doi.org/10.26565/2220-637X-2017-26-03

УДК 547.814+541.127.4+542.938

КИСЛОТНО-ОСНОВНЫЕ И СПЕКТРАЛЬНЫЕ СВОЙСТВА 3-(БЕНЗОТИАЗОЛИЛ-2)КУМАРИНОВ И ИХ ИМИНОАНАЛОГОВ

З. А. Сизова^{*}, А. А. Карасёв⁺, Л. Л. Лукацкая[‡], А. О. Дорошенко^{*}

Синтезированы систематические ряды 3-(бензотиазолил-2) производных кумарина и 2-иминохромена с электронодонорными заместителями в положениях 6 и 7. Исследованы их спектрально-люминесцентные свойства в ацетонитриле и кислотно-основные равновесия в водноспиртовой среде, а также реакция гидролиза иминохроменов. Обсуждается таутомерия 7-гидрокси-2иминохромена и возможность использования 7-метоксикумарина в качестве стандарта при определении квантовых выходов флуоресценции.

Ключевые слова: 2-иминохромены, кумарины, протолитические равновесия, гидролиз, таутомерия.

Введение

В настоящее время производные кумарина, благодаря их интенсивной люминесценции, находят широкое практическое применение в качестве оптических отбеливателей, люминесцентных красителей для пластмасс и искусственных волокон [1], активных сред лазеров на органических люминофорах [2], коллекторов солнечной энергии [3], биологических маркеров и зондов [4]. Зависимость спектрально-люминесцентных свойств производных кумарина от кислотности среды предопределяет их перспективность как флуоресцентных индикаторов рН [5-9]. Наиболее интересными с точки зрения мониторинга рН в биологических объектах являются соединения, кислотно-основные переходы которых попадают в средний, так называемый «физиологический» интервал шкалы от 6 до 9 единиц рН. При этом наиболее удобными для использования в качестве флуоресцентных индикаторов внутриклеточного рН обладают только те соединения, у которых протолитические взаимодействия сопровождаются существенными изменениями спектральных характеристик. Среди производных кумарина в этом отношении наибольший интерес представляют 2-иминохромены и кумарины, содержащие в положении 3 бензазольные фрагменты. В связи с этим в качестве объектов исследования нами были выбраны и синтезированы систематические ряды 6- и 7-замещенных производных 3-(бензотиазолил-2)-2-иминохромена следующего строения:

Схема 1

^{*} Харьковский национальный университет имени В.Н. Каразина

[†] PreSens Precision Sensing GmbH, Germany

[‡] Государственное учреждение Институт проблем эндокринной патологии имени В.Я. Данилевского НАМН Украины

[©] Сизова З. А., Карасёв А. А., Лукацкая Л. Л., Дорошенко А. О., 2016

Наиболее высокими квантовыми выходами флуоресценции обладают производные кумарина, содержащие электронодонорные заместители в положении 7. Вместе с тем, в качестве моделей для определения тенденций изменения как спектральных, так и физико-химических свойств, нами были также синтезированы соединения, не содержащие заместителей в бензольном кольце бензопиранового цикла или замещенные атомом брома в положении 6. Данный набор объектов позволяет достаточно широко варьировать физико-химические характеристики и реакционную способность соединений исследуемой группы.

Casa	D	Выход	T %C	ИКспектр	Спектр ЯМР 1 Н (DMSO d ₆)			
Соед.	Соед. К		ПП, °С	(KBr), v, cm ⁻¹	δ, p.p.m.			
La II		0.5	196	1662	8.67 (s, 1H, H(4)); 8.29 (s, 1H, NH);			
Ia	la H		(бензол)	(C=NH)	7.97–7.24 (m, 8H, аром.)			
16	7 0011	80	168	1671	8.63 (s, 1H, H(4)); 8.12–7.14 (m, 7H, аром.);			
10	/-OCH ₃	80	(CH ₃ CN)	(C=NH)	$3.90 (s, 3H, CH_3)^6$			
In	7 04	50	180 ^a	1632	ONACL TOUTONOD			
18	/-011	58	100	(C=NH)	смесь таутомеров			
Ir	7_NEt.	77	184	1655	8.55 (s, 1H, H(4)); 8.08–7.22 (m, 7H, аром.);			
11	/-INL02	,,	(бутанол)	(C=NH)	3.60 (q, 4H, CH ₂); 1.25 (t, 6H, CH ₃) ^o			
Iπ	7—Iu1 ^в	38	223	1652	8.40 (s, 1H, H(4)); 8.10–7.25 (m, 4H, аром.);			
14	/ 501	50	225	(C=NH)	7.15 (s, 1H, H(5)); 3.25–1.75 (m, 12H, 6 CH ₂)			
Ie	6–Br	73	241	1658	8.68 (s 1H H(4)): 8.21-7.24 (m 7H anow) ⁶			
10	0 Di	15	(октан)	(C=NH)	0.00 (3, 111, 11(4)), 0.21-7.24 (111, 711, apom.)			
Πг	7–Neta	82	235	1662	8.83 (s, 1H, H(4)); 8.22–7.22 (m, 7H, аром.);			
	/ 1002	02	(CH_3CN)	$(C=NH_2^{-})$	$3.78 (q, 4H, CH_2); 1.28 (t, 6H, CH_3)^{\circ}$			
Πл	7–Jul	35	250	1662	8.44 (s, 1H, H(4)); 8.10–7.50 m, 4H, аром.);			
0			(CH_3CN)	$(C=NH_2)$	7.23 (s, 1H, H(5)); $3.70-1.97$ (m, 12H, CH ₂) ^o			
IIIa	IIIa H		217	1715	9.18 (s. 1H. H(4)): 8.05–7.38 (m. 8H. аром.)			
			(CH_3CN)	(C=O)				
Шб 7–ОСН ₂	7–OCH ₃	75	238	1714	9.10 (s, 1H, H(4)); 8.05–6.98 (m, /H, аром.);			
	5		(CH_3CN)	(C=O)	3.90 (s, 3H, CH ₃)			
Шв	7–OH	55	305	1/02	9.12 (s, 1H, H(4)); 8.05–6.83 (m, 7H, аром.);			
			(CH_3CO_2H)	(C=O)	11.00 (s, 1H, OH)			
Шг	7–NEt ₂	50	206 (CH CN)	1/12	8.90 (s, 1H, H(4)); $7.95-6.57$ (m, 7H, apom.);			
	-	-	_		-	(CH_3CN)	(C=O)	$3.50 (q, 4H, CH_2); 1.20 (t, 6H, CH_3)$
IIIe	6–Br	70	268 (52020 J)	1/25	9.50 (s, 1H, H(4)); 8.30–7.42 (m, 7H, аром.)			
			(оензол)	(C=0)	0.02 (a 111 11(4)); 9.14 6.06 (m. 711 anov);			
IVΓ	7–NEt ₂	50	233	1705 (C=O)	9.03 (8, 11, $\Pi(4)$), 8.14–0.90 (III, / Π , apom.), 7.24 (a. 11, NH): 2.65 (a. 41, CH):			
			(CH ₃ CN)		7.24 (S, III, NII), 5.05 (q, 4II, CI ₂), 1.20 (t. 6H, CH) ⁶			
					1.50 (1, 011, 0113) 8 25 (s 1H H(4)): 8 10-7 43 (m 4H anove):			
IVπ	7–Jul	ul 40	210	1690	7.25 (s, 111, 11($+$)), 0.10 $-$ 7.45 (iii, $+$ 11, apom.),			
туд			(пропанол-2)	(C=O)	$3.25-1.75 \text{ (m } 12\text{H } \text{CH}_2)^6$			

