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We have considered the dependences of the specific (k) and molar (A) electrical conductivity (EC) of aqueous
electrolyte solutions on the molar concentration and temperature for sulfates of divalent metals (Mn, Co, Ni, Cu,
Zn, Cd) in a wide concentration range at 5 —35°C. To describe such systems we propose a modified cubic
equation (MCE): k = C-c* + Q-¢®* + L-¢*, where C, Q, L, k are empirical parameters, fixed parameter k = 0.5 has
been considered as well. From the correlation between the calculated parameters we assume that two of them
are sufficient. The maximum of specific EC (km) and the corresponding concentration (cm) have been calculated.
We also assume that the systems under study are isomorphic in the normalized coordinates (k/kn via c/cm). For
the dependences like Kk = A-¢* + B-¢” it is shown that x = 1 is a good approximation over the generalized sample.
Empirical dependences with y = 5/4 and y = 4/3 are also considered. It is shown that they give comparable re-
sults to MCE.

The proposed approach is tested on EC data of aqueous solutions of some salts. Similar two-parameter
K(Km, Cm; €) equations of other authors have been considered. In order to describe the dependence of the
specific EC on temperature and concentration we propose an equation
K = (A + a-8)-c — (Bxs + b-8)-c®, where 8 is the reduced temperature and A, a, By and b are empirical
parameters. Also a generalized equation for the molar EC of concentrated electrolyte solutions is proposed:
AN\, Am, Cm; C), where A- is the effective limiting molar EC, and An is the molar EC at ¢ = cn. It was found that A-
and An depend linearly on temperature. The average value of the exponent is close to 1/3, which brings the
generalized molar EC equation closer to the equation derived from the quasi-lattice model of electrolyte
solutions.

Keywords: specific electrical conductivity, molar electrical conductivity, electrolyte solutions, sulfates of diva-
lent metals, empirical equations.

Introduction

One of the most important features of electrolyte solutions is electrical conductivity. Concentrated
solutions deserve special attention [1,2]. At the same time for concentrated electrolyte solutions there
are practically no equations, which would have a rigorous theoretical justification. More often
empirical equations are used. The Casteel-Amis equation [3] is the most popular. This equation de-
scribes dependence of specific electrical conductivity on molality of electrolyte solution:

L:(ﬂj -eXP(b-(m—u)z—a-m_“J (1)
n n

K

m

where Kn is the maximum electrical conductivity at molality p, while a and b are fitting parameters.
Thus, the Casteel-Amis equation has four parameters to describe the concentration dependence, which
makes it impossible to use for treatment of small experimental data samples. Most experimental and
reference data sets contain 5-7 points in the region of concentrated solutions.

Aim and objects of the study

In this paper we have tried to get some simple empirical equations for the electrical conductivity
dependence on the molar concentration and temperature. Here we consider as ‘simple’ only equations
that can be converted into a linear form. At the same time, the authors did not seek theoretical
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justification for the equations, their applicability across the entire concentration range, or universality
in the selection of electrolytes and solvents.

As objects of research, we chose the experimental data sets [4] on the specific electrical
conductivity of divalent metal sulphate solutions (Mn, Co, Ni, Cu, Zn, Cd) in water at 5-35°C. Our
choice is based on the following facts:

o They are typical salt solution systems with a wide range of applications;

e They all (except CuSO,) show a maximum in the concentration dependence of the specific
electrical conductivity, which is of particular interest;

e They are similar in their physical and chemical properties.

The molar concentrations are calculated from the density data of the solutions given in the original
article [4].

Calculations and discussions

Empirical equations for specific electrical conductivity. To describe the concentration dependence
of specific conductivity, we propose an empirical equation as follows:

k=C-c*+0Q-c*+L-c" )
where C, O, L, k — are fitting parameters.
Such an equation (2) form is chosen due to the simplicity of finding the concentration of maximum

conductivity:
i O +40* -3CL
Cm = T30 (3)
maximum conductivity value:
szC-c;k+Q-cik+L-c§1, 4)

and the inflection point i, on the concentration dependence of the conductivity x(c):

-2
Cing = 3C (%)

The optimisation with the least-squares method has been performed in Statistica software using the
Newton-Gauss algorithm. We used the data for the whole concentration range. The results of the
calculations are presented in table 1. Equation (2) describes the experimental data well enough. For all
systems considered, the coefficient of determination R? is greater than 0.999. For CuSO., values of
extreme parameters are outside of the experimental data range. The maximum conductivity practically
coincides with the values calculated using the Casteel-Amis equation given in the original paper [4].

