-—7—= R> 51
desi : 2(r-7)

esignated as O -
Mean Absolute Error I
’ MAE ==Y"e
3| MAE HZ(’ MAE — 0
i 1

4 | Asymmetry of residuals, Asymm==>"¢, Asymm — 0
Asymm n-; )
Relative error of worst point, _

S|y WPt = max, {‘e,. /K|} WPt — 0

- 1 1 calc e ‘ Y/ |

Ktk el dgnee |, (1) 7)1 o, L

6 W y ) i i D,\/(YHY‘”“)—)O
distributions, D,, (Y || Y ) PRAS YA ‘ =1

. . |
7 izllleomogenelty of Residuals, IhR = ~log, n—;zlogz e, 1/ e ThR — 0
i k

Angle between ideal (7) and AG = arc t —0.7854

8 obtained lines (5, 8), Ag ¢ =arctan(f;)-0. Ap—0

Here one can see several standard parameters. Among them the RMSD (p is number of regression
coefficients) and determination coefficient — R°. We have also included a parameter based at absolute
values of error (MAE). The advantages and disadvantages of parameters based at absolute values of er-
ror are discussed in details in [20-22]. Also we found a few simple parameters to be useful. Asymm is a
measure of the under- or overestimation of the dependent variable Y. The parameters WPt is simple
values that estimate the spread of the residual vector or can be treated as relative outlier of point.

We are using also parameters based at Kullback-Leibler informational theory [23-24]. The Kull-
back-Leibler divergence D, (Y || Z), also known as the relative entropy, in specific way describes how

Z distribution differ from actual distribution Y. There are several interpretations of D, (Y| Z). One of
them is designated as “informational lost” when Z used instead of Y (or Z approximates Y). The main
properties of Dy, are: Dy, (Y||Y)=Dy, (Z11Z)=0, and Dy (Y| Z)# Dy, (Z||Y). We use two indices
based at Kullback-Leibler divergence. The first one is to describe divergence of Y from Y
D, (YY), and the second — to describe inhomogeneity of the residuals /4R (see Table 3). As an ex-

ample of the use of the Kullback-Leibler informational theory in chemistry see [25].

And also we are calculating the angle (A¢p) between “ideal line” (7) and line that is result of the
regression analysis (8). All the above mentioned parameters were calculated in two variants. The first
one corresponds to the calculation of regression parameters for the full sample, and the second to the
leave-one-out cross-validation procedure (LOO) [26-29].

Results of calculations and discussion

As a result of the OLS regression calculation for the additive scheme (Eq. 1, Table 1), the corre-
sponding plot of the “theory-experiment” relationship is presented in Fig. 1. The red line is corre-
sponding to “ideal” dependence (7). Here one can see, that dependence of Y*“* from experimental
value Y= Y*7*™ designated as green circle, too far from “ideal” dependence for additive scheme.
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Among the results obtained with the simple one-parameteric equation (2), much better solutions
can be found. Especially the equation with Randich index (") demonstrated the best result.

BP(C°)=—-141.6+71.026 ' (11)

Additive scheme

150

100 A

50 4

Ycau‘c

—50 4

—100

—150

T . T T T T T
-150 -100 -50 0 50 100 150
Yexperﬁm

Figure 1. Dependence “theory-experiment” according to the additive scheme.

The internal validation parameters of the linear regressions obtained using the additive approach and
those that follow eq. 2 are collected in Table 4. According to the obtained data, the equation based at
2V is the best equation for all the parameters presented. Nevertheless, the choice of the following
equations (in quality) depends on the chosen validation parameter. According to R* (and Q*, MAE,
Ap) the next best equation is function from ZM 1. The worst result was demonstrated by the ZM3 index
(R’ =05265 and a poor correspondence to the distribution of experimental data D,, (Y[|Y*")=0.5624)

with abnormal sensitivity to selected groups of molecules even compared to /nfD. For the InfD the
value D,, (Y||¥**)=0.1445 is significantly better than for the ZM3 D,, (¥[|Y*)=03622. It is also inter-

esting that the average inhomogeneity of the residuals (/4R) is quite small for all indices (equations),
even though there are large differences in WPt (relative outliers). However, /4R and LOO [hR for the
additive scheme is noticeably greater than for all other regressions. Significant values of 4¢ and LOO
A for additive approach are indicators of large difference between “ideal line” and actual.

