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Various molecular parameters in quantum chemistry could be computed as derivatives of energy over dif-
ferent arguments. Unfortunately, it is quite complicated to obtain analytical expression for characteristics
that are of interest in the framework of methods that account electron correlation. Especially it relates to the
coupled cluster (CC) theory. In such cases, numerical differentiation comes to rescue. This approach, like
any other numerical method has empirical parameters and restrictions that require investigation. Current
work is called to clarify the details of Finite-Field method usage for high-order derivatives calculation in CC
approaches. General approach to the parameter choice and corresponding recommendations about nu-
merical steadiness verification are proposed. As an example of Finite-Field approach implementation char-
acterization of optical properties of fullerene passing process through the aperture of carbon nanotorus is
given.
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Introduction

The bases of Finite-Field method (FF) as an approach for calculations of different molecular pa-
rameters (e.g. electro-optical properties, shielding constants, efc.) were founded in the end of 1960™
[1]. Initially FF was used for calculation of polarizabilities of atoms and diatomic molecules for first
and second period elements. Its use was restricted by employing the Hartree-Fock method (HF) as a
quantum-chemistry approach for in-field system energy calculation. Since then FF is one of the most
simple and wide-used methods for energy numerical derivatives computation.

Application of FF for post-HF approximations started at the end of 1970" with appearance of more
powerful computation systems. In the first works [2—7] about polarizabilities investigations the con-
figuration interaction (CI) approach was employed. First calculations for di- and triatomic molecules
revealed that HF results are in significant divergence with those obtained in more accurate methods.
Moreover, the most important circumstance is not only quantitative but qualitative differences. As the
result of carried investigations the importance of electron correlation (EC) account became evident.

As computational practice shows [8], account of the EC effects plays essentially important role for
n-conjugated systems (especially when high-order susceptibilities are of interest). Usually employed
density functional theory (DFT) [9] and second-order many-body perturbation theory (MBPT2) [10]
roughly account these effects and for the series of systems are unable to estimate the whole set of de-
sired properties with proper accuracy [8].

It is worth noting that articles devoted to computation of electrical and optical characteristics with
FF approach (except several [11]) contain brief information about technical side of the procedure and
reliability of presented results. Current work is called to clarify the details of FF implementation and
numerical steadiness of proposed derivatives over electric field computation algorithm. As a demon-
stration the authors’ computational complex is employed. Implemented approach uses the PPP
(Pariser-Parr-Pople) parameterization for n-electron variant of coupled clusters (CC) singles and dou-
bles (CCSD) method with covalently unbonded ethylene molecules as reference state (cue-CCSD).
[12-14]

Derivatives over the electric field strength

Variety of magnitudes in the framework of quantum chemistry could be computed as energy de-
rivatives over corresponding argument. One of the most comprehensive examples is calculation of
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parameters of system response on external electric field. The change of molecular energy E( fr) due to

the action of falling light with significantly large wave-length is described by Buckingham [15] expan-
sion:
o ] 1 1 1 1
E(F)= By st F, =330, FF, = B FEF = FEEE, = (1)

where 4, o, g, and y  are the components of dipole moment, polarizability, first and second hy-

st

perpolarizabilities respectively. Indices {r,s,s,u} correspond to axes of Cartesian coordinate system
{x,y,z} . Thus, coefficients (4, , o, B, ,,) 0 equation (1) can be computed as a certain order de-

rivatives of E( }"7) over the force of applied field F:
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By the analogy with given equations, Brédas et. al. [16,17] proposed an approach that allows to
calculate separately every atom contribution to the value of (hyper)polarizabilities. Such method is
called Real-Space FF method. Given methodology employs the expansions of dipole moment and
charges on atoms in the series by the powers of applied field:
/ur = ,UB +arsEs +IBrstF;F; +7rsluF;F;F1; +... (3)
6,=4" +4F, +q/F,F, + g\ F,FF +... )

i,r:

F=0 F=0

where for /™ atom: ¢\"" — charge in zero field, g\, ¢\) and 47 —so-called “hypercharges” that corre-
spond to certain power of r . Comparing the equations (3) and (4), it is easy to obtain expression for
e.g. x component of second hyperpolarizability:
3 0 (Z 9:%; ] 3
Vi = Z Iff} == " 2 ZT(? = Zf‘,xiqfilx ' (3)
It is also worth noting that the elements of reduced density matrix (RDM1) could be computed as
energy derivatives [14,18]. It follows from general expression for system energy:

thus for atom orbitals (AOs) u and v correspondingly:
__ L %, (7)
P =375, o,

where h, is matrix element of core Hamiltonian, 5, — Kronecker delta. Multiplier 1 /(2_5/”) pre-
sents due to off-diagonal elements contribute twice (p,, =p, ) to the system energy. Foregoing

scheme is very attractive in m-electron approximation because every atom provides only one AO
(p—orbital). Also it should be emphasized that in CCSD method the regular linear response theory
lead to nonsymmetrical RDM1 matrix ( P # Py [19,20]). Hence the numerical differentiation (7) is a

simple yet physically correct alternative.