Table 1 The parameters of equation (2) and the maximum specific conductivity k. (S/m) for the concentration
¢m (mol/dm?) at 25°C

Salt — C Q L k Cm Cm[4] Cinf Km Km[4]
MnSO, | 4.55 9.03 -0.18 0.440 1.86 1.80 0.40 5.03 5.064
CoSO,4 3.97 7.86 0.66 0.488 1.89 1.89 0.43 5.50 5.488
NiSO,4 3.74 7.40 0.88 0.501 1.89 1.88 0.44 5.48 5.474
CuSOq4 3.12 6.51 1.31 0.532 2.11 1.99 0.53 6.10 5.998
ZnS04 3.66 7.31 1.00 0.509 1.93 1.91 0.45 5.68 5.670
CdSO, 3.39 6.99 0.53 0.480 2.05 2.02 0.46 5.14 5.134

The proximity of the values of the parameter k£ for the systems under study should be pointed out.
One can assume that this parameter depends on the system and fix it at a close to average level of 0.5.
Then equation (2) acquires three parameters. The results of the three-parameter approximation are
practically the same as those of the four-parameter one (except for CuSQO.,).

Choice of parameters. For equation (2) there is a correlation between the optimal parameters C, O, L,
and k for the dependencies considered. The principal components analysis has been used to process the
array of optimal parameters C, O, L, and k. It is shown that the magnitude of the explained variance is
distributed over the components as follows: first principal component (PC) 93.17%, second PC 6.69%,
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third PC 0.13%, fourth PC 0.003%. It can be assumed that the presence of four parameters is excessive.
Thus, two parameters are sufficient to describe the systems under study with practical accuracy.

As these parameters, it is convenient to choose the maximum electric conductivity «, and the
concentration ¢, corresponding to it. For systems with maximum conductivity, k. and c. are
objectively observable phenomena and their values do not depend on the choice of «(c) dependence.
At the same time, for systems where solubility does not allow for maximum conductivity, k. and cn
are fitting parameters of the functional dependence x(c).

As a solution to the problem, it is proposed to find equations of the form:

K=Ac" + Bc’ (6)
where 4 and B are model parameters, and the exponents of powers x, y are rational numbers.
If x, and cn, are defined as parameters, equation (6) is transformed to:

x y
K __ v (LJ i [Lj o
Km y—x Cm x—y Cm

Thus, the solution to this problem comes down to determining the parameters kn, and c¢m, and
selecting satisfactory values of x and y.

Choice of two-parameter models. A direct four-parameter optimization is inefficient, given the
small number of experimental points and the symmetry of x and y.

Two parameters, x and y, remain when equation (7) is considered in coordinates normalised at the
extrema.

Figure 1 shows the specific conductivity concentration dependences, normalised to optimum values
(Table 1).
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Figure 1 Concentration dependencies of specific conductivity, normalised to optimum values for divalent metal
sulphate solutions at 25°C.

It can be seen that the points fit well on the same curve, indicating the isomorphism of the studied
systems. Therefore, further analysis was carried out for a generalised sample of normalised specific
conductivity values as a function of normalised concentration.

The optimal values of y for the generalised sample are calculated for the given values of x. A frag-
ment of the dependence y(x) is shown in Figure 2.
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Figure 2 Dependence of the optimum values of y(x) (equation (7)). The diameter of the balls is proportional to
the sum of squared deviations.

Figure 2 shows the relative magnitudes of the sum of squared deviations for the corresponding
pairs of x and y. The optimum corresponds to the pairs x = 1.271 and y = 0.998, given the symmetry of
x=0.998 and y=1.271. However, the sum of the squared deviations varies insignificantly over a
generalised sample. If x =1, then y = 1.270+0.011.

Approximate models of specific conductivity are proposed, where the exponent is approximated by
a rational number:

vy
L i_4.(iJ , (8)
Km Cm c“‘l

4

3
L:4.i_3.[ij _ 9)

The calculation result for the salts studied for the whole concentration range is shown in Table 2.