Таблица 1.	Физико-химические характеристики производных 3-(2-бензотиазолил)-2-имино-
	хромена и кумарина.

Примечание. a) плавится с разложением; б) CF₃COOD; в) Jul – производное с фрагментом юлолидина, третичного жирноароматического амина с диалкиламиногруппой, пространственно фиксированной в плоскости бензольного кольца триметиленовыми цепочками.

Обсуждение результатов

При синтезе юлолидинового аналога 2-иминохромена Ід в зависимости от условий были получены два соединения с различающимися температурами плавления. Так, при проведении реакции в пропаноле-2 был выделен целевой 2-иминохромен Ід. В его инфракрасном спектре наблюдалась полоса валентных колебаний иминогруппы при 1652 см⁻¹, а в спектре ЯМР – одиночный сигнал протона H(4) при 8.55. С другой стороны, при проведении этой реакции в бензоле был выделен иной продукт (V), в ИК спектре которого проявлялись валентные колебания при 2198 см⁻¹ (цианогруппа), тогда как в области 1620-2150 см⁻¹ полос поглощения обнаружено не было. Электронные спектры соединений Ід и V в ацетонитриле также оказались различными (рис. 1). Кроме того, у продукта V практически отсутствует флуоресценция (табл. 2), тогда как квантовый выход испускания соединения Iд достигает 0.90. Таким образом, нами было установлено, что при использовании бензола в качестве растворителя происходит только конденсация Кнёвенагеля, не сопровождающаяся последующей внутримолекулярной циклизацией.

Рисунок 1. Спектры поглощения в ацетонитриле соединений Ід (кривая 1) и V (кривая 2).

Ранее образование продукта с раскрытым иминолактонным циклом наблюдал O'Callaghan [10] при проведении реакции конденсации 3-метоксисалицилового альдегида с метиловым эфиром циануксусной кислоты, что было подтверждено им данными рентгеноструктурного анализа (PCA).

При синтезе перхлоратов 2-амино-3-(бензотиазолил-2)-1-бензопирилия (II) нам удалось выделить соли 2-амино-1-бензопирилия только с донорными заместителями в положении 7 (IIг и IIд). Остальные представители этой серии в условиях проведения реакции легко гидролизовались и поэтому в индивидуальном состоянии получены не были.

Спектрально-люминесцентные свойства синтезированных соединений были изучены в ацетонитриле, как в среде, обеспечивающей их необходимую растворимость. Анализ спектральнофлуоресцентных характеристик производных 3-(бензотиазолил-2)-2-иминохромена в этом растворителе показал, что в их электронных спектрах поглощения (ЭСП) с усилением электронодонорной способности заместителя в положении 7 кумаринового ядра наблюдается закономерное батохромное смещение длинноволновой полосы поглощения (ДПП). При переходе от бром-производных (е) к юлолидиновому аналогу (д) (для соединений ряда I) и диэтиламинопроизводному (\mathbf{r}) (для соединений ряда III) смещение ДПП составляет 5200 см⁻¹ и 5300 см⁻¹ соответственно. Для солей 2-амино-бензопирилия при переходе от соединения IIг к IIд в ЭСП также наблюдается небольшое батохромное смещение, не превышающее 900 см⁻¹, которое сопровождалось повышением интенсивности поглощения (табл. 2). К сожалению, измерить спектры поглощения солей бензотиазолия IVг и IVд в ацетонитриле не удалось. Это связано с неустойчивостью этих соединений, в результате чего в ацетонитрильном растворе происходит их диссоциация и в ЭСП наблюдаются только полосы поглощения соответствующих кумаринов.