Finite Field method
At the present section we provide the details of high-order numerical derivatives computation on
the example of (hyper)polarizability calculations. For desired parameters FF method implies following
amendment of the unperturbed Hamiltonian g (0):

H,.,j’k:H(O)+§<i)2+j?+kZA)a ®)
where X, ¥ and Z — corresponding dipole moment operators; & — numerical constant that defines the
step of field strength alternation; integers i, j, k =...+3,+2,+1,0 form 3D point grid, where system energy
E\ will be calculated. In zero-differential overlap approximation, matrices that represent dipole
moment operators are diagonal and contain Cartesian coordinates of atoms.

The points in the 3D grid where system energy to be calculated are defined by the set of desired
components and by the symmetry of the molecule under investigation. For example, computation of
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geometrical invariant of second hyperpolarizability requires calculation of six derivatives of forth or-
der (among them three cross-components):

(v)= %(v Yy TV + 2 (Vagy + Vo + Yy ) ®)

It means that 3( N; ~2N, +1)+3( N, _1)+1 points of energy required, where the first summand corre-
sponds to three planes: E(i,j,0);E (3,0, /); E(0,, ): i,je[—Np,—l}u[l,Np], second summand corre-
sponds to three axes: E(i,0,0); £(0,i,0); £(0,0,i): ie[—Np,—l}u[l,Np] and the last one is zero-field
energy. These amount could also be reduced for high symmetric systems. One of the possible ap-
proaches for construction of necessary grid is based on calculation of Euclidian distance matrix with

atoms and grid points coordinates. Resulting matrix will have following structure (where M — block of
molecule atoms and G — block of grid points):

(MM MGJ
D= . (10)
GM GG

It is known [21] that eigenvector of Euclidian distance matrix that correspond to the biggest absolute
eigenvalue contains information about point equivalence. Therefore, analyzing G eigenvector block it
is possible to eliminate equal by symmetry grid points.

To obtain numerical energy derivatives there are at least two common approaches: numerical dif-
ferentiation of Lagrange polynomials (LP) and least squares method (LSM).

For LP interpolating dependence of system energy on the force of applied electrostatic field F is

given by the following expression:
S o F-ié (11)
E(F)= E(i&)- — |’
( ) g):|: (lg) {r];r[tiig_ré{]}

where N, — number of points in the interpolating polynomial. Differentiation of function (11) in the
point F =0 gives desired molecular parameters. For example, x components of polarizability o and
second hyperpolarizability Y o In case N, =5 (£2,%1,0) are represented with the following expres-

sions:
. :[EX(—25)—16EX(—§)+30E(O)—16Ex(§)+Ex(2§)]’ (12)
xx 1252
L _[R(20) 145 (£)6E(0) 145, (&) £.(2)], (13)
XXXX 54

where £ (i) — system energy in the field applied along x axis with force i¢.

In case of LSM, the problem is reduced to the solution of overdetermined (in general case) linear
system of algebraic equations, that characterizes behavior of system energy in fields of different inten-
sity. Metaparameters of the approach are number of averaging points — N, and maximal polynomial

power — N :
E(0)
/1
A e E(F)
al2! ! (14)
1 F F K F . F" E(F)
1 opI3 =
oo oo 7//4! b
\ F, F, F, F Py E(Fy,)
le/Nm!
or in compact matrix form:
AS=E. (15)

Thus, within selected approach, the solution of FF problem is represented by standard LSM expres-
sion:
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5=(A"4)'A"E =GE, (16)

where matrix
G=(A"A)"'4" (17)
has order N x N, at that the numeration of the first dimension is convenient to start with zero, so that
for corresponding component of § vector, i.e. for zero line G, , the energy of unperturbed system £(0)

is given.

It is necessary to mention that characteristic feature of employing LSM for solution of Finite Field
problem is possible co-linearity of input data (matrix 4). It leads to quasi-degeneration of normal ma-
trix (A" 4), and accordingly the standard approaches for its inversion are not applicable.