Table 2. Parameters of equations (8) and (9), maximum specific conductivity k, (S/m) at ¢, (mol/dm?) at 25°C
(N is the number of experimental points).

Salt N Kn (8) m (8) R’ (8) K (9) m (9) R (9)
MnSO, 17 5.08+0.02 | 1.86+0.01 0.9989 5.12+0.04 | 1.88£0.02 | 0.9970
CoSO, 12 549+0.02 | 1.91+0.02 | 0.9998 550+0.02 | 1.87#0.02 | 0.9996
NiSO; 14 545£0.02 | 1.9350.02 | 0.9997 547+0.02 | 1.890.01 | 0.9996
CuSO, 13 6.38+0.08 | 2.45:0.06 | 0.9998 6.18£0.09 | 2.24+0.06 | 0.9996
ZnSO, 13 5.6440.02 | 1.96£0.02 | 0.9997 5.66£0.02 | 1.93£0.02 | 0.9997
CdSO. 16 5.12£0.01 | 2.04+0.01 0.9997 5.16£0.02 | 2.030.02 | 0.9994

For all systems, models (8) and (9) give results corresponding to the four parametric models.

Comparison between each other shows that equation (8) gives the best results.

Testing of the model. An approach proposed can be applied for other systems. Table 3 presents the
results of the approximation of the concentration dependence of the specific conductivity for some
salts in water at 25°C [5] by means of equation (8).

Table 3. Parameters of e

quation (8): maximum specific conductivity k. (S/m) at ¢, value (mol/dm?).

Salt Cm K R Salt Cm K R?
MgCl, 2.47 15.88 0.9986 NaNO; 6.35 19.89 0.9997
CaCl, 2.74 19.93 0.9957 NaBr 6.96 27.00 0.9964
SrCl, 3.20 21.06 0.9991 KNO; 11.5 37.44 0.9999
BaCl, 4.82 28.65 0.9998 KBr 80.1 255.2 0.9999
LaCls 1.61 16.99 0.9965 Cd(NO:s), 2.08 11.26 0.9894

Na,SO;4 2.58 13.08 0.9999
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Most systems are well described by the two-parameter equation. The value of parameters outside
the experimental data (italicised in Table 3) is noteworthy. In this case, such parameters should be
considered effective ones.

Temperature dependence of specific electrical conductivity. The «. and ¢, parameters calculated
by means of equation (8) for divalent metal sulphate solutions at different temperatures are given in
tables 4 and 5.

Table 4. Parameters of equation (8): maximum specific conductivity kn (S/m) at different temperatures.

Salt 5°C 10°C 15°C 20°C 30°C 35°C
MnSO, 3.12 3.59 4.08 4.57 5.59 6.10
CoSO, 3.23 3.76 431 4.89 6.10 6.72
NiSO, 3.18 3.70 4.26 4.84 6.08 6.72
CuSO, 3.68 4.29 494 5.64 7.16 7.97
ZnSO, 3.31 3.85 441 5.02 6.28 6.94
CdSO, 3.15 3.63 4.12 4.61 5.65 6.18

Table 5. Parameters of equation (8): c. values (mol/dm’®) at maximum specific conductivity.

Salt 5°C 10°C 15°C 20°C 30°C 35°C
MnSO, 1.76 1.79 1.82 1.84 1.89 1.91
CoSO, 1.75 1.80 1.84 1.88 1.95 1.98
NiSO, 1.76 1.80 1.85 1.89 1.97 2.02
CuSO, 2.16 222 2.29 2.37 2.54 2.63
ZnSO, 1.78 1.83 1.88 1.91 2.00 2.05
CdSO, 1.89 1.93 1.96 2.00 2.08 2.12

From the analysis of k. and ¢, temperature dependences (as well as the functions on them), we
propose the following dependences:

5.5m 0)=4, +a-0 (10)
K 11
4-W(9)=B25+b~9 ( )
on the reduced temperature
0=7-298.15 (12)

where A5, a, Bxs, b are empirical coefficients.

For all systems studied, the coefficient of determination of equations (10,11) exceeds 0.9997.

It should be noted that the use of Arrhenius-type equations or other similar equations to describe
the temperature dependence of k., parameters is not correct, since not only the temperature changes but
also the composition of the system.