Положение максимумов флуоресценции соединений бензотиазольной серии в ацетонитриле в значительно меньшей степени зависит от природы заместителя в положении 7 по сравнению с их спектрами поглощения. Влияние заместителя проявляется лишь в небольшом батохромном смещении полосы испускания. Исключение составляют метокси- (IIIб) и гидрокси- (IIIB) производные кумарина, для которых наблюдается слабое гипсохромное смещение 400-500 см⁻¹ относительно незамещенного аналога Ша. Общей тенденцией является уменьшение Стоксова сдвига при переходе к диалкиламинозамещенным Шг и Шд (2700-1280 см⁻¹). Для остальных производных величина этого показателя варьирует в пределах от 4520 до 7360 см⁻¹.

		-1		-1	
Соед.	R	$\tilde{\mathcal{V}}_{\max}^{abs}$, CM	ε, л•моль ⁻¹ • см ⁻¹	$\tilde{\mathcal{V}}_{\max}^{\mathrm{fl}}$, CM	φ
Ia	Н	27260	21900	21000	< 0.01
Іб	7-OCH ₃	26080	32200	20800	0.28
Ів	7- OH	26000	-	20820	0.24
ΙΓ/ΠΓ	$7-NEt_2$	22100/20640	44600/58500	19400/18980	0.99/0.33
Ід/IIд	7-Jul	20740/19740	42400/63100	18700/18460	0.90/0.98
Ie	6-Br	25960	22100	18600	< 0.01
IIIa	Н	27800	27800	21080	0.17
Шб	7-OCH ₃	26400	36600	21580	0.75
Шв	7- OH	26000	29500	21480	0.72
IIIΓ	$7-Net_2$	22120	34500	19760	0.99
IIIe	6-Br	27420	24100	20960	< 0.01
V	7-Jul	22080	20600	18740	< 0.01

Таблица 2. Спектрально-флуоресцентные характеристики 3-(2-бензотиазолил)-производных 2-иминохромена и кумарина в ацетонитриле.

Квантовые выходы флуоресценции 2-иминохроменов I невелики, исключение составляют диалкиламино-производные Iг и Iд ($\phi \ge 0.90$). Для перхлората 2-амино-1-бензопирилия IIг имеет место заметное снижение квантового выхода (ϕ =0.33). Кумарины, содержащие в положении 7 электронодонорные заместители (III6-г), характеризуются высокими квантовыми выходами флуоресценции (0.72 - 0.99).

Таким образом, анализируя спектральные параметры производных 3-(бензотиазолил-2)-2иминохроменов в ацетонитриле, можно заключить, что наиболее эффективными люминофорами являются соединения **Ir**, **I**д, **II**д, **III6** и **IIIв**. Особенно перспективны соединения **III6** и **IIIв**, так как по сравнению с достаточно давно известным и широко применяемым на практике соединением **III**г (кумарин 6), для них характерен больший Стоксов сдвиг 4820-4520 см⁻¹ (для **III**г 2360 см⁻¹) и значительная ширина полосы поглощения ($\Delta v_{1/2}$ 4674 см⁻¹ для **III6** и 3788 см⁻¹ для **III**г) (рис. 2). Оценивая возможность использования данных соединений как стандартов для определения квантовых выходов флуоресценции, мы провели расширенные исследования спектральных свойств соединения **III6**.

Рисунок 2. Спектры поглощения и флуоресценции в ацетонитриле: 1, 1' - 7-метокси- (Шб) и 2, 2' - 7-диэтиламино-производных 3-(бензотиазолил-2)кумарина (Шг).

Кроме ацетонитрила при изучении спектрально-флуоресцентных свойств соединения **Шб** нами были использованы этанол и смесь 50 %_{vol} этанол-вода. Измерения квантовых выходов флуоресценции в этих растворителях проводили, применяя в качестве стандарта бисульфат хинина (табл. 3). Выяснилось, что квантовый выход исследуемого производного кумарина практически не меняется при переходе от одного растворителя к другому, причем даже наличие в растворе большого содержания воды не оказывает существенного влияния на его величину.

Растворитель	φ
Ацетонитрил	0.79±0.09
Этанол	0.76 ± 0.08
50 ‰ _{vol} этанол-вода	0.72 ± 0.09

Таблица 3. Квантовый выход люминесценции соединения Шб в различных растворителях.

Кроме того, для ацетонитрильного раствора мы проверили влияние эффектов внутреннего фильтра и реабсорбции (самопоглощения излучаемой люминесценции). Оказалось, что квантовый выход соединения **Шб** остается постоянным вплоть до значения оптической плотности на длине волны возбуждения 0.6-0.7 (рис. 3). Это является хорошим показателем для флуоресцентного стандарта и говорит о малом влиянии реабсорбции на спектральные характеристики этого соединения, а также об отсутствии заметного концентрационного тушения. Таким образом, соединение **Шб**, учитывая его высокие спектрально-люминесцентные характеристики, а также малую зависимость квантового выхода флуоресценции от природы растворителя, может быть рекомендовано для его дальнейшего использования как стандарта для измерения квантовых выходов соединений с поглощением в ближнем ультрафиолетовом диапазоне (350-410 нм) и флуоресценцией в сине-зеленой области спектра (430-525 нм).

Рисунок 3. Зависимость интегральной интенсивности флуоресценции соединения **Шб** от оптической на длине волны возбуждения (кривая 1) и доли поглощенного света (кривая 2).

В литературе имеются свидетельства [11, 12] относительно склонности 2-иминохроменов к гидролизу, что приводит к образованию соответствующих кумаринов в водно-органических средах.