Within given notation, x components of polarizability ¢ and second hyperpolarizability 5 (ana-

logical to (12) and (13) equations) could be represented Wlth following expressions:
N,

a, =(2!) -ZP:GS.)E}” , (18)
i=1
N,
Vo = (40) -2 GED - (19)
i=1
In both cases (LP and LSM) the set of points is taken symmetrical respectively to the unperturbed
state:

EF)) [E(-NS)

E(F,) E.(“O) ) (20)

E (E’Vp) E( N, 5)
where N =( N, +1)/2 is shift in the value grid. Such choice is especially reasonable in case of non-

symmetric dependence of the energy, i.e. for systems with non-zero dipole moment.
It is worth mentioning that in case of N = N, LSM approach is reduced to the interpolation

(system is no more overdetermined). Therefore derivative calculation comply with particular expres-
sion, so equations (18) and (19) now lead to expressions equivalent to (12) and (13).
Computation of cross-components (e.g. ¥y ) I LP approach is based on the use of the expression

for mixed derivative:
K 62 0| o o 21
= ’ _— —E x, =—qQq M ( )
Yooy = Fos E(x,y)= 62)[62)6 ( y)} PE ()
First, one obtains ¢_(y) vector from E( x,y) matrix and then desired cross-component is obtained by
differentiating of ¢_(y). In LP approach despite y =y ., due to round-off errors these two values

are different although insignificantly.
In the framework of LSM computation of any derivative along arbitrary axis is represented with

simple enough expression:
a(k+l+m) N, N, N, (22)
(nz} k' . m; G(V)G(l)G(Z)E(m)
akxa[yam ;le; ma ya

Identity Yoy =¥y is guaranteed reasoning from the commutability of multiplication. The value of

Vo (k=2, I=2, m=0) in given approach is expressed as

ot N, N, N,
Vi = g E®) =(21:21-01)- ZZZG(X)G(‘)GSZ)E;:W) (23)
i=l j=1 a=l

Since zero line in G matrix has following form (unity corresponds to the energy of unperturbed along
particular axis system)

(0 010 0) en)
equation (23) simplifies into
Np N
o A BT GG @)

i=l j=1
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Coupled cluster singles and doubles

All energy values were obtained using local n-electron variant of CCSD approach. It is well-known
that the quality of (hyper)polarizability estimation is in the strong dependence on the level of EC ac-
count. CC theory has recommended itself well in various applications including optical and non-linear
optical properties calculations. Computational efficiency, elegance and high accuracy of EC estima-
tion made CC theory approximations the methods of choice.

Implementation of CCSD method is well-known and well-described so the following brief descrip-
tion will be given only for better understanding of material below. The wave-function of CCSD
method can be represented in the following form (so-called exponential ansatz):

B O P [PV IV RPN
W ) =€ T-|0>:(1+T1 b+ L T T, +ZTI4+ET22+5T12T2)|0>7 (26)

where |0) — reference determinant, operators 7, and 7, are cluster operators that generate superposi-

tion of singly and doubly excited configurations relatively to reference determinant. Employed meth-
odology is based on the use of unitary group generator (UGA) formalism [22]. Working equations are
derived projecting Schrodinger equation onto singly and doubly excited configurations:

A =(0E, |H —Ecgy | €77 [0) (27)
AL =(0E,E | H — Egegy | €77 0) (28)
Action of product £ E,, onto reference state |0) leads to doubly excited configuration [22,23]
EEy|0) =i )+ i)+ ) 29)
Given function is a linear combination of two orthogonal functions
E,E,]0) =3[ ()] (0)) (30)

Permutation of indices for occupied and vacant orbitals in (29) leads to new configuration that is
neither equal nor orthogonal to the initial one. To avoid the non-orthogonality problem, and as a con-
sequence to increase the speed of iteration procedure, it is possible to build biorthogonal basis. For
doubly excited configurations ( E,E, |0) and EbiEaj|O>) it is easy to proof that function
l<0(2 E.E,+E E, )| satisfies required orthogonality condition. Thus, in addition to equation (28) it is
6 ja—ib

ia™ jb
possible to write the following projection scheme:
Ay =(0(2B,E,, + E,,E, )| A = Ecegy | " |0) (31)
In our calculations we used m-electron variant of CCSD method and to construct the reference de-
terminant authors’ single-electron basis set of Covalently Unbonded molecules of Ethylenes was em-

ployed (CUE). [14]

Direct inverse in the iteration subspace

By the definition, derivative is the ratio of infinitesimal function change on infinitesimal argument
change, thus the variation of field strength in FF methodology has to be small enough to guarantee that
obtained values are actually derivatives. This obviously implies that energy has to be computed with
very high accuracy in order to prevent desired values from the distortion due to round-off errors. Such
necessity in turn defines the number of iteration steps to be performed.