Combining equations (8) and (10, 11, 12), we obtain an empirical dependence of the specific
conductivity on the molar concentration and temperature.

K=(Ay+a-0)-c—(By+b-0)-c7* (13)
The calculated parameters A»s, a, Bs, b for the systems studied are presented in Table 6.

Table 6. Maximum absolute deviation Ak (S/m) experimental and calculated specific electrical conductivity and
parameters of the equation (13): A5 (S/m)-(mol/dm®)™', a (S/m):(mol/dm?) "K', Bys (S/m):(mol/dm®)™*, b (S/
m)-(mol/dm*)>*-K .

Salt Azs a st b AK Rz
MnSO, 13.60+0.05 0.238+0.004 9.30+0.04 0.158+0.003 0.159 0.9989
CoSO, 14.34+0.05 0.258+0.004 9.74+0.04 0.167+0.004 —0.080 0.9997
NiSO4 14.11+0.04 0.255+0.004 9.56+0.04 0.164+0.003 0.095 0.9996
CuSO, 12.99+0.06 0.222+0.005 8.28+0.06 0.131+0.005 0.064 0.9998
ZnS0, 14.37+0.06 0.256:0.005 9.70+0.05 0.164+0.004 0.108 0.9995
CdSO, 12.54+0.03 0.208+0.003 8.38+0.03 0.132+0.002 0.074 0.9997

An example of the approximation by equation (13) is shown in Fig. 3
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Figure. 3 The specific electrical conductivity concentration dependence for aqueous solutions:
1 —MnSO4 (35°C); 2 —CoSOs4 (30°C); 3 —NiSO4 (25°C); 4 — CuSO, (20°C); 5—7ZnS0O,4 (15°C); 6 — CdSO,4
(10°C). Dots are the experimental data, while lines indicate approximation according to equation (13).

Although equation (13) describes the whole concentration range considered, it is better to use it for
concentrated solutions.

Empirical equation of molar electrical conductivity of electrolyte solutions. Equation (7) can be
easily linearised and takes the form of the concentration dependence of the molar conductivity at x = 1.

_:_._m__._m.cy’l (14)
c y-1rc¢, y-1 c,
Equation (14) cannot adequately describe data in the whole concentration range, therefore only
concentrated solutions are considered. The value of concentrations at the inflection point (Table 1) is
taken conventionally as the lower limit of the region of concentrated solutions. Further calculations
were performed using data for concentrations higher than cir.
If we consider only concentrated solutions in terms of molar conductivity, equation (14) can be
written in the most general form as:

c A,
A:A*—(A*—Am)-[—] (15)
c
where the index ‘m’ corresponds to the value at maximum specific conductivity, the asterisk indicates
that this is the effective limiting conductivity. The effective limiting molar electric conductivity is a
fitting parameter. The A+ values differ from the traditional limiting molar electric conductivity A,.

By equation (15) the optimum values of parameters are calculated. For all considered systems
R?>0.9995. Figure 4 shows the temperature dependence of the effective limiting A« and extreme A,
(according to the concentration c¢n) molar conductivity. The optimum values of ¢ do not differ
significantly from those given above (Table 5).
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Figure 4. Temperature dependence of the effective limiting A« (upper values) and extreme An (lower values)
molar electrical conductivity of aqueous solutions of divalent metal sulphates.

A linear equation approximating well all the temperature dependencies considered has the form:

A, =7,-(T-T) (16)
where index i respectively ‘*’ or ‘m’. The conductivity temperature coefficient y; and the limiting
temperature 7; are both the fitting parameters. Table 7 shows the values of parameters y; 7; and
functions on them. Equation (16) for the effective limiting molar electric conductivity is functionally
the same as equation (10).