Анализ спектров поглощения производных 2-иминохромена в водно-спиртовых растворах (50 %_{vol}) при различных значениях pH показал наличие существенной зависимости скорости их гидролиза от кислотности среды. Так как по спектрам поглощения в широком интервале pH для исследуемых соединений зафиксировано существование нескольких протолитических форм, для оценки общей устойчивости к гидролизу исследуемых 2-иминохроменов необходимо было выявить пределы существования и реакционную способность каждой из них. С этой целью нами было проведено исследование кислотно-основных взаимодействий полученных соединений в среде 50 %_{vol} этанол-вода при 20 °C.

Исследуемые в данной работе 3-бензотиазолил-производные кумарина и 2-иминохромена имеют несколько потенциальных центров протолитических взаимодействий. По своей величине значения рК_а для рассматриваемых 3-(бензотиазолил-2)-2-иминохроменов (табл. 4) попада-

ют в промежуточную область между значениями рК_а для их N-метилбензимидазольных [13] и бензимидазольных [11] аналогов. Наклон линейной корреляционной зависимости pK_a от σ^+ -констант заместителей для солей 2-амино-1-бензопирилия **II** (ρ =0.96, r=0.986) оказался лишь незначительно большим по сравнению с соединениями N-метилбензимидазольной серии (ρ =0.87, r=0.983) [13]. Это может свидетельствовать о неизменности реакционного центра протолитических взаимодействий 2-иминохроменов при замене гетероцикла в положении 3 молекулы. По данным кислотно-основного титрования, у бензотиазолил-2-иминохроменов **I** в интервале от 2 до 10 единиц pH, в отличие от N-метилбензимидазолил-2-иминохроменов [13], наблюдается только одно равновесие. Вероятно, это связано с образованием прочной внутримолекулярной водородной связи типа NH^{···}N с участием протонированной иминогруппы бензотиазолил-2-иминохроменов и атома азота бензотиазольного цикла.

Несмотря на устойчивость 3-(бензотиазолил-2)-2-иминохроменов в нейтральных водноспиртовых растворах, они оказались более склонными к гидролизу в кислой водно-спиртовой среде по сравнению с бензимидазольными производными. Так, константа скорости гидролиза соединения **IIa** $(2.1 \times 10^{-4} \text{ c}^{-1})$, оказалась на порядок выше аналогичной величины как для Nметилбензимидазольных ($k_{гидр}$ 1÷5×10⁻⁵ c⁻¹) [13], так и бензимидазольных аналогов ($k_{гидр}$ 8×10⁻⁵ c⁻¹) [11].

Для 7-гидрокси-2-иминохромена **IB** в спирто-водной среде наблюдается дополнительная полоса поглощения, смещенная в длинноволновую область, не наблюдаемая в ацетонитриле. Это объясняется появлением в средах с высоким содержанием воды таутомерной оксоаминной формы **IB**^T.

Рисунок 4. Схема протолитических и таутомерных равновесий 2-имино-3-(бензотиазолил-2)-7-гидроксихромена Ів.

Подобно 3-(N-метилбензимидазолил-2)кумаринам для кумаринов III в области от 2 до 10 единиц pH реализуется только одно протолитическое равновесие, что может быть связано только с протонированием бензазольного цикла, поскольку второй центр основности – лактонная карбонильная группа присоединяет протон только в концентрированных растворах минеральных кислот при значениях функции кислотности Гаммета H₀ от -7 до -4 [14]. Однако, исключением из общей закономерности все так же является 7-гидроксипроизводное. Вследствие меньшей основности бензотиазольного цикла, данная характеристика 3-(бензотиазолил-2)кумаринов оказалась значительно более низкой по сравнению с таковой у их N-метилбензимидазольных аналогов [13]. В установленной нами корреляционной зависимости значений pK_a 3-(бензотиазолил-2)кумаринов от σ^+ -констант заместителей (ρ =0.70, г=0.993) реакционная константа ρ оказалось заметно более высокой, чем для 3-(бензимидазолил-2)кумаринов (ρ =0.51, г=0.991) [11] и 3-(N-метилбензимидазолил-2)кумаринов (ρ =0.39, г=0.972) [13]. Это, на наш взгляд, объясняется тем, что в катионах IV образуется более прочная внутримолекулярная водородная связь с участием карбонильной группы, чем в катионах их N-метилбензимидазольных аналогов.

Соед.	$\tilde{\nu}_{\max}^{abs}$, ${}^{cM}{}^{-1}$	ε, л•моль ⁻¹ •см ⁻¹	$\tilde{v}_{\max}^{\mathrm{fl}}$, $\mathrm{^{CM}^{-1}}$	φ	pK _a
Ia/IIa	27000/26680	21500/25500	21840/20420	0.03/0.03	4.96±0.02
Ισ/Πσ	25780/25040	29200/36600	20840/21120	0.60/0.73	5.44±0.02
Ів/Пв	25780/24860	29200/22900	21160/20240	0.38/0.82	6.09±0.03
Іг/IIг	21820/20400	46300/61000	19280/18900	0.80/0.13	6.92±0.01
Iд/IIд	20740/19580	47100/63300	18600/18460	0.87/0.74	7.72±0.01
Ie/IIe	26040/26220	19300/26200	20380/20300	<0.01/<0.01	(4.57)
IIIa/IVa	27420/25280	25800/2900	20520/-	0.15/-	-0.9±0.2
III6/IV6	25480/23580	33900/44200	21360/20800	0.72/0.93	-0.40±0.02
IIIb/IVb	25380/23540	31400/40500	20740/20740	0.72/0.86	-0.31±0.01
ΠΓ/ΙVγ	21160/19180	57100/84300	19540/18080	0.81/0.13	0.65±0.01
Шд/IVд	20380/18500	72400/118300	18960/17620	0.83/0.70	1.04±0.01
IIIe/IVe	27080/-	21800/-	20440/-	0.06/	(-1.2)

Таблица 4. Спектральные и кислотно-основные характеристики исследуемых соединений в 50 %_{vol} водно-этанольном растворе.