For the two-parametric equations (3), which also include the number of carbon atoms in the mole-
cule, the pictures are more optimistic. The quality of the equations in terms of validation parameters is
much better (Fig. 3 and Table 5). Formally the best equation is:

BP(C®)=-168.6+27.8Nc +44.3InfD . (12)

Randich ZM1

150 +

100 +

50

ycalc
o

=100 4

=150 4

T T T T T T T T T T T T T T
-150 -100 =50 1] 50 100 150 -150 -100 -50 0 50 100 150
Yexperim Yexper(m

A B
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M2 ZM3
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Figure 2. The QSAR estimations according to eq. 2 versus experimental data.

The equation is characterized by a large value of R’ a smaller value of D,, (YY) and values of the

other indices except inhomogeneity parameters /AR and LOO [hR. The [hR and LOO [hR values for
InfD are only slightly worse than the corresponding values for other equations based on topological in-
dices. The parameter WPt, characterizing the maximal relative outlier for (12), is much smaller than
for the other equations. However, it can be noted visually that the best equation (12) is characterized
by typical “steps” on the graph of the “calculation-experiment” dependence (Fig. 3, F). This indicates
poor recognizability of some groups of molecules by regression model. This is in spite of high values
of R?. and low values of D, (Y[ Y").

Table 4. The internal validation parameters for additive scheme (1) and regression equations (2).

additive X(] ) ZM/ ZMz ZM3 IC] InfD
RMSD 41.2 8.7 26.2 29.7 43.1 40.0 33.0
LOO RMSD 61.1 9.8 29.2 33.1 47.0 43.5 36.7
Jisd 0.5885 0.9808 0.8245 0.7740 0.5265 0.5914 | 0.7216
O’=LOO R’ 0.0946 0.9754 0.7827 0.7201 0.4369 0.5169 | 0.6562
MAE 20.8 7.0 19.8 21.2 32.9 28.2 26.2
LOO MAE 26.1 7.6 213 22.9 35.1 30.1 28.4
Asymm -0.93 10" 10" 108 10" 10" 10"
LOO Asymm -12.9 -0.03 -0.7 -0.9 -1.20 -0.7 0.6
WPt 80.2 9.3 27.9 20.1 14.5 88.7 147.4
LOO WPt 87.3 10.0 30.6 22.0 15.7 91.6 151.1
Dia(Y || Y°) 0.5074 0.0454 0.1912 0.2539 0.5624 0.3622 | 0.1445
LOO Dii(Y || Y™%) 0.4042 0.0650 0.2445 0.3244 0.8227 0.4575 | 0.1314
IhR 1.17 0.48 0.64 0.79 0.55 0.70 0.55
LOO IhR 1.34 0.52 0.67 0.81 0.57 0.72 0.59
Ao -23.1 -0.6 -5.5 -7.3 -17.2 -14.4 -9.2
LOO 4¢ -36.2 -1.1 -6.8 -8.6 -19.3 -17.3 -8.7
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Figure 3. Data from QSAR regression (eq

A similar by quality equation
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F
3) vs experimental data.

BP(C®) =—-146.51+10.75Nc +48.91 7"

is visually free of this drawback (Fig. 3, A), but appears to have noticeable differences between estimated
and theoretical distributions of the dependent variable (1, (v | y**)=0.03 and LOO D, (¥ | Y )=0.05).
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Table 5. Internal validation parameters for regression equations (3)
)((I) ZM/ ZM2 ZM3 1C1 InfD
RMSD 7.9 9.2 9.4 9.6 11.0 7.2
LOO RMSD 10.1 114 11.6 11.8 13.3 11.0
R 0.9845 0.9791 0.9781 0.9772 0.9701 0.9871
0’=LO0 R’ 0.9747 0.9679 0.9668 0.9656 0.9554 0.9698
MAE 6.1 6.7 7.0 6.9 7.3 4.7
LOO MAE 7.0 7.5 7.8 7.7 8.3 5.8
Asymm 1012 10712 107 107 107 107
LOO Asymm -0.39 -0.29 -0.28 -0.28 -0.25 0.011
WPt 17 22.2 23.5 24 24.3 2.4
LOO WPt 18.8 24 .4 25.8 26.2 27.0 2.9
D (Y || ) 0.0301 0.0299 0.0263 0.0310 0.0343 0.004
LOO Dy (Y || YY) 0.0531 0.0491 0.0461 0.0505 0.0555 0.004
IThR 0.52 0.51 0.59 0.46 0.83 0.98
LOO IhR 0.59 0.56 0.64 0.51 0.88 1.17
Ag -0.45 -0.61 -0.63 -0.66 -0.87 -0.37
LOO 4¢ -1.26 -1.29 -1.38 -1.33 -1.63 -0.47
Conclusion