It is obvious that the exponent in equation (15) is a function of temperature. In the systems
considered, an insignificant decrease in the exponent of equation (15) (except for MnSO,) is revealed
with increasing temperature. In general, for the systems studied the value of the exponent lies in the
range of 0.23 — 0.39. The independence of the exponent value from the temperature is possible only if
the limiting temperatures are equal (7+ = T,,). Table 7 presents the values of the exponent y.. calculated
under these conditions, as the corresponding ratio of temperature coefficients and the temperature-
average value of y. The parameter y. also corresponds to the temperature limiting value of the
exponent.

b

Table 7. Temperature coefficients of effective limiting (yx, S:cm*mol '"K™) and extreme (jm, S-cm*mol™-K™)
molar conductivity. Corresponding limiting temperatures (K). The temperature limiting value of the exponent
(1) and the temperature average (1)

Salt

X Y T T Yoo N2
MnSO, 2.52+0.01 0.473+0.001 240.3+0.3 240.3+0.1 0.23 0.23
CoSO, 2.37+0.02 0.522+0.003 248.7+0.4 242.3+0.3 0.28 0.34
NiSO, 2.40+0.05 0.513+0.004 | 250.2+0.9 242.2+0.4 0.27 0.34
CuSO, 2.147+0.003 0.4444+0.004 | 247.2+0.1 237.1+0.5 0.26 0.34
ZnS0O, 2.07+0.09 0.527+0.007 24642 242.5+0.7 0.34 0.37
CdSO, 2.07+0.01 0.415+0.002 | 245.9+0.2 237.3+0.3 0.25 0.31

Calculations do not give an unambiguous exponent in equations of the form (15). If we assume a

close to average value of the exponent of 1/3, then equation (14) takes the form of equation (9).

Two-parameter models of specific electrical conductivity. Previously in the literature, two-
parametric equations of the form (7) have been proposed. This is primarily in the work of Varela et al.

[7], where a theoretical justification is given:

K

K

m

and Gamburg's empirical equation [§]

_.C

( c
Cn Ch
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/4
L:Z.L_E.LLJ _ (18)

C

m

An alternative approach, using two parameters k, and cm, was proposed earlier by Shestakov et al

[9]:

K 3-c/c
—_— . (19)
K, 1+2-(c/c,)”
Gamburg [8] also proposed an equation of the form:
X L (0)
K. 1+(c/c,)
Artemkina and Shcherbakov [10] give a generalised equation:
3 2
i=0.3536-[ij —1.728-(LJ +2.376-- @1)
for aqueous electrolyte solutions.
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Figure 5. Maximum specific conductivity km(S/m) at cm(mol/dm?) for NiSOy solutions at 25°C. The numbers in
the figure correspond to the numbers of the equations by which the optimisation was carried out.

Figure 5 shows the optimum parameter values for all the equations considered, using NiSO4
solutions at 25°C as an example. The parameters calculated by equations (17 — 21) differ considerably
from each other and from Casteel-Amis equation (1). At the same time parameters by Casteel-Amis
equation (1) are very close to those calculated by equations (2, 8, 9, 15) which are proposed in this
work.

Thus, electrical conductivity of concentrated solutions can be characterized with practical accuracy
by two parameters: kn and cm.

The theoretical upper limit on the use of equations like (7) is calculated as:

clim = y_dz ’ Cm ~ 24 ' Cm ’ (22)
X

but for concentrations greater than 1.5¢, it is not practical to use equation (7).
From the point of view of theoretical justification, equation (9) is more promising, which
corresponds in form to the quasi-lattice model [11]. But this applies only to concentrated solutions.

Conclusions

New empirical equations for the concentration and temperature dependence of the specific and
molar conductivity of electrolytes are proposed.
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It is shown that two parameters are sufficient for the practical use of empirical equations of con-

ductivity concentration dependence. It has been proposed to use the maximum electric conductivity
and the corresponding concentration as parameters. The maximum electric conductivity and the corre-
sponding concentration for a number of electrolyte solutions in water have been calculated. In cases
where the concentration dependence of conductivity does not have a maximum, the parameters should
be considered effective. For concentrated solutions, it is appropriate to use a more flexible generalized
molar electric conductivity equation, where the additional parameter is the effective limiting molar
electric conductivity.

10.
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pacTBOPOB 3NEKTPONUTOB OT KOHLIEHTpALMM U TeMnepaTypbl.

*XapbKOBCKUI HaUMOHarnbHbIM yHUBepcuTeT umenn B.H. KapaanHa, xumunyeckmun cdakynbteT, nn. Ceoboabl, 4,
XapbkoB, 61022, YkpauHa.

THaumoHanbHbIN TEXHUYECKU YHUBEPCUTET «XapbKOBCKWI MOSIMTEXHUYECKUA MHCTUTYT» yn. Kupnuuésa, 2,
XapbkoB, 61002, YkpauHa.