Приведены: положение и интенсивность длинноволновой полосы в спектре поглощения, положение полосы флуоресценции, квантовый выход и константа диссоциации протонированных катионных форм. Через наклонную черту приведены соответствующие характеристики незаряженных и протонированных (катионных) форм. Значения PK_a в скобках (соединения Ie и IIIe) оценены экстраполяцией с использованием корреляционной зависимости значений PK_a от σ^+ -констант заместителей соединений рассматриваемых реакционных серий.

При титровании 7-гидроксипроизводных **IB** и **IIIB** в щелочной среде, так же, как и для N-метилбензимидазольных аналогов [13], зафиксировано дополнительное равновесие, связанное с образованием анионов (рК_a 7.42 \pm 0.06 и 7.35 \pm 0.01 соответственно). Отмеченное различие в кислотности гидроксильных групп соединений **IB** и **IIIB** достаточно мало по сравнению с таковым, наблюдаемым для N-метилбензимидазольных аналогов (рК_a 8.40 \pm 0.02 и 7.70 \pm 0.01 соответственно) [13]. Тем не менее, оно так же обусловлено большей электроноакцепторной способностью карбонильной группы по сравнению с иминогруппой. Вместе с тем, кислотность гидроксильных групп родственных пар соединений **IB** и **VI** и **VII** существенно отличается (Δ pK_a 0.98 и 0.35 соответственно). Это, возможно, связано с большей электроноакцепторной способностью бензотиазольной группировки по сравнению с N-метилбензимидазольной.

Изучаемые производные 3-(бензотиазолил-2)-2-иминохромена по сравнению с их N-метилбензимидазольными аналогами являются более яркими флуорофорами в 50 %_{vol} растворе этанол-вода, что следует из сравнения их квантовых выходов в данной среде [13].

Кроме того, характерной особенностью спектрально-люминесцентных свойств соединений бензотиазольной серии являются высокие значения коэффициента экстинкции протонированных диалкиламинокумаринов IVr и IVд (табл. 4). Это обстоятельство позволит снизить концентрацию зонда при использовании данных соединений в биологически ориентированных исследованиях, а значит, проводить их в условиях меньшего возмущающего воздействия на протекающие биопроцессы.

Соед.	$ ilde{m{ u}}_{ ext{max}}^{ ext{abs}}, ext{CM}^{-1}$	ε, л∙моль ⁻¹ •см ⁻¹	\tilde{V}_{\max}^{fl} , CM^{-1}	φ
IB_	22180	30200	—	_
IIIb	21940	50200	20420	0.98
VI	25240	33400	21120	0.70
VII ⁻	24460	37000	21200	0.71

Таблица 5. Спектральные характеристики анионов N-метилбензимидазольной и бензотиазольной серий

Таблица 6. Спектральные и физико-химические характеристики таутомерных форм 7-гидрокси-2-иминохроменов.

Соед.	$ ilde{m{ u}}_{ m max}^{ m abs}$, c ${ m max}^{ m -1}$	ɛ, л∙моль ⁻¹ • см ⁻¹	$ ilde{ u}_{ m max}^{ m fl}$, cm ⁻¹	φ	K _T	рК _{а1}	pK _{a2}	pK _{a3}
IBT	21280	31400	20180	0.84	5.25±0.02	5.37±0.02	8.14±0.02	7.42±0.06
VIT	22480	31300	20340	0.63	1.17±0.03	5.60 ± 0.02	8.47±0.06	8.40±0.02
D				TC TC	10		4	

Равновесия, описываемые константами К_т и К_{а1}-К_{а3} показаны на рисунке 4.

Как отмечалось выше, при титровании соединения **IB** в водно-этанольной среде было обнаружено его существование в виде равновесной смеси таутомерных форм (рис. 4, 5). Это проявляется в возникновении дополнительной полосы поглощения в длинноволновой области, смещенной на 4500 см⁻¹ относительно таковой в спектре метокси-производного **16**, выбранного нами в качестве модели спектра формы **IB** (гидроксииминной). Подобное таутомерное равновесие наблюдалось ранее для бензимидазольных [11] и N-метил-бензимидазольных [13] аналогов. Константу таутомерного равновесия **IB** оценивали согласно процедуре, описанной в работе [13]. Смещение модельного спектра **IB** таутомера **IB**^T в длинноволновую область в этом случае составило 700 см⁻¹. Оказалось, что в 50 %_{vol} этаноле относительное содержание оксо-аминной таутомерной формы **IB**^T (K_T = 5.25) приблизительно в 5 раз выше, чем в аналогичном случае для 7-гидрокси-N-метилбензимидазольного (K_T = 1.17) и в 2 раза выше, в случае 7-гидроксибензимидазольного аналогов (K_T = 2.61).

Рисунок 5. Спектры поглощения протолитических и таутомерных форм 2-имино-3-(бензотиазолил-2)-7-гидроксихромена Ів в 50 $\%_{vol}$ этаноле: 1 – катион (ІІв), 2 – нейтральная гидрокси-иминная форма (Ів), 3 – анион (Ів⁻), 4 – таутомерная оксоаминная (Ів^T) форма, 5 –смесь таутомерных форм (Ів + Ів^T).

Квантовый выход флуоресценции оксоаминной формы IB^{T} оказался значительно более высоким (ϕ =0.84) по сравнению с таковым для гидроксииминной формы IB (ϕ =0.38).