To date, work on QSAR regression equation testing problems has shifted significantly toward ex-
ternal validation. However, the multitude of internal validation parameters is a useful tool for multilat-
eral analysis of the resulting regression equations. In this paper, we have examined several internal
validation parameters that are different in nature. It has been shown that such parameters can comple-
ment each other. In particular, parameters based on the Kullback-Leibler informational theory (indices
D, (YY) and IhR) describe the correspondence of theoretical, based on the regression model, and

experimental data, from a different perspective than the determination coefficient and other known pa-
rameters. Assessing the results of calculations, also it should be noted that the standard set of parame-
ters is still not sufficient to identify the presence of “steps” in the “calculation-experiment” graph.
Their influence on the quality of approximation still awaits quantitative assessment. At the same time,
visual analysis of the “theory-experiment” graph remains important.

Note also that there is obviously no universal solution in choosing the best (accurate) regression
model to describe the properties of the system in a situation where there is a large scatter in the initial
data. In this case, it is difficult to avoid a wide range of parameters (standard deviation, coefficient of
determination, etc.) when estimating multiple models.
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INTERNAL VALIDATION PARAMETERS OF LINEAR REGRESSION EQUATIONS IN QSAR
PROBLEM

I. B. XpucTeHko, B. B. IBaHOB. [NapameTpu BHYTpiLLHbOI BanigaLii piBHsHb MiHiNHOT perpecii B npobnemi QSAR.
XapkiecbKuli HayjoHanbHuUl yHisepcumem iMeHi B. H. Kapasina, matidaH Ceobodu 4, Xapkis, 61022, YkpaiHa

Y cTatTi 06roBoproeTbCA Habip BHYTPILWHIX NapameTpiB Banigauii, ki BUKOPUCTOBYHOTbCHA (abo MOXyTb ByTn
BMKOPUCTaHI) Anst onucy SKOCTi perpecinHmx mogenen y 3agadax QSAR. Cepea umx napameTpie gobpe Bigomi
KoeqilieHT geTepMiHaLii, 3annWKOBe cepedHe KBaapaTUYHE BIiOXWNEHHS, cepedHsi abcontoTHa noxubka ToLlo.
Takox 6ynu gocnimkeHi iHoekcu, 3acHoBaHi Ha amBepreHuii Kynbbaka-llenbnepa sk mipu BigctaHi Mixx gBoma
MHOXUWHamMu. Bci napameTtpu (iHaekcn) 6ynu po3paxoBaHi Ans AeKiNbKOX perpecinHux mMogenem, siki onucyTb
Temnepartypy KuniHHS HacM4eHUX BYrneBOAHIB (ankaHiB). PerpeciiiHi mogeni BkNioYaoTb YOTUPLOXKOMMOHEHTHY
aQuTUBHY CXEMY Ta PIBHSIHHS, O ONUCYOTb TeMnepaTypy KUMiHHA K YHKUi0 TOMOMOriYHMX iHAeKciB. [Ba Tnunu
perpecivnt Ha OCHOBI LMX iIHOEKCIB - NiHIMHI 3aneXHOCTi TiNbKW Big OQHOrO TOMOSOrYHOro iIHAEKCY Ta NiHiMHI 3anex-
HOCTI Bif KiNbKOCTi aTOMIB BYrfneLto y BYrneBOAHEBIN PEYOBUHI Ta TONOMOrYHOrO iHOEKCY.

OnucaHo pi3Hi MiHiHI piBHAHHS perpecii 3 BHYTPILWIHIMK BanigauiiHMM1 napameTpamMu, siKi OLiHIOITh SKICTb
PiBHSAHb 3 Pi3HMX TOYOK 30py. [1okasaHo, Lo WMPOKMI Habip TECTOBUX MapamMeTpiB € He TiNbKi AOAATKOBUM, M
anbTepHaTMBHUM OMWCOM pErpecinHuX moaenen, a # 3abesnedyye Oinbl MOBHILWA OMUC MPOrHOCTUYHUX
XapaKTepPUCTUK Ta SAKOCTi OTPUMaHOI perpecinHol mogeni.

Knroyoei cnoea: KinbkicHe cniggiOHoweHHs1 cmpykmypa-enacmusicmb (QSAR), peepecitiHi  moderi,
B8HyMpiWHs ganidauyjisi, mornonoaiyHi 0ecKkpunmopu.

HadicnaHo do pedakuii 19.05.2023 lMputiHamo do dpyky 11.09.2023
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