PaccMoTpeHbl KOHLEHTPaUUOHHbIE (B MOMSIPHOW LUKane) u TemnepaTypHble 3aBUCUMOCTU YAENbHOW K U
monsipHon A anekTponpoBogHocTu (A1) BoAHbIX pacTBOPOB cyrbgaToB AByxBaneHTHbIX MeTannos (Mn, Co, Ni,
Cu, Zn, Cd) B WMpoOKOM MHTepBane KoHueHTpauun npu temnepatype 5 — 35°C. MpeanoxeH psg aMNnMpu4ecKkmx
ypaBHeHMn Ans  uccnegyembix  3asucumocten.  MoguduumpoBaHHoe kybuyeckoe ypaBHeHue (MKY):
K=Cc*+ Qc*+Lckrne C, Q, L, k amnupnyeckne napameTtpbl. AHANOMMYHOE ypaBHEHWE C (OMKCUPOBaHHbLIM
napameTpom k = %2. [poaHanu3vpoBaHa Koppensauns paccynTaHHbIX napameTpoB. CaenaHo npegnonoxeHne o
[0CTaTOYHOCTM ABYX napameTpoB. PaccuntaH makcumym yaenbHon Ol Km M COOTBETCTBYHOLLASA KOHLIEHTpauus
cm. CoenaHo gonylleHune, YTo B HOPMUPOBAHHbBIX KoopauHaTax K/Km OT ¢/Cm MCCNeayeMble CUCTEMbI U30OMOPMHbI.
MpoaHanuanpoBaHbl 3aBMCUMOCTU Buaa K = A-¢* + B-¢” ans 0606LieHHON BbiGopkn. MNokaszaHo, YTO C XOpPOLLUM
npubnuxeHnem x = 1. PaccCMOTpeHbl aMNMPUYECKUE 3aBUCUMOCTU C ¥ = 5/4 n y = 4/3. TokasaHo, 4YTO OHW fatoT
conoctaBumble pesynbTatel ¢ MKY. MNMpeanoxeHHbI nogxod NpoTeCTMPOBaH Ha AaHHbIX 3 BOAHbLIX pacTBOpPOB
psga conen. PaccmoTpeHbl aHanoruMyHble AByxnapameTpuyveckme K(Km, Cm; C) YPaBHEHWUs OPYrnx aBTOPOB.
[MpoaHanunsnpoBaHa TemnepaTypHasa 3aBUCMMOCTb OYHKUUN OT Km U Cm. NpeanoxeHa 3aBUCUMOCTb yAENbHON
3l oT TemnepaTypbl U KOHUEHTpauumn K = (A + a-0)-c — (Bxs + b-8)-¢®*, rne 8 — HopMmmpoBaHHas Temneparypa, a
Axs, a, B., b amnupuuyeckme napametpbl. [lpegnoxeHo o0606lWeHHOe ypaBHeHMe MonsipHon Oll
KOHLEHTPMPOBaHHbIX pacTBOpoB anekTponutoB: A(A-, Am, Cm; €), Toe /- adbdeKTNBHaAA npefenbHas MonspHas
3n, a An monsipHas 3l npu ¢ = cm. OBHapyxeHo, 4YTo A+ U An NMUHENHO 3aBUCAT OT TemnepaTtypbl. HageHo, 4to
cpefHee 3Ha4YeHWe nokasaTens creneHn 6nusko k 1/3, yto conmxkaeT 0606LeHHOe ypaBHeHNe monsipHon 3l ¢
KBa3MpeLLEeTOYHON MOAENbI0 PACTBOPOB 3MEKTPONMTOB.

KnioueBble cnoBa: yoenbHaa anekTpunyeckaa npoBOAMMOCTb, MOdpHaaA oanekTpuyeckad npoBOAMMOCTb,
pPacTBOpPbI ANTEKTPOJINTOB, Cyﬂbd)aTbI AOBYXBalneHTHbIX MeTannoB, SMNUpn4eckne ypaBsHeHuUA.

MN.B. Edimos’, A.B. KpamapeHko®, B.O. Tomak. EMNUPUYHI 3anexHOCTI eneKTPUYHOT MPOBIAHOCTI PO34MHIB
€neKkTPpOoniTIB Big KOHLEHTpaLii i Temnepartypu.