In the framework of gradient method, iteration procedure for solution of CC equation can be repre-
sented as follows:

A = g A (), (32)

(k+1

where £ is the number of current iteration, /) amplitude vector, A(t(k >) — gradient vector, ¢ — coef-

ficient that defines the “length” of gradient step. In Steepest Descent variation, ¢*) value is estimated

on every step to reduce the number of iterations taken. However it requires additional calculation of
A( A(k)) that is equal to the cost of iteration. The steepest descent approach is justified only in cases

when the acceleration reduces iteration number more than twice. In the simplest approximation ¢*) is
constant ¢ = . It is manifest that incorrect choice of o will lead either to the divergence (too high
a ) of iteration procedure or to significant increase (too low « ) of calculation duration.

40



A.B. Zakharov, V.V. Ivanov

One of the most efficient methods of CCSD solution acceleration is Direct Inverse in the Iterative
Subspace (DIIS) [24,25]. Initially this approach was successfully used for SCF problem.

Interpolation DIIS scheme in application to the CCSD method consists in the construction of fixed
amplitude vector 7 that at k¥ iteration will be expressed through analogical vectors obtained at previ-
ous steps

7O = e ™ 4 g e (33)
with condition
Se =1 (34)
i=1
In matrix representation, the problem of ¢ ~determination can be written in the form
(k|k) (k|k-1) (k|k—m) 1 C 0
(k—1]k) (k—1]k—-1) (k=1]k—m) 1 ¢ 0 ’ (35)
<k—m|k> <k—m|k—1> <k—m|k—m> 1 c, 0
1 1 1 0 0
where matrix elements (k- |k -s) in CCSD method using projection (28) scheme is equal
(k—rlk—s)=> ATIACTT 4 3 APETIAE) S (36)
ia (ia)>(,jb)
and for (31)
(e=rlk=s) =Y AN 4+ 3 (28570 £ AGET ) (22507 + A (37)
ia (ia)>(jb)

Results and discussion

To estimate efficiency of DIIS procedure it is necessary first to investigate the features of standard
approach to CCSD equation solution (eq. 32). For this purpose we will look into dependence of itera-
tion number on the length of iteration step for two systems: polyene C,oH;, and fulvalene C;,H,, (Fig-
ure 1, A and B respectively). The detailed description of iteration procedure conversion for C;oHy; in
different first order iteration procedures has been investigated in [26]. The hyperpolarizabilities of
CioH;, and other n-systems in full configuration interaction method were investigated in [27,28,29]. In
the present articles we especially interesting in comparison of efficiency for different projection
schemes (28) and (31). Also these two systems were selected as representatives of alternant and non-
alternant compounds (system B in a contrast to system A has non-zero dipole moment) which as ex-
pected will have difference in solution determination.

P N _

A B
Figure 1. Systems under consideration.

To figure out the value of the optimal length of iteration step (minimal number of iterations) the se-
ries of computations were carried with different ¢ values. Results are presented in Figure 2 for two
projection schemes up to the accuracy ¢=10" (such strict termination criterion is selected for the
maximum correct efficiency estimation).

As seen from the figure, with the increase of « the number of iterations decreases monotonic up to
specific value (up to optimum) which rapidly increases after. This growth is connected with oscillation
around the minimum of optimizing function. After certain ¢ value divergence is observed.

The Table 1 contains the optimal values for all considered cases. Obtained data shows that every
projection scheme is characterized by own values, that generally speaking are close for majority of
examined systems. On polyene example established that for egs. (28) and (31) optimal step length is
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0.41 and 0.35 respectively. Projection scheme that employs biorthogonal basis is more efficient in

comparison with the standard one.
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Figure 2. Dependence of iteration number on the length of iteration step within
two projection schemes for systems A and B.

Table 1. Optimal values for the length of iteration step and corresponding iteration number.

system A system B
o | N | e [N
EE, 0.533 266 0.512 308
2EE, +E,E, 0.389 178 0.392 289

DIIS efficiency estimation will be performed in comparison with optimal values (Table 1). Natu-
rally, such approach is idealized and cannot be observed (because for every particular system it is nec-
essary to find ), however it allows to obtain the lower bound.