Спектр флуоресценции катиона 7-гидрокси-1-бензопирилия **Шв** в 50 %_{vol} этаноле отличается от спектров других соединений наличием второй, достаточно интенсивной полосы испускания в диапазоне 500 нм (рис. 6).

Рисунок 6. Спектры флуоресценции отдельных форм таутомерного равновесия **IIB** в возбужденном состоянии: **1** – таутомерная оксоаминная форма (**IB**^T), **2** – 7-гидрокси-2-иминохромен (**IB**), **3** – катион (**IIB**) в спирто-водной среде. Интенсивность в максимуме нормирована пропорционально квантовому выходу флуоресценции.

Спектр флуоресценции формы **Ів**^т получен при возбуждении таутомерной смеси, образующейся для соединения **Ів** в 50 %_{vol} этаноле, длиной волны, соответствующей длинноволновому максимуму поглощения оксоаминной таутомерной формы.

Механизм образования возбуждённой таутомерной формы может быть представлен следующим образом: катион 2-амино-бензопирилия **Пв** в возбужденном состоянии депротонируется, после чего происходит таутомерная перестройка сольватированных нейтральных форм **Iв** \leftrightarrow **IB**^T или **IB**^T \leftrightarrow **IB**, в зависимости от того, какая из обсуждаемых форм образуется первой. По всей вероятности, данный фотопроцесс происходит достаточно медленно, так как удаётся наблюдать излучение и исходной и конечной таутомерных форм.

Попытка разрешения вопроса о том, какая из кислотных группировок возбужденного катиона **II**в, OH- или NH₂-, более склонна к диссоциации (механизмы «А» и «В» на рисунке 7), была предпринята с привлечением модельных квантово-химических расчетов (метод AM1, программный пакет MOPAC-2012 [15, 16]). Оказалось, что в возбужденном состоянии таутомер **IB**^T является ~ на 9.4 ккал/моль более энергетически выгодным. Следовательно, если бы в **II**в первоначально диссоциировала OH-группа, в спектре вряд ли бы наблюдалось испускание менее выгодной формы **I**в. Таким образом, может быть выдвинуто предположение о первоначальной диссоциации NH₂-группировки, а следовательно - о предпочтительной реализации механизма «А» при возбуждении катиона **II**в в водно-спиртовой среде. В пользу этого свидетельствует также и более высокий положительный заряд на атомах водорода NH₂-группы ($q_H = + 0.271$, по данным расчета) по сравнению с зарядом на атоме водорода гидроксильной группы ($q_H = + 0.238$) возбуждённой формы **II**в.

Полученные в ходе исследования данные могут быть использованы при разработке новых флуоресцентных кислотно-основных индикаторов на основе производных 2-иминохромена и кумарина.

Рисунок 7. Фототаутомерные превращения в возбужденном состоянии катиона 7-гидрокси-3-(бензотиазолил-2)-2-амино-1-бензопирилия.

Экспериментальная часть

Спектры ЯМР ¹Н измерены в диметилсульфоксиде-d⁶ и дейтерированной трифторуксусной кислоте на спектрометре Varian Mercury Vx 200 MHz. Инфракрасные спектры (ИК) - в кристаллическом состоянии в таблетках КВг на спектрофотометрах SPECORD M80 и SPECORD 75 IR. Электронные спектры поглощения - на спектрофотометре Hitachi U-3210, спектры и квантовые выходы флуоресценции – на флуориметре Hitachi F-4010. Для учёта различий в показателях преломления исследуемого и эталонного растворов при расчете квантовых выходов вводились квадратичные поправки [17].

Константы протолитических равновесий в среде этанол-вода определяли спектрофотометрическим методом с использованием буферных растворов на основе соляной, уксусной, малоновой и борной кислот при постоянной ионной силе 0.05 моль/л (фоновый электролит NaCl). Определение pH исследуемых растворов проводили в элементе со стеклянным и хлорсеребряным вспомогательным электродами. При этом применяли компенсационную схему, включающую потенциометр P-363-2 и pH-метр pH-121. Использование в качестве электролита во вспомогательном полуэлементе раствора KCl (0.85 моль/л) в водно-этанольной смеси позволило повысить стабильность измерений, а также расширить диапазон надежного определения pH в кислую область вплоть до 0.6. Калибровку используемого измерительного элемента проводили согласно методике, описанной в работе [11]. Значения коэффициентов активности заряженных частиц рассчитывали по уравнению Дэвиса [18].

Для расчета константы таутомерного равновесия 7-гидрокси-3-(бензотиазолил-2)иминохромена спектр гидрокси-иминного таутомера в 50 $\%_{vol}$ водно-этанольном растворе моделировали спектром 7-гидрокси-3-(бензотиазолил-2)-иминохромена в 5 $\%_{vol}$ растворе спирта в воде, смещенным в длинноволновую область на 700 см⁻¹ для компенсации сольватохромного сдвига при переходе от 50 к 5 % раствору спирта в воде.

При определении констант скорости гидролиза аликвоты растворов иминохроменов в ацетонитриле (3-5 %_{vol} от общего объема раствора) смешивали с водно-спиртовыми смесями с требуемыми значениями pH и производили 20-40 измерений спектра поглощения через равные промежутки времени при 20°C. Значения констант скорости гидролиза монокатиона и дикатиона в водно-спиртовой среде оценены по результатам измерения наблюдаемых констант скорости гидролиза при различных значениях кислотности в области преобладания указанных частиц. Константы скорости гидролиза рассчитывали по модифицированному методу Гуггенгейма [19]. При определении констант протолитических равновесий количество исследуемых растворов было в пределах от 10 до 20 на одну определяемую константу. В интервале pH, близком к предполагаемому значению pKa, разность в кислотности соседних растворов составляла 0.15-0.2 единиц pH. Значения констант ионизации рассчитывали с учетом до 50 аналитических длин волн по программе CLINP [20]. Доверительные интервалы получены для стандартной вероятности α =0.95.