*XapkiBCbKkuI HauioHanbHWiA yHiBepcuTeT iMeHi B.H.KapasiHa, xiMiyHun dakyneTteT, mMangaH Csoboau, 4,
Xapkis, 61002, YkpaiHa.

THauioHanbHWii TEXHIYHWUIM yHIBEpCUTET «XapKiBCbKWIM MONITEXHIYHWUI IHCTUTYT», Knpnndosa, 2, Xapkis, 61002,
YkpaiHa.

Po3rnsaHyTo KOHUEHTpauiiHi (y MONSPHIA LWKamni) Ta TemnepaTypHi 3aneXHOCTi MUTOMOI K i MonspHoi A
enekTpnyHoi nposigHocTi (EMNM) BogHux posuuHiB cynbdatie aBoBaneHTHMx metanie (Mn, Co, Ni, Cu, Zn, Cd) y
LUIMPOKOMY iHTEpBani KOHUeHTpaLiii, npu Temnepatypi 5 — 35°C. 3anponoHoBaHO psf eMNipUYHUX PIiBHSHL Ans
JOCnimKyBaHMX 3anexHocTten. MogudikoaHe kybiuHe piBHAHHS (MKP): k= C-¢c* + Q- ¢* +L-cX, pe C, Q, L, k
eMnipnyHi napameTpu. AHanoriyHe pPiBHAHHSA i3 dikcoBaHuM napameTpom k = 0.5. [poaHanizoBaHO Kopernsuito
po3paxoBaHUX napameTpiB. 3pobneHo npunyLleHHs LWoAo0 [AOCTaTHOCTI [ABOX napameTpiB. Po3paxoBaHui
makcumyMm nutomoi ElN Ky, | BigNoBigHa KOHUEHTPaLis Crm. 3pO06NEHO NPUNYLLEHHS, WO Y HOPMOBaHWX KOOpAUHaTaXx,
K/Km BiO C/cm, OOCRiOXyBaHi cuctemmn i3oMopdHi. [poaHanizoBaHO 3anexHocTi Buay K= A-¢c*+ B¢’ anga
y3aranbHeHoi Bubipku. MokasaHo, WO 3a AOCTaTHLOro HabnwwkeHHs x = 1. Po3rnsaHyTi eMnipuyHi 3anexHoCTi 3
y = 5/4 Ta y = 4/3. TNokasaHo, Lo BOHM AaloTb 3icTaBHi pedynbTatn 3 MKP. 3anponoHoBanuii nigxig npotectoBaHui
Ha AaHux ElM BogHMX po3ynHiB HU3KKM conelt. Po3rnsaHyTo aHanoriyHi ABonapamMeTpuyHi K(Km, Cm; C) PIBHSIHHS iHLIMX
aBTopiB. [poaHanizoBaHO TakoX TemnepaTypHy 3anexHiCTb (PYHKUIA Bi Km U Cn. 3anponoHoBaHa 3anexHicTb
MUTOMOI EmM BiOg Temnepartypu i KOHLeHTpaLii
K = (Ass + a-8)-c — (Bys + b-8)-¢c™, ne 8 — HopmoBaHa TemnepaTypa, a Az, a, Bxs, b emmipuyHi napamertpwm.
3anponoHoBaHo y3aranbHeHe PiBHAHHA MonspHOi ElN koHueHTpoBaHux posunHie enektponitie: A(A-, Am, Cm; C), A€
N\- edpekTvBHaA rpaHuyHa monspHa El, a A mongapHa ElN npu ¢ = ¢cm. BussneHo, wo A- n Ay, niHiHO 3anexatb Big
TemnepaTtypu. 3HanaeHo, WO cepedHE 3HaYeHHs noka3Huka cTyneHs 6nmaeke go 1/3, wo 36nNmxKye y3aranbHeHe
piBHAHHS MonsipHOT ElM 3 KBasipeLUiTKOBOKO MOAENM0 PO3UYMHIB €NEKTPONITIB.

KntoyoBi cnoBa: nutoma enekTpmyHa nNpoBiAHICTb, MONSPHA eneKkTpnYHa NpoBiAHICTb, PO34YMHU ENEKTPONITIB,
cynbdaTy ABOBaNeHTHUX MeTaniB, eMMipuyHe PiIBHAHHS.
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