80 100 120 140 160

N

iter

system A

180 0

* noDIS
o Nps=5
v Nps=10
s Np,=15
= Npg=30

200 300

100

iter

system B

Figure 3. Change of accuracy during CCSD equation solution

First it is necessary to investigate the dependence of the iteration steps number on the quantity of
DIIS interpolation points. As an accuracy measure we will use

p=-log, ¢,

(3%)

where ¢ = Il is Euclidian norm of the amplitude vector. In Figure 3 the dependence of p on the num-

ber of DIIS points is presented (compared to the standard gradient approach — labeled as “no DIIS”).
When approximating given dependences with linear function coefficient of the argument
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(denoted as v ) is the velocity of convergence achievement. Then, efficiency can be represented in

terms of v, as the ratio between accelerated with DIIS and standard gradient method:
(DIIS)
_ % . 39
E, = v(no DIIS) ( )

As seen from the Figure 4, for two considered examples (systems A and B) the most efficient inter-
val is from 20 to 30 points. Notably that starting with N, =30 for polyene and with N, =40 for

fulvalene the difference between projection schemes vanishes.
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Figure 4. Dependence of DIIS interpolation efficiency £, on number of DIIS steps N, -

The next objective is ascertainment of the optimal values for FF metaparameters: field step &,
number of differentiation points N, and termination criterion p. On the first parameter two intuitive
restriction are applied. The first (as mentioned above) — necessity of smallness condition (several hun-
dredths eV/A). Violating latter restriction leads divergence of observed values with desired magni-
tudes. Energies obtained in intensive fields are far enough from non-perturbed state (what derivatives

are computed for), due to the fact that in standard LSM approach the weights of all points are equal,
contribution from high orders increases. Since maximal polynomial power N is fixed, it will lead to

the overestimation for obtaining coefficients. The second restriction deals with the lower bound of &
value. In case of small ¢ the loss of accuracy and singularity of normal matrix 4”4 (due to co-
linearity of data) is observed. Limitations of N, are quite obvious: it can not be less than the maximal
derivative order and it should not be too big not to increase computational cost noticeably.

It is evident, that the most sensible to the value of ¢ are derivatives of high orders. Thus, the influ-
ence of £ on the computation accuracy will be examined on the values of average second hyperpo-
larizability (y).

For adequate investigation strict iteration procedure termination criterion is selected (p=13). The
results are presented in Figure 5. After elapsing unstable area in the region of small fields (up to
5:107 eV/A), (5) values ceases changing and the result keeps stable up to the 0.1 eV/A (deviation is
near 5%). According to obtained results, as optimal value of & is selected 2-10° eV/A. For this field
strength the influence of termination criterion size will be examined varying p e[6,13]. As can be seen

from the graph given in Figure 6, the stable region starts from p =10, thus reliable is p>11.

Aforesaid argumentation about the optimal/reliable parameters intervals are based on the stability
of selected magnitude on the particular range, however the question how close computed derivatives
are to the true values of second hyperpolarizability remains unanswered. To get unambiguous proof of
particular numerical approach applicability it is necessary to build model function with predefined
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coefficients and compare them with calculated ones. In case of system energy dependence on the
strength of applied electrostatic field, model function has to expressed as follows

2 3 4
M(x)=-a,+ax—a,x"+a,x" —a,x" +... (40)
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Figure 5. Dependence of average second hyperpolarizability <7/> (a.u.) on the & (eV/A)

In addition to the components that correspond to system energy (4, ), dipole moment (4, ), polariza-
bility (q,), first (¢,) and second (q,) hyperpolarizabilities, model function has to contain terms of

higher orders. Besides, it is obvious that function for systems A and B will have principal differences,
since system A has zero dipole moment. It means that coefficients that belong to the odd power of x
vanish. Constructed model functions for both systems are presented in the Table 2.
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Figure 6. Average second hyperpolarizability as a function of termination criterion p

Table 2. Model function of energy expansion by the power of applied field strength

a, a, a, a, a, as ag a, a,
model A 100 0 1 0 0.1 0 0.1 0 0.05
model B 100 1 1 0.2 0.02 0.1 0.05 | 0.01 0.03

The numerical steadiness of LSM solution is easy to estimate controlling condition number of nor-
mal matrix 4" 4. For such matrices, condition number is equal to the ratio of the biggest eigenvalue to
the smallest one. There is an empiric rule, which according to the number of significant digits lost
during the inversion of matrix with condition number « is equal 7 =log,, x [30]. Table 3 contains val-

ues of L parameter for different combination of numerical differentiation metaparameters.
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Table 3. A prior estimation of significant digits quantity lost (L) due to the
bad conditionality of 4”4 matrix.

£ (eV/A) Number of differentiation points
5 7 9 11

0.002 213 19.8 18.8 | 18.0
0.010 15.8 14.3 13.3 12.5

0.020 13.3 11.8 10.8 | 10.0
0.050 10.3 8.6 7.6 6.8
0.100 7.8 6.3 5.3 4.5

Table 3 data shows that employing standard “float64” type (16 significant digits) is meaningless for
strength of applied field less than 1.102 eV/A, due to almost all digits will be lost during 4”4 matrix
inversions through round-off errors.