Исследуемые вещества были синтезированы по реакции Кнёвенагеля в условиях основного катализа. Перекристаллизацию проводили до постоянной температуры плавления. Выходы и некоторые физико-химические характеристики синтезированных соединений приведены в табл. 1.

Синтез 3-(бензотиазолил-2)-2-иминохроменов (Ia-е). К раствору, полученному нагреванием 1.74 г (0.01 моль) 2-цианометилбензотиазола в 20 мл пропанола-2, добавляли 0.01 моль замещенного салицилового альдегида и 1мл пиперидина. Выдерживали при комнатной температуре до прекращения выпадения осадка, фильтровали.

Синтез перхлоратов 7-R-2-амино-3-(2-бензотиазолил)-1-бензопирилия (Пг, д). К раствору, полученному нагреванием 1.74 г (0.01 моль) 2-цианометилбензотиазола в 20 мл пропанола-2, добавляли 2 мл 50% хлорной кислоты и 0.01 моль соответствующего замещенного салицилового альдегида. Продолжали нагрев до прекращения выпадения осадка, фильтровали.

Синтез 3-(2-бензотиазолил)кумаринов (Ша-г, е). К взвеси (0.01 моль) 3-(2-бензотиазолил)-2-иминохромена в 20 мл пропанола-2 добавляли 30% соляную кислоту и нагревали в течение 1 часа, затем нейтрализовали раствором соды. Остывшую смесь фильтровали.

Синтез перхлоратов 2-(7-R-кумаринил-3)-бензотиазолия (IVг, д). Перхлорат 7-R-2-амино-3-(2-бензотиазолил)-1-бензопирилия (0.01 моль) помещали в смесь пропанола-2 и 50%-ной хлорной кислоты (1:1 по объему) и кипятили с обратным холодильником 0.5 часа. Затем раствор охлаждали, выпавший осадок отфильтровывали.

Синтез (2Е)-2-(1,3-бензотиазол-2-ил)-3-(8-гидрокси-2,3,6,7-тетрагидро-1H,5Hпиридо[3,2,1-ij]хинолин-9-ил)акрилонитрила (V). К раствору, полученному нагреванием 1.74 г (0.01 моль) 2-цианометилбензотиазола в 20 мл бензола, добавляли 2.17 г (0.01 моль) 3-гидрокси-юлолидин-4-карбальдегида (8-гидрокси-2,3,6,7-тетрагидро-1H,5H-пиридо[3,2,1ij]хинолин-9-карбальдегида) и 1 мл пиперидина. Выдерживали при комнатной температуре до прекращения выпадения осадка. Осадок фильтровали. Выход: 35%. Тпл. 127 °С. ИК (КВг): 2198 см⁻¹ (С≡N). Спектральные характеристики приведены в табл. 2, спектр поглощения на рис. 1.

Литература

- 1. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. М.: Химия, 1984. 334 с.
- 2. Лазеры на красителях / Под ред. Ф.П.Шефера. М.: Мир, 1976. 330 с.
- 3. Raue R., Harnisch H., Drexhage K.H. // Heterocycles. 1984. Vol. 21. № 1. P. 167–190.
- 4. Lakowicz J. Principles of fluorescence spectroscopy, 2nd Ed. New York: Kluwer Acad./ Plenum Publ., 1999. 698 p.
- 5. DeLisser-Matthews L.A., Kauffman J.M. // Analyst. 1984. Vol. 109. № 8. P. 1009–1011.
- 6. Wolfbeis O.S., Baustert J.H. // J. Heterocyclic Chem. 1985. Vol. 22. P. 1215–1218.
- 7. Wolfbeis O.S., Marhold H. // Fresenius Z. Anal. Chem. 1987. Vol. 327. P. 347–350.
- 8. Dong S., Ma H., Li H., Sun M., Duan X. // Analytical Letters. 2004. Vol. 37. № 14. P. 2937-2948.
- 9. Vasylevska G.S., Karasyov A.A., Borisov S.M., Krause Ch. // Anal. Bioanal. Chem. 2007. Vol. 387. P. 2131–2141.
- O'Callaghan C.N., McMurry T.B.H., Cardin C.J. // J. Chem. Res. (S). 1990. № 5. P. 132–133; J. Chem. Res. (M). 1990. № 5. P. 901–922.
- 11. Карасёв А.А., Лукацкая Л.Л., Рубцов М.И., Жикол Е.К., Ярмоленко С.Н., Пономарёв О.А. // ЖОХ. 1995. Т. 65. № 9. С. 1547–1557.
- 12. Dryanska V. // Synth. Commun. 1987. Vol. 17. № 2. P. 203–209.
- 13. Сизова З.А., Карасёв А.А., Лукацкая Л.Л., Рубцов М.И., Дорошенко А.О. // Теорет. и эксперим. химия. 2002. Т. 38. № 3. С. 165–169.
- Пономарёв О.А., Васина Е.Р., Ярмоленко С.Н., Митина В.Г. // ЖОХ. 1985. Т. 55. № 1. С. 179–183.