Data presented in the Table 4 shows that LP approach for N,>7 shows absolute match of coeffi-

cients for model function. Starting with &=5.10 eV/A LSM demonstrates significant errors relatively

to model coefficients. Probably, it is connected with the fact when maximal polynomial power is fixed
it is impossible to account high-order terms (4,—q, ). In the fields of high intensity these contributions

will be included in coefficients (q,—q,). Exact matching of results for LP and LSM for case of 5 points

(except field 0.002 eV/A, where round-off errors are determining) is the proof of above mentioned
consideration about LSM case for non-overdetermined system of equations.

Table 4. Relative errors (%) in model function coefficients determination
LP LSM
5 [ 7 [ 9 | 1 5 [ 7 [ 9 [ 11
model A, ¢,

0.002 0.07 0.09 0.10 0.10 0.14 -0.01 0.01 0.01
0.010 0.05 0.00 0.00 0.00 0.05 -0.13 0.24 0.38
0.020 0.20 0.00 0.00 0.00 0.20 0.53 0.97 1.52
0.050 1.26 -0.02 0.00 0.00 1.26 3.34 6.16 9.78
0.100 5.11 -0.25 0.00 0.00 5.11 13.86 | 26.35 43.30
model B, ¢,

0.002 -0.45 -0.76 -0.96 -1.11 0.08 -0.03 0.07 0.02
0.010 0.12 0.00 0.00 0.00 0.12 0.33 0.60 0.94
0.020 0.50 0.00 0.00 0.00 0.50 1.32 2.42 3.80
0.050 3.14 -0.05 0.00 0.00 3.14 8.37 15.48 24.62
0.100 12.82 -0.74 0.00 0.00 12.82 | 34.99 | 67.02 111.02
model B, 4,

0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.010 0.03 0.00 0.00 0.00 0.03 0.06 0.10 0.16
0.020 0.10 0.00 0.00 0.00 0.10 0.23 0.41 0.63
0.050 0.63 0.00 0.00 0.00 0.63 1.46 2.58 3.99
0.100 2.51 -0.02 0.00 0.00 2.51 5.89 10.46 16.26

£(eV/A)

Numerical illustrations

To illustrate the use of all mentioned above considerations we have modeled the process of
fullerene Cgy penetration through the aperture of carbon nanotorus. Carbon nanotorus represents the
structure of looped single-wall carbon nanotube. In our case we considered tore built of topology (5,0)
nanotube with 10 unit cells. Structure on investigated system is given in Figure 7.

Computation was carried with cue;)-CCSD method (see for details [14]) and following FF parame-
ters: £=2.107 eV/A, N,=17, p=12. Average iteration step number for every point is near 51 (for

N,,s =20), with the size of optimizing amplitude vector over 1.5 million parameters. Because of high
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symmetry, number of energy calculations in different field was reduced from 127 to 76 grid points.
Comparison of most significant components obtained for the moment of passing fullerene through
nanotorus aperture, i.e. distance between centers =0, is presented in the Table 5 (components
a.=a, and y = 7,, dueto high symmetry of the system under investigation).

Figure 7. Penetration of fullerene Cg through the structure of carbon nanotorus built from
carbon nanotube of (5,0) topology with 10 unit cells.

Table 5. Calculated values of polarizability and second hyperpolarizability (a.u.) for ;. | ;=0
NI’
N, =5 (LP/LSM) N, =7 LP N, =7 LSM
a, 704.4306 704.4307 704.4300
- 1.2767-10° 1.2760-10° 1.2778-10°
o 4.2533-10 4.2530-10’ 4.2532-10

The difference in given values is insignificant that argues for stable solution obtained, therefore results
are reliable and following investigation as for differentiation is trustworthy.

To estimate the interaction between fullerene and tore it is convenient to carry using corresponding
magnitudes:

7 =100% Z“l (41)
o
o = 100970 (42)

(r)

— average polarizability and second hyperpolarizability on current distance |

where (a) and () ,

between centers; <0{>Z and <7/>Z are sums of non-interacting molecules that are equal to 5.307-10° and
7.658-107 atom units respectively. Dependence of values (41), (42) and y... are presented in Figure 8

and Figure 9 respectively.

In the moment when fullerene is passing through the aperture of tore, the distance between surfaces
of molecules is equal 3.5 A. It satisfies the condition of maximal interaction, decrease of average po-
larizability is of 4%, while average second hyperpolarizability is slightly more sensitive — 7%. Interac-
tion decays slowly: at distance . , of 40 A decrease of (y) 1s still near 0.5%. It is worth noting
(Figure 9) the dependence of j__ (z axis coincides with the direction of fullerene movement) has ex-

tremums near 5, =11 A. The reason of it requires posterior investigations.
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Figure 8. Dependence of 5*) and ") on the dis- Figure 9. Dependence of y__ on the distance between

tance between molecules molecules

Conclusions

The universal recipe for reliable numerical computation of high-order derivatives is the use of sev-
eral approaches and comparing their results. In case obtained values are noticeably different, solution
is unstable and it is necessary to change metaparameters.

LP does not require derivation of interpolation function for every calculation, corresponding ex-
pressions for proper number of points has integer coefficients. For LSM it is also possible not to calcu-
late G matrix equation (27) every time. Since computation of G requires “float128” type one should
carry one computation for certain combination of N, — ¢ and to store resulting G values and then use

them for derivatives calculation.

The use of LP gives results (as can be concluded from Table 4) that are closer to the desired coeffi-
cients of model polynomial so it is preferable to employ LP as numerical approach for high-order de-
rivatives calculation.

Investigated interaction between fullerene and carbon nanotorus fragments revealed that second
hyperpolarizability is the most sensitive, so the impact remains up to the distance equal 40 A. In the
limit » > oo values of ()" and (y)" correctly approaches to <0[>z and <7/>z due to the size-extensivity

of coupled cluster energy. However, despite interaction between given fragments has purely dispersion
nature, cuep-CCSD method gives for the state of maximal interaction (3.5 A) the change of
(y)" near 7%.
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Tlocmynuna 0o pedakyii 7 uepsns 2018 p.

A.B. 3axapos*, B.B. MBaHOB*. O TOYHbIX pacyeTax YMCMNEHHbIX MPOU3BOAHbLIX BLICLIMX MOPSAKOB AN HYX[
KBAHTOBOW XUMUMN.

* XapbKOBCKMIN HaUMOHanbHbIM yHMBepcuTeT nmernn B.H. KapasuHa, xumudeckun cpakynbteT, kadeapa xvmu-
Yyeckoro matepuanoBsefeHus, nnowanb Ceoboasbl, 4, Xapbkos, 61022, YkpauHa

Pa3nnyHble MonekynspHele napameTpbl B KBAHTOBOW XUMWMU MOTYT ObiTb paccyMTaHbl Kak MpPOM3BOAHblE OT
3HEeprnM Mo pasnuyHbIM aprymeHtam. K coxaneHuto, nony4nTb aHanuTUYeckme BblpaXKeHUs ANA UHTEPECYHoLLMX
XapakTepUCTUK B paMKax METOAO0B, KOTOPblEe YYUTLIBAIOT ahEKTI INEKTPOHHOW KOppensauum He Tak nerko. B
0COBEHHOCTN 3TO KacaeTcs Teopumn cBsi3aHHbIX knactepoB (Coupled Cluster, CC). B nogobHbIx cnyyasx, Ha no-
MOLLb NPUXOAMT MeToZ YncrneHHoro andpdepeHumposanus. MogobHbIN noaxoa, kak u nobble Apyrne YNCNEeHHbIe
MEeTOAbl MMeeT pag SMMUPUYECKNX ONTUMU3UPYEMbBIX NapamMeTpoB U PSA OrpaHuYeHun, Tpedbyowmnx ndyyeHus.
HaHHas paboTa npussaHa NPOACHUTL AeTanu UCNONb30BaHNA MeTo4a KOHEYHOro nons Afs pacyeta npovssoa-
HbIX BbiclMX nopsigkos Teopumn CC. lNpegnoxeH obwmii nogxof K BblGOpy napameTpoB M COOTBETCTBYHOLLUME
pekomMeH4aLuM No OLeHKe YNCIEHHON YCTONYMBOCTU. B kavecTBe npumepa peanvsauum metoda KOHEYHOro nons
BblOpaHbl ONTUYeCKMe CBOWNCTBa npouecca nponeTta dyniepeHa ckBo3b CTPYKTYPY YrNepogHoro HaHoTopa.

KnioueBble cnoBa: Npoun3BOAHbIE OT 3HEPrUU, YnUcneHHoe AnddepeHLnpoBaHne, MeTOoh KOHEeYHOro nons,
Teopus CBA3aHHbIX KnacTtepos, runepnonspudyemoctu, DIIS.