- 15. J.J.P. Stewart. MOPAC 2012, Stewart computational Chemistry Ver. 13.238w, http://openmopac.net.
- Maia J.D.C., Carvalho G.A.U., Mangueira C.P., Santana Jr., S.R, Cabral L.A.F., Rocha G.B., GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations // J. Chem. Theory Comput. 2012. Vol. 8, P. 3072-3081.
- 17. Parker C.A. Photoluminescence of Solutions. Elsevier Publishing Co., Amsterdam-London-New York 1968. 544 p.
- 18. Davis C.W. Ion Association. London. Butterworths, 1962. 190 p.
- 19. Swinbourne E.S. // J. Chem. Soc. 1960. N 5. P. 2371.
- Bugaevskii A.A., Kholin Yu.V., Konyaev D.S. Computer calculation of complex formation constants from spectrophotometric data // Russian J. of Inorganic Chemistry. 1993. – V. 38, No 2. – P. 328-334.

References

- 1. Krasovitskiy B.M., Bolotin B.M. Organic Luminescent Materials. VCH Verlagsgesellschaft mbH, Weinheim, 1988. 340 p.
- 2. Dye Lasers. (Ed. F.P. Schafer). Berlin-Heidelberg New York, Springer-Verlag, 1973, 285 p.
- 3. Raue R., Harnisch H., Drexhage K.H. // Heterocycles. 1984. Vol. 21. № 1. P. 167–190.
- 4. Lakowicz J. Principles of fluorescence spectroscopy, 2nd Ed. New York: Kluwer Acad./ Plenum Publ., 1999. 698 p.
- 5. DeLisser-Matthews L.A., Kauffman J.M. // Analyst. 1984. Vol. 109. № 8. P. 1009–1011.
- 6. Wolfbeis O.S., Baustert J.H. // J. Heterocyclic Chem. 1985. Vol. 22. P. 1215–1218.
- 7. Wolfbeis O.S., Marhold H. // Fresenius Z. Anal. Chem. 1987. Vol. 327. P. 347-350.
- Bong S., Ma H., Li H., Sun M., Duan X. // Analytical Letters. 2004. Vol. 37. № 14. P. 2937-2948.
- Vasylevska G.S., Karasyov A.A., Borisov S.M., Krause Ch. // Anal. Bioanal. Chem. 2007. Vol. 387. P. 2131–2141.
- 10. O'Callaghan C.N., McMurry T.B.H., Cardin C.J. // J. Chem. Res. (S). 1990. № 5. P. 132–133; J. Chem. Res. (M). 1990. № 5. P. 901–922.
- 11. Karasyov A.A, Lukatskaya L.L., Rubtsov M.I., Zhikol E.K., Yarmolenko S.N., and Ponomarev O.A., Zh. Obshch. Khim., 1995. Vol. 65. P. 1547–1557.
- 12. Dryanska V. // Synth. Commun. 1987. Vol. 17. № 2. P. 203–209.
- 13. Syzova Z.A., Karasyov A.A, Lukatskaya L.L., Rubtsov M.I., Doroshenko A.O. // Theoretical and Experimental Chemistry. 2002. Vol. 38. № 3. P. 168-172.
- 14. Ponomarev O.A., Vasina E.R., Yarmolenko S.N., Mitina V.G. // Zhurnal Obshchei Khimii. 1985. Vol. 55. № 1. P. 179–183.
- 15. J.J.P. Stewart. MOPAC 2012, Stewart computational Chemistry Ver. 13.238w, http://openmopac.net.
- Maia J.D.C., Carvalho G.A.U., Mangueira C.P., Santana Jr., S.R, Cabral L.A.F., Rocha G.B., GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations // J. Chem. Theory Comput. 2012. Vol. 8, P. 3072-3081.
- 17. Parker C.A. Photoluminescence of solutions. Elsevier Publishing Co., Amsterdam-London-New York 1968. 544 p.
- 18. Davis C.W. Ion Association. London. Butterworths, 1962. 190 p.
- 19. Swinbourne E.S. // J. Chem. Soc. 1960. № 5. P. 2371.
- Bugaevskii A.A., Kholin Yu.V., Konyaev D.S. Computer calculation of complex formation constants from spectrophotometric data // Russian J. of Inorganic Chemistry. 1993. – V. 38, No 2. – P. 328-334.

Поступила до редакції 29 січня 2016 р.

3. О. Сизова, О. О. Карасьов, Л. Л. Лукацька, А. О. Дорошенко. Кислотно-основні та спектральні властивості 3-(бензотіазоліл-2)кумаринів і їх іміноаналогів.

Синтезовані систематичні ряди 3-(бензотіазоліл-2)кумаринів і їх імінохроменів. Досліджено їх спектрально-люмінісцентні властивості в ацетонітрилі та кислотно-основні рівноваги у водно-спиртовому середовищі, реакції гідролізу імінохроменів. Обговорюється таутомерія 7-гідрокси-2-імінохромену і можливість використання 7-метоксикумарину як стандарту при визначенні квантових виходів флуоресценції.

Ключові слова: імінохромени, кумарини, протолітичні рівноваги, гідроліз, таутомерія.

Z. A. Syzova, A. A. Karasyov, L. L. Lukatskaya, A. O. Doroshenko. Acid-base and spectral properties of 3-(benzothiazolyl-2)cumarins and their imino analogs.

Systematic series of 3-(benzothiazolyl-2)coumarin derivatives and their imino analogs were synthesized. Spectral-luminescent properties in acetonitrile solutions, acid-base equilibria in water-alcohol media, reaction of iminogroup hydrolysis were investigated for the title compounds. Tautomerism of 7-hydroxy-2-iminochromens in wateralcohol solutions and possibility of practical application of 7-methoxycumarin as fluorescence quantum yield reference compound are discussed as well.

Keywords: iminochromens, cumarins, protolytic equilibria, hydrolysis, tautomerizm.

Kharkov University Bulletin. Chemical Series. Issue 26 (49), 2016