A.B. 3axapos*, B.B. IBaHOB". [1p0 TOYHi po3paxyHKuN YNCENbHMUX NOXIOHWMX BULLMX NOPSAKIB AN notped kBaHTO-
BOI XiMmii.

* XapkiBcbkuit HaLioHanbHUI yHiBepceuTeT iMeHi B.H. KapasiHa, ximiyHuin doakynbTeT, kadenpa ximiyHoro marte-
p y p p Y. p
pianosHaBcTBa, MangaH Ceoboau, 4, Xapkis, 61022, YkpaiHa

PisHOMaHITHI napameTpun B KBAHTOBIN XiMii MOXYTb OYT po3paxoBaHi K MOXiAHi Bif eHeprii No pisHMM apryme-
HTaMm. AK BiQOMO 3 niTepaTypHUX OaHUX Ta PO3PaxXyHKOBOro AOCBIAY, SKICTb OUIHKM ONTUYHMX Ta HENiHiMHO-
ONTUYHUX MapaMeTpiB, ki MOXYTb GYTU po3paxoBaHi Sk NOXiAHI BiA eHeprii CMCTEMM MO HaNPY>XEHOCTi 30BHiLLI-
HbOrO eneKTPOCTaTUYHOro MO, € Y AyXe TICHOMY 3B’A3KY i3 TOUHICTIO ypaxyBaHHA edeKTiB eneKkTPoOHHOI Kope-
nauii. Haxanb, oTpyMaTt aHaniTu4Hi BUpasu Ons XxapakTepucTuK Lo LIKaBNATb B pamMKax TakMx METOAIB He ner-
ko. B ocobnueocTi ue ctocyeTtbesa Teopii 3BsidaHux knactepiB (Coupled Cluster, CC). Tomy Tpeba npubiratu go
Bapiauin meTogy YncenbHOro gndepeHuitoBaHHs. Lien nigxig, gk i 6inblWicTe YncenbHUX MeToaiB Mae psig emni-
PWYHMX NapameTpiB, O ONTUMI3YIOTLCS Ta psag obmexeHb, Aki noTpebyoTb AeTanbHOro BUBYEHHS. [aHa poboTa
MOKNMKaHa NpPOSICHNTU OCOBNMBOCTI BUKOPUCTaHHA METOAY CKIHYEHOro Mons AN po3paxyHKiB MOXiOAHUX BULLMX
nopsakie B Teopii CC. 3anponoHoBaHO 3aranbHUi nigxig Ao Bubopy napameTpiB Ta BiANOBIAHI pekoMeHaauii 4o
OLiHKN YMCENBHOI CTINKOCTi. BU3HAYeHO onTMManbHWUiA iHTepBan KPOKy BapitoBaHHS HAMpPY>XEHOCTi eNeKTPpUYHOro
nons Ta KpUTEepIto 3aKkiHYeHHs iTepauiHoi npoueaypu ANs HagiiHOro po3paxyHKy LWyKaHWX noxigHux. NposicHeHo
3aCTOCYBaHHSl MeTody NpsiMoOro obepTaHHs B iTepauiiHoMy nignpocTopi AN NPUCKOPEHHS PilLEHHSA PiBHSAHb
MeTO/iB Teopii 3B’A3aHMX knactepiB. Po3rnsHyTo ocobnueocTi peanisadii anbTepHaTMBHOI NPOEKLNHOT CXeMU Ta
Ti epeKTUBHICTb Y NOPIBHSIHHI i3 cTaHOapTHOW. Ha npuknagi MogensHoro noniHOMy BCTaHOBIEHO, LLO Npuopute-
THMM MiAXOAOM i3 OBOX PO3rNSAHYTUX € MEeTOoZ iHTepronsuii 3a 4onoMorot noniHoMiB JlarpaHxa. Y skocTi npukna-
Oy peanisauii MeTogy CKiH4EeHOro nomnsi obpaHo ONTUYHI BNACTMBOCTI (pynepeHy B NpoLEeci MOro npoXomKeHHs
Kpi3b ByrneLeBuii HaHOTop. BcTaHoBMNEHO, WO HanbinbLWKi BiAryK Y UbOMY NPOLECi CNOCTEpPIraeTbCca Anst opyroi
rineprnonspu3oBHOCTI Ta YyTNMBICTb MiXX ABOMa oparMeHTamMu 3anuiaeTbCst Ha BiacTaHi 6inblie 40 aHrcTpem.

Knro4yoBi cnoBa: noxigHi Big eHeprii, YyicenoHe aMdepeHLitoBaHHSA, METOA CKIHYEHOrO Nosisl, TEOPIst 3B’A3aHMX
knactepis, rinepnonsapu3osHocTi, DIIS